JPS6229023B2 - - Google Patents

Info

Publication number
JPS6229023B2
JPS6229023B2 JP55084215A JP8421580A JPS6229023B2 JP S6229023 B2 JPS6229023 B2 JP S6229023B2 JP 55084215 A JP55084215 A JP 55084215A JP 8421580 A JP8421580 A JP 8421580A JP S6229023 B2 JPS6229023 B2 JP S6229023B2
Authority
JP
Japan
Prior art keywords
frequency spectrum
frequency
signal
values
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55084215A
Other languages
Japanese (ja)
Other versions
JPS578445A (en
Inventor
Sakae Sugyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8421580A priority Critical patent/JPS578445A/en
Priority to US06/274,428 priority patent/US4428235A/en
Priority to CA000380071A priority patent/CA1169955A/en
Priority to DE8181104728T priority patent/DE3169659D1/en
Priority to EP81104728A priority patent/EP0042601B1/en
Publication of JPS578445A publication Critical patent/JPS578445A/en
Publication of JPS6229023B2 publication Critical patent/JPS6229023B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4427Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with stored values, e.g. threshold values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/348Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with frequency characteristics, e.g. single frequency signals, chirp signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4445Classification of defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/267Welds

Landscapes

  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、超音波エコー反射体の性状、大きさ
を推定するのに好適な非破壊検査方法及びその装
置に関する。 金属材料内部に存在する傷、溶接部の融合不
良、スラグ巻込み等の欠陥を超音波により探傷す
る場合、これらの欠陥から反射された超音波エコ
ーを周波数分析して、周波数スペクトルから欠陥
に関する情報を推定する方法がある。この代表的
なものゝ1つに、米国特許3776026(スペクトル
分析による超音波欠陥決定法)が挙げられる。こ
の方法は、周波数スペクトルの極大値間の周波数
間隔Δfから欠陥の大きさdを(1)式の如く決定す
るものである。 d=c/Δfsioθ ………(1) ここで、c:超音波の音速(mm/s)、θ:超
音波の入射角(deg.)、Δf:周波数スペクトル
の極大値間の周波数間隔(Hz)、d:欠陥の大き
さ(mm)。 実際の現象では、或る反射体からの超音波エコ
ーの周波数スペクトルは、単峰性であるために周
波数間隔Δfが求められない場合や、例え、Δf
が得られても一定間隔ではない場合等、必ずしも
理想的なパターンが得られるものではない。さら
に、欠陥の大きさを推定する問題の他に、反射体
が溶接部境界であるが、真に割れや融合不良等の
欠陥であるのか、その性状を非破壊的に検知する
ことは、構造物の品質管理の上で、非常に重要で
ある。このような観点からは、上記の従来法は、
一定の周波数間隔の時に欠陥の大きさを決定する
方法を与えるものであるため、適用の範囲が狭い
と云う欠点を有する。 本発明の目的は、得られた超音波エコーの反射
体が被検体の形状であるのか、または溶接部境界
であるのか、欠陥であるのかを識別する方法及び
装置を提供することにある。 本発明は、超音波エコーの周波数スペクトルか
ら特徴的パラメータを抽出し、これらを予め求め
ておいた実験値または理論値と比較することによ
つて、反射体の性状の識別と欠陥の大きさの推定
を行なうものである。 本発明の具体例について、以下、図面を用いて
説明する。 超音波エコーの周波数スペクトルの代表的パタ
ーンの例は、第1図に示す如く、(a)単峰性、(b)定
ピツチ多峰性、(c)不定ピツチ多峰性に類別され
る。反射体が被検体形状の境界、欠陥、溶接部境
界等の違いにより、周波数スペクトルのパターン
が異なることは、実験的に確認される。このパタ
ーンを定量的に把握するために、特徴的パラメー
タとして、以下の4つを用いることにする。 (1) 最大スペクトル強度qn (2) 中心周波数f0 (3) 極大値間の周波数間隔の平均値Δf〓 (4) 同 上 の標準偏差σf 本発明は当該4つの特徴的パラメータが、反射
体の性状によつてどのように相違するかを予め実
験的または理論的に求めておき、実測値と比較す
る。 比較の一例として、溶接部境界と欠陥(または
被検体形状)の識別法を第2図に示す。欠陥エコ
ーは、単峰性または定ピツテ多峰性のパターンを
呈する場合が多い。これに対して、溶接部境界エ
コーは、境界部から微小の時間差で反射された多
数のエコーが重なつたものであるため、その周波
数スペクトルにおいて、極大値間の周波数間隔の
標準偏差σfが大きく、なおかつ最大スペクトル
強度qnが大きい。この場合、注意を要すること
は、時間領域における超音波エコーの振幅は一定
レベルに調整した上で周波数スペクトルを算出す
ることである。被検体形状境界エコーは、単峰性
のパターンである場合が多い。その理由は、この
境界からのエコーは単一のエコーであるためであ
る。単峰性の場合は、周波数間隔Δfなるものが
ないが、便宜上、周波数間隔の標準偏差σfを零
として扱う。 以上は、最大スペクトル強度qnと極大値間の
周波数間隔の標準偏差σfの使用例であるが、中
心周波数f0及び周波数間隔の平均値Δf〓について
は、主として反射体の大きさの推定に利用する。
欠陥の大きさdを(1)式により推定する場合、従来
は周波数間隔Δfを用いていたのに対し、本発明
は平均値Δf〓を用いる。これは、多峰性のパター
ンにおいて、周波数間隔Δfが均一である場合は
希であるからである。他方、中心周波数f0は、反
射体が小さい程、高くなる傾向がある。定量的に
は、既知の材質、欠陥の大きさ等を対象にした実
験で予め中心周波数f0を測定しておき、これと、
未知の被検体の結果とを比較して推定する。 上記の方法を装置化した一実施例を第3図に示
す。同図中、被検体1に存在する反射体fの性状
(被検体形状の境界、溶接部境界、欠陥)を識別
し、欠陥である場合には、その大きさを推定する
ために、通常の超音波探傷で用いられている探触
子2及び超音波受信器3の他に、周波数分析回路
4、特徴抽出回路5、特徴比較回路6、出力回路
7及びデータ記憶回路8を設ける。 周波数分析回路4は、超音波エコーRのRF
(Radio Freg.)信号の所定時間幅τから(2)式の
如く、スペクトル強度qを算出する。 q(f)=|∫〓/2 /2r(t)e-jtdt|
………(2) ここで、r(t)は超音波エコー、fは周波
数、ω=2πfである。 特徴抽出回路5は、上記4つの特徴的パラメー
タを抽出する。周波数分析回路4から入力される
データ(fi、qi)、(i=1〜N)を受けて、当
該回路5は、第4図のフロー線図に従つて、q
n、f0、Δf〓、σfを計算し、次段の回路に出力す
る。同図中の計算のステツプ3、4、5によつ
て、所定の閾値Lよりも小さなスペクトルの変化
(脈動)を平滑するようにしている。 なお、演算については、第4図のフローチヤー
トに示すごとく、超音波受信信号の周波数スペク
トルの内から、極大値qni(i=1、2、……)
を取り出した後に、通常の計算をしている。すな
わち、 qn:極大値qniの内から、最大のものを選ぶ Δf〓:周波数間隔Δfi(i=1、2、……)の
平均値 =
The present invention relates to a non-destructive testing method and apparatus suitable for estimating the properties and size of an ultrasonic echo reflector. When detecting defects such as scratches, poor fusion of welds, and slag entrainment inside metal materials using ultrasonic waves, the ultrasonic echoes reflected from these defects are frequency-analyzed to obtain information about the defects from the frequency spectrum. There is a way to estimate. One of the representative examples is US Pat. No. 3,776,026 (Ultrasonic Defect Determination Method Using Spectral Analysis). In this method, the defect size d is determined from the frequency interval Δf between the maximum values of the frequency spectrum as shown in equation (1). d=c/Δf sio θ……(1) where, c: Sound speed of ultrasound (mm/s), θ: Incident angle of ultrasound (deg.), Δf: Frequency between local maximum values of frequency spectrum Spacing (Hz), d: Defect size (mm). In actual phenomena, the frequency spectrum of ultrasonic echoes from a certain reflector is unimodal, so there are cases where the frequency interval Δf cannot be determined, and even if Δf
Even if a pattern is obtained, an ideal pattern may not necessarily be obtained, such as when the intervals are not constant. Furthermore, in addition to the problem of estimating the size of the defect, it is also important to non-destructively detect the nature of the reflector at the boundary of the weld, whether it is truly a crack or a defect such as poor fusion. It is extremely important for quality control of products. From this perspective, the above conventional method is
Since this method provides a method for determining the size of a defect at a fixed frequency interval, it has the disadvantage that the range of application is narrow. An object of the present invention is to provide a method and apparatus for identifying whether a reflector of the obtained ultrasonic echo is the shape of the object, a weld boundary, or a defect. The present invention extracts characteristic parameters from the frequency spectrum of ultrasonic echoes and compares them with experimental or theoretical values determined in advance to identify the properties of the reflector and determine the size of defects. This is to make an estimate. Specific examples of the present invention will be described below with reference to the drawings. Typical patterns of the frequency spectrum of ultrasonic echoes are classified into (a) unimodal, (b) constant pitch multimodal, and (c) indefinite pitch multimodal, as shown in FIG. It has been experimentally confirmed that the pattern of the frequency spectrum of the reflector differs depending on the boundaries of the object shape, defects, boundaries of welds, etc. In order to quantitatively understand this pattern, we will use the following four characteristic parameters. (1) Maximum spectral intensity q n (2) Center frequency f 0 (3) Average value of the frequency interval between maximum values Δf〓 (4) Standard deviation σ f of the same as above In the present invention, the four characteristic parameters are: The differences depending on the properties of the reflector are determined experimentally or theoretically in advance and compared with actual measurements. As an example of comparison, FIG. 2 shows a method for identifying weld boundaries and defects (or object shapes). Defect echoes often exhibit a unimodal or regular pitte multimodal pattern. On the other hand, a weld boundary echo is a combination of many echoes reflected from the boundary with minute time differences, so in its frequency spectrum, the standard deviation σ f of the frequency interval between local maximum values is large, and the maximum spectral intensity q n is large. In this case, care must be taken to calculate the frequency spectrum after adjusting the amplitude of the ultrasound echo in the time domain to a constant level. The object shape boundary echo often has a unimodal pattern. The reason is that the echo from this boundary is a single echo. In the case of unimodal, there is no frequency interval Δf, but for convenience, the standard deviation σ f of the frequency interval is treated as zero. The above is an example of how to use the maximum spectral intensity q n and the standard deviation σ f of the frequency interval between the maximum values, but the center frequency f 0 and the average value Δf of the frequency interval are mainly used to estimate the size of the reflector. Use it for.
When estimating the defect size d using equation (1), conventionally the frequency interval Δf is used, whereas the present invention uses the average value Δf〓. This is because in a multimodal pattern, the frequency intervals Δf are rarely uniform. On the other hand, the smaller the reflector, the higher the center frequency f 0 tends to be. Quantitatively, the center frequency f 0 is measured in advance in an experiment using known materials, defect sizes, etc., and this and
Estimation is made by comparing the results with those of unknown subjects. FIG. 3 shows an embodiment in which the above method is implemented as a device. In the figure, in order to identify the properties of the reflector f present in the object 1 (boundary of the object shape, weld boundary, defect) and estimate the size of the defect, In addition to the probe 2 and ultrasonic receiver 3 used in ultrasonic flaw detection, a frequency analysis circuit 4, a feature extraction circuit 5, a feature comparison circuit 6, an output circuit 7, and a data storage circuit 8 are provided. The frequency analysis circuit 4 analyzes the RF of the ultrasonic echo R.
(Radio Freg.) The spectral intensity q is calculated from the predetermined time width τ of the signal as shown in equation (2). q(f)=|∫〓 /2 /2 r(t)e -jt dt|
......(2) Here, r(t) is an ultrasonic echo, f is a frequency, and ω=2πf. The feature extraction circuit 5 extracts the above four characteristic parameters. Upon receiving the data (f i , q i ), (i=1 to N) input from the frequency analysis circuit 4, the circuit 5 calculates q according to the flow diagram of FIG.
n , f 0 , Δf〓, and σ f are calculated and output to the next stage circuit. Calculation steps 3, 4, and 5 in the figure smooth out changes (pulsations) in the spectrum that are smaller than a predetermined threshold L. Regarding the calculation, as shown in the flowchart of Fig. 4, the local maximum value q ni (i=1, 2,...) is calculated from the frequency spectrum of the ultrasonic reception signal.
After extracting , normal calculations are performed. In other words, q n : Select the maximum value from among the maximum values q ni Δf〓 : Average value of the frequency interval Δf i (i=1, 2,...) =

【式】 σf:Δfiの標準偏差= f0:中心周波数=1/q(f)∫q(f)dt 特徴比較回路6では、超音波探傷で新たに得ら
れた特徴的パラメータをデータ記憶回路8におけ
るデータと比較し、超音波エコー(t)の反射体
の性状を識別すると共に、欠陥であればその大き
さを推定する。データ記憶回路8には、例えば第
2図のマツプが記憶されている。さらに、被検体
の材質、欠陥の形状(円形、スリツト等)別に、
欠陥の大きさdと中心周波数f0の関係もテーブル
として登録されている。この種の情報は外部か
ら、入力情報Exとして与えられる。このような
回路構成において、欠陥の大きさを推定する手順
は第5図のように表わすことができる。 出力回路7はX−YプロツターまたはCRTで
よく、これには、第2図の如きマツプ上に超音波
エコーの(qn、σf)が表示される。第6図は異
種金属溶接部の溶接部境界と各種欠陥(スリツト
傷、ドリル横穴、自然状割れ)を対象にした実験
結果の例である。検査結果は、第5図のフローチ
ヤートに示す如く、欠陥の大きさの推定と溶接部
境界からの反射波であるか否かの識別が出来る結
果となる。特に溶接部境界からの反射波であるか
否かの識別は反射波情報を解析する場合に反射源
の誤認識が生じないようにするのに役立つ。 以上説明した如く、本発明の実施例によれば、
超音波エコーの反射体が何であるか簡単に識別で
きるので、検査能率とその信頼性が大幅に向上す
る。また、本発明はプラント構造物、材料の品質
管理に大きく寄与する。 これまでの説明では、スペクトル強度qを(2)式
により算出したが、さらに供試探触子による影響
をなくすために、(3)式から求めてもよい。 q(f)=1/q(f)|∫〓/2 /2r(t)
-jtdt| ………(3) ここで、qp(f)は探触子の周波数スペクトルで
ある。 なお、本発明は、第3図示のような専用機器に
よる構成のほか、マイクロコンピユータ等を用い
ても構成できる。その場合、送信機3からの信号
をA/D変換し、コンピユータにより周波数分
析、特徴抽出、及び特徴比較を行なうことができ
る。また、特徴抽出と特徴比較のみをコンピユー
タで行なうこともできる。
[Formula] σ f :Standard deviation of Δf i = f 0 : Center frequency = 1/q(f)∫q(f)dt The feature comparison circuit 6 compares the characteristic parameters newly obtained by ultrasonic flaw detection with the data in the data storage circuit 8, and The characteristics of the reflector (t) are identified, and if there is a defect, its size is estimated. For example, the map shown in FIG. 2 is stored in the data storage circuit 8. Furthermore, depending on the material of the specimen and the shape of the defect (circular, slit, etc.),
The relationship between the defect size d and the center frequency f 0 is also registered as a table. This type of information is given from the outside as input information Ex. In such a circuit configuration, the procedure for estimating the size of a defect can be expressed as shown in FIG. The output circuit 7 may be an X-Y plotter or a CRT, on which the (q n , σ f ) of the ultrasound echoes are displayed on a map as shown in FIG. Figure 6 shows an example of the results of an experiment targeting the weld boundary of dissimilar metal welds and various defects (slit flaws, drill horizontal holes, natural cracks). The inspection results, as shown in the flowchart of FIG. 5, allow estimation of the size of the defect and identification of whether the wave is reflected from the weld boundary. In particular, identifying whether the reflected wave is from a weld boundary is useful for preventing erroneous recognition of the reflection source when analyzing reflected wave information. As explained above, according to the embodiments of the present invention,
Since the reflector of the ultrasound echo can be easily identified, inspection efficiency and reliability are greatly improved. Further, the present invention greatly contributes to quality control of plant structures and materials. In the explanation so far, the spectral intensity q has been calculated using equation (2), but in order to further eliminate the influence of the test probe, it may be calculated using equation (3). q(f)=1/q p (f)|∫〓 /2 /2 r(t)
e −jt dt | ………(3) Here, q p (f) is the frequency spectrum of the probe. Note that the present invention can be configured using a microcomputer or the like in addition to the configuration using a dedicated device as shown in the third figure. In that case, the signal from the transmitter 3 can be A/D converted, and a computer can perform frequency analysis, feature extraction, and feature comparison. Further, only feature extraction and feature comparison can be performed using a computer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は超音波エコーの周波数スペクトルの代
表的パターン例を示す図、第2図は溶接部境界エ
コーと欠陥エコーの識別マツプ、第3図は本発明
の装置の一実施例を示す図、第4図及び第5図は
本発明を構成する特徴抽出回路及び特徴比較回路
の動作例を説明するフロー線図、第6図は実験結
果の例を示す図である。 1……被検体、2……探触子、3……超音波送
受信器、4……周波数分析回路、5……特徴抽出
回路、6……特徴比較回路、7……出力回路、8
……データ記憶回路。
FIG. 1 is a diagram showing an example of a typical pattern of the frequency spectrum of an ultrasonic echo, FIG. 2 is a map for identifying weld boundary echoes and defect echoes, and FIG. 3 is a diagram showing an embodiment of the apparatus of the present invention. FIGS. 4 and 5 are flow diagrams illustrating an example of the operation of the feature extraction circuit and feature comparison circuit constituting the present invention, and FIG. 6 is a diagram showing an example of experimental results. DESCRIPTION OF SYMBOLS 1...Object, 2...Probe, 3...Ultrasonic transmitter/receiver, 4...Frequency analysis circuit, 5...Feature extraction circuit, 6...Feature comparison circuit, 7...Output circuit, 8
...Data storage circuit.

Claims (1)

【特許請求の範囲】 1 探傷子より超音波を発信し、該発信波に対す
る被検査物からの反射波を探傷子で受信し、該受
信信号を処理して得られた信号から上記被検査物
中の欠陥の有無を調べる方法において、上記信号
処理は、上記受信信号の周波数スペクトルを示す
信号を求める第一段階と、上記周波数スペクトル
信号からその周波数スペクトルの特徴パラメータ
である最大スペクトル強度及び極大値間の周波数
間隔の標準偏差を演算する第二段階により行な
い、前記第二段階で得られた前記演算結果データ
と予め求めたデータとを比較して反射波の性状の
識別をすることを特徴とした周波数スペクトル解
析による非破壊検査方法。 2 特許請求の範囲の第1項において、前記比較
工程は、前記信号処理で、前記第二段階後に、前
記予め求めた幾つかの状態に対応するデータを記
憶した記憶装置からの記憶値と、前記第二段階で
得られた演算結果データとを比較し、比較結果を
示す信号を出力する段階により行なうことを特徴
とした周波数スペクトル解析による非破壊検査方
法。 3 探触子から超音波を発信し、該発信波の被検
査物からの反射波を受信し、電気信号に変換する
手段と、上記電気信号から上記反射波の周波数ス
ペクトル信号を求める周波数分析器と、被検査物
の幾つかの状態に対してあらかじめ求めた反射波
の周波数スペクトルに対する少なくとも1組の特
徴パラメータ値である最大スペクトル強度qn
極大値間の周波数間隔の標準偏差σfとを記憶し
ている記憶装置と、上記周波数分析器の出力信号
に対する少なくとも1組の特徴パラメータ値を、
上記最大スペクトル強度qnについては、超音波
受信信号の周波数スペクトルの内から極大値qni
(i=1、2、……)を取り出した後に、その極
大値qniから最大値を求めることによつて得る演
算処理部と、上記極大値間の周波数間隔の標準偏
差σfについては各極大値間の各周波数間隔の値
を基にして標準偏差の式で求める演算処理部と、
これらの各演算処理部の算出値を上記記憶装置に
記憶された対応する少なくとも1組の特徴パラメ
ータと比較し、比較結果を反射波の性状結果とし
て出力する演算処理部とから成る演算処理装置と
から成る周波数スペクトル解析による非破壊検査
装置。
[Scope of Claims] 1. An ultrasonic wave is emitted from a flaw detector, a reflected wave from the object to be inspected is received in response to the emitted wave by the flaw detector, and the received signal is processed. In the method for examining the presence or absence of defects in the receiver, the signal processing includes a first step of obtaining a signal indicating the frequency spectrum of the received signal, and a maximum spectral intensity and local maximum value, which are characteristic parameters of the frequency spectrum, from the frequency spectrum signal. The characteristics of the reflected wave are identified by comparing the calculation result data obtained in the second step with data obtained in advance. A non-destructive testing method using frequency spectrum analysis. 2. In claim 1, the comparing step includes, in the signal processing, storing values from a storage device storing data corresponding to the several states determined in advance after the second step; A non-destructive inspection method using frequency spectrum analysis, characterized in that the method comprises a step of comparing the calculation result data obtained in the second step and outputting a signal indicating the comparison result. 3. A means for emitting ultrasonic waves from a probe, receiving reflected waves of the emitted waves from the object to be inspected, and converting them into electrical signals, and a frequency analyzer for obtaining a frequency spectrum signal of the reflected waves from the electrical signals. and the maximum spectral intensity q n, which is at least one set of characteristic parameter values for the frequency spectrum of the reflected wave determined in advance for several states of the inspected object, and the standard deviation σ f of the frequency interval between the maximum values. a storage device storing at least one set of characteristic parameter values for the output signal of the frequency analyzer;
Regarding the maximum spectral intensity q n mentioned above, the local maximum value q ni from the frequency spectrum of the ultrasonic reception signal is
(i = 1, 2, ...), and then calculates the maximum value from its local maximum value q ni , and the standard deviation σ f of the frequency interval between the maximum values. an arithmetic processing unit that calculates by a standard deviation formula based on the value of each frequency interval between local maximum values;
an arithmetic processing unit that compares the calculated values of each of these arithmetic processing units with at least one corresponding set of characteristic parameters stored in the storage device, and outputs the comparison result as a property result of the reflected wave; A non-destructive testing device that uses frequency spectrum analysis.
JP8421580A 1980-06-20 1980-06-20 Method and device of non-destructive inspection by frequency spectral analysis Granted JPS578445A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP8421580A JPS578445A (en) 1980-06-20 1980-06-20 Method and device of non-destructive inspection by frequency spectral analysis
US06/274,428 US4428235A (en) 1980-06-20 1981-06-17 Non-destructive inspection by frequency spectrum resolution
CA000380071A CA1169955A (en) 1980-06-20 1981-06-18 Non-destructive inspection by frequency spectrum resolution
DE8181104728T DE3169659D1 (en) 1980-06-20 1981-06-19 Non-destructive inspection by frequency spectrum resolution
EP81104728A EP0042601B1 (en) 1980-06-20 1981-06-19 Non-destructive inspection by frequency spectrum resolution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8421580A JPS578445A (en) 1980-06-20 1980-06-20 Method and device of non-destructive inspection by frequency spectral analysis

Publications (2)

Publication Number Publication Date
JPS578445A JPS578445A (en) 1982-01-16
JPS6229023B2 true JPS6229023B2 (en) 1987-06-24

Family

ID=13824249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8421580A Granted JPS578445A (en) 1980-06-20 1980-06-20 Method and device of non-destructive inspection by frequency spectral analysis

Country Status (1)

Country Link
JP (1) JPS578445A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179745A (en) * 1981-04-30 1982-11-05 Fujitsu Ltd Method and device for measuring material property by ultrasonic wave
JPS58162861A (en) * 1982-03-23 1983-09-27 Toshiba Corp Ultrasonic flaw detector
KR100497501B1 (en) * 2002-11-29 2005-07-01 (주)오리엔트전산 Detection Method for Defect of piston gallery and The apparatus used thereto
KR100681855B1 (en) 2004-08-31 2007-02-15 (주) 엠큐브테크놀로지 A measuring method for obtaining an ultrasonic image, having improved resolution
JP5104833B2 (en) * 2009-09-09 2012-12-19 株式会社豊田中央研究所 Structure internal state measurement system and structure internal state measurement method

Also Published As

Publication number Publication date
JPS578445A (en) 1982-01-16

Similar Documents

Publication Publication Date Title
EP0042601B1 (en) Non-destructive inspection by frequency spectrum resolution
US7010982B2 (en) Method of ultrasonically inspecting airfoils
TW202024632A (en) Ultrasound inspection method and ultrasound inspection device
JPS6229023B2 (en)
JPH063305A (en) Method for non-destructively inspecting piezo-electric element for micro-crack
JPS61184458A (en) Measuring device for depth of crack of surface
US4187725A (en) Method for ultrasonic inspection of materials and device for effecting same
JPS6332142B2 (en)
US5922956A (en) Dynamic ultrasonic resonance testing
KR100485450B1 (en) Ultrasonic testing apparatus and control method therefor
JPH09171005A (en) Method for discriminating kind of defect by ultrasonic flaw detection
JP2002139478A (en) Creep damage detection method and device of structural material
JPH09138222A (en) Ultrasonic inspection method for cast piece or rolled steel material
JPS61138160A (en) Ultrasonic flaw detector
RU2191376C2 (en) Method measuring sizes of defects in process of ultrasonic inspection of articles
JP2007292554A (en) Ultrasonic flaw inspection system
JP3473435B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
KR20180027274A (en) Non-destruction testing apparatus having effective detection distance measurement function
JP2001004602A (en) Ultrasonic flaw detecting method and apparatus
JPH0658917A (en) Ultrasonic inspection method and device therefor
JP2761928B2 (en) Non-destructive inspection method and device
JPS6093955A (en) Ultrasonic inspection apparatus
JP2002286702A (en) Macro-segregation evaluating method for steel material
JP2023183636A (en) Ultrasonic inspection method and ultrasonic inspection device
JPH10123099A (en) Apparatus and method for evaluating metallic material