JPS61138160A - Ultrasonic flaw detector - Google Patents

Ultrasonic flaw detector

Info

Publication number
JPS61138160A
JPS61138160A JP59261080A JP26108084A JPS61138160A JP S61138160 A JPS61138160 A JP S61138160A JP 59261080 A JP59261080 A JP 59261080A JP 26108084 A JP26108084 A JP 26108084A JP S61138160 A JPS61138160 A JP S61138160A
Authority
JP
Japan
Prior art keywords
memory
data
stored
value
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59261080A
Other languages
Japanese (ja)
Inventor
Masashi Takahashi
雅士 高橋
Ichiro Furumura
古村 一朗
Satoshi Nagai
敏 長井
Taiji Hirasawa
平沢 泰治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59261080A priority Critical patent/JPS61138160A/en
Publication of JPS61138160A publication Critical patent/JPS61138160A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4463Signal correction, e.g. distance amplitude correction [DAC], distance gain size [DGS], noise filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0618Display arrangements, e.g. colour displays synchronised with scanning, e.g. in real-time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/32Arrangements for suppressing undesired influences, e.g. temperature or pressure variations, compensating for signal noise
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/42Detecting the response signal, e.g. electronic circuits specially adapted therefor by frequency filtering or by tuning to resonant frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Abstract

PURPOSE:To improve S/N and the power to resolve defects without depending on the kind and size of a material to be inspected and the kind, etc. of the defects thereof by providing a filter group consisting of the filters which are the same in the characteristics and shape and are different in the central frequency to an ultrasonic signal receiving system and making arithmetic processing in such a manner that only the desired signal component is obtd. out of the received signals. CONSTITUTION:The reception signal from a receiver 3 is amplified by the filter group 4 having the filters which are equal in the characteristics and are different in the central frequency. The beam path and amplitude value are measured by a beam path measuring circuit 5 and an amplitude value measuring circuit 6 and are thereafter stored into a memory 8A. The position of an ultrasonic probe 1 is also detected 7 and is stored in the memory 8A. These sets of the data are subjected to the arithmetic processing to detect the max. value of the absolute amplitude value in an arithmetic part 8D and are stored in the memory 8A. The defect data and shape data are obtd. as the position coordinates with the data in the position of the same probe 1 as one set by using the distance-amplitude characteristic curve stored in a memory 8B and the shape value stored in a memory 8C and are displayed 10 after digital-to-analog conversion 9.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、被検体として、金属材料等の表面や内部に存
在する欠陥の有無及び欠陥の寸法を測定する超音波探1
m装置に係り、特に、受信信号のS/N比を改善し且つ
欠陥分解能を向上させた超音波探傷装置に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to an ultrasonic detector 1 for measuring the presence or absence of defects and the dimensions of defects existing on the surface or inside of a metal material or the like as an object to be inspected.
The present invention relates to an ultrasonic flaw detection device, and particularly to an ultrasonic flaw detection device that improves the S/N ratio of a received signal and improves defect resolution.

[発明の技術的背景とその問題点〕 超音波探傷において、欠陥を確実に検出する手段として
は、欠陥信号とノイズとの比、即ち、S、/N比の向上
を図ることがあげられる。特に、オーステナイト系ステ
ンレス鋼に発生した応力腐食割れ等のように材料ノイズ
の大きい材料<lu大結晶粒に起因)中に存在する互い
に密着した(タイト)で微小な欠陥を検出するには、欠
陥検出限界が上記S/N比較によって決定されてしまう
ことが多い。
[Technical background of the invention and its problems] In ultrasonic flaw detection, one way to reliably detect defects is to improve the ratio of defect signal to noise, that is, the S/N ratio. In particular, it is necessary to detect small defects that are in close contact with each other (due to large crystal grains) in materials with large material noise (due to large crystal grains), such as stress corrosion cracking that occurs in austenitic stainless steel. The detection limit is often determined by the above S/N comparison.

而して、従来の超音波探傷装置では、探傷法、データ処
理法等を改良して上記S/N比向上向上請に応えようと
している。しかし乍、被検体の材料の種類、及びその大
きさ、欠陥の種類等によらずS/N比を向上させる画一
的な対策は未だ開時されていなかった。
In the conventional ultrasonic flaw detection apparatus, efforts are being made to improve the flaw detection method, data processing method, etc. in order to meet the above-mentioned request for an improvement in the S/N ratio. However, no uniform measures have yet been taken to improve the S/N ratio regardless of the type of material of the test object, its size, type of defect, etc.

[発明の目的] 本発明は上記事情に基いてなされたもので、その目的と
するところは、被検体の材料の種類、及びその大きさ欠
陥の種類等によらずに、受信信号のS/N比の向上及び
欠陥分解能を向上させることを可能とした超音波探傷装
置を提供することにある。
[Object of the Invention] The present invention has been made based on the above-mentioned circumstances, and its purpose is to improve the S/S/ An object of the present invention is to provide an ultrasonic flaw detection device that can improve the N ratio and defect resolution.

[発明の概要] 本発明による超音波探傷装置は、上記目的を達成するた
めに、フィルタ特性の形状は同一であるが中心周波数が
各別に異なる複数のフィルタからなるフィルタ群を超音
波受信系に設け、欠陥エコー信号はノイズ信号に比較し
て周波数成分が広帯域に存在しでいることを利用し受信
信号の中から所望の信号成分のみが得られるように上記
フィルタ一群を通過Lノだ信号群を演算処理し、受信信
号のS/N比の向上及び欠陥分解能を向上させたことを
特徴としている。
[Summary of the Invention] In order to achieve the above object, an ultrasonic flaw detection device according to the present invention uses a filter group consisting of a plurality of filters having the same shape of filter characteristics but different center frequencies in an ultrasonic receiving system. The L signal group is passed through the above filter group so that only the desired signal component is obtained from the received signal, taking advantage of the fact that the defective echo signal has frequency components in a wider band than the noise signal. This method is characterized by improved S/N ratio of the received signal and improved defect resolution.

[発明の実施例] 以下本発明に係る超音波探傷装置を第1図に示す一実施
例に従い説明する。
[Embodiment of the Invention] An ultrasonic flaw detection apparatus according to the present invention will be described below according to an embodiment shown in FIG.

第1図において、1は内部に超音波振動子1Aを備えた
例えば、斜角探触子等の超音波探触子であり、被検体P
上に配置されている。2は超音波探触子1に励振用の高
電圧パルスを与えるパルサである。このパルサ2は超音
波探触子1を励振し、被検体Pに超音波ビームtJBを
送信する。3はレシーバであり、上記超音波ビームtJ
Bが被検体P内の欠陥CLに反射して形成された超音波
エコーUEを超音波探触子1を介して受信するものであ
る。
In FIG. 1, reference numeral 1 denotes an ultrasonic probe, such as an angle probe, equipped with an ultrasonic transducer 1A inside, and the object P
placed above. 2 is a pulser that applies a high voltage pulse for excitation to the ultrasonic probe 1. This pulser 2 excites the ultrasound probe 1 and transmits an ultrasound beam tJB to the subject P. 3 is a receiver, which transmits the ultrasonic beam tJ
B receives an ultrasonic echo UE formed by being reflected by a defect CL in the subject P via the ultrasonic probe 1.

4はフィルタ特性の形状は同一であるが中心周波数が異
なる多数のフィルタからなるフィルタ群(多チャンネル
形アナログフィルタ)である。このフィルタ群4はレシ
ーバ3からの受信信号を取込み、所定の周波数成分以外
の成分を除去した信号が出力されるようになっている。
Reference numeral 4 denotes a filter group (multi-channel analog filter) consisting of a large number of filters having the same filter characteristic shape but different center frequencies. This filter group 4 takes in the received signal from the receiver 3, and outputs a signal from which components other than predetermined frequency components have been removed.

5はビーム路程計測回路、6は振幅値計測回路であり、
これらはフィルタ群4からの出力信号をA/D変換し、
そのデジタル信号に基いてビーム路程、振幅値を計測す
るものである。7は超音波探触子1の被検体P上での位
置を検出する探触子位置検出器である。8は演算用マイ
クロコンピュータであり、ビーム路程計測回路5及び振
幅値計測回路6からの出力を一つのデータ群として記憶
すると共にその時の探触子位置検出器7からの出力を記
憶する入力データ用メモリ8A、DAC(距離振幅特性
)曲線を示すデータが予め格納されているDAC曲線用
メモリ8B、予め被検体Pの形状を示すデータが格納さ
れている被検体形状用メモリ8C1これらメモリ8A、
8B、8Cのデータに基いて後述するデータ処理を実行
する演算部8Dより構成されている。
5 is a beam path measuring circuit, 6 is an amplitude value measuring circuit,
These A/D convert the output signal from filter group 4,
The beam path and amplitude values are measured based on the digital signal. Reference numeral 7 denotes a probe position detector that detects the position of the ultrasound probe 1 on the subject P. Reference numeral 8 denotes a calculation microcomputer, which is used for input data to store the outputs from the beam path measurement circuit 5 and the amplitude value measurement circuit 6 as one data group, and also to store the output from the probe position detector 7 at that time. A memory 8A, a DAC curve memory 8B in which data indicating a DAC (distance amplitude characteristic) curve is pre-stored, a subject shape memory 8C1 in which data indicating the shape of the subject P is pre-stored;
It is composed of an arithmetic unit 8D that executes data processing to be described later based on data 8B and 8C.

9は演算部8Dからの出力をアナログ信号化するD/A
変換器である。10はこのD/A変換器9の出力に基い
てAスコープ、Bスコープ、Cスコープ等の表示方式で
映像表示する表示装置である。11は上述した各回路を
制御する制■用マイクロコンピュータである。
9 is a D/A that converts the output from the calculation unit 8D into an analog signal.
It is a converter. Reference numeral 10 denotes a display device that displays images based on the output of the D/A converter 9 using display methods such as A scope, B scope, and C scope. Reference numeral 11 is a control microcomputer that controls each of the circuits described above.

上記において、入力データ用メモリ8Aに記憶された同
一ビーム路程での振幅値データ群は、同一フィルタでの
データ毎に、演算部8DでDCA曲線用メモリ8Bに記
憶されたDAC曲線に基づきビーム路程差の効果を相殺
したうえで(夫々の振幅値データに、その時のビーム路
程でのDAC曲線値の逆数を乗算する)最大値の検出が
行なわれ、夫々の振幅値データを、この最大値で規格化
される。そして、この規格化された振幅値データを同一
ビーム路程毎に最小値の検出が行なわれ、この値が所定
の基準値を超えたものが、欠陥としてD/A変換器9に
よりアナログ信号に変換され、表示装置10に表示され
る。
In the above, the amplitude value data group at the same beam path stored in the input data memory 8A is calculated based on the beam path based on the DAC curve stored in the DCA curve memory 8B in the arithmetic unit 8D for each data in the same filter. After canceling out the effect of the difference, the maximum value is detected (by multiplying each amplitude value data by the reciprocal of the DAC curve value at the beam path at that time), and each amplitude value data is calculated by this maximum value. Standardized. Then, the minimum value of this standardized amplitude value data is detected for each beam path, and if this value exceeds a predetermined reference value, it is detected as a defect and converted into an analog signal by the D/A converter 9. and displayed on the display device 10.

また、演算用マイクロコンピュータ8の被検体形状メモ
リ8Cに記憶された被検体形状のデータは、演算部8D
により形状の演算処理が行なわれ、その処理結果は、前
述の欠陥データ同様D/A変換器9によりアナログ信号
に変換され、前述の欠陥データと共に表示装置10に表
示されるようになっている。
Further, the data of the object shape stored in the object shape memory 8C of the calculation microcomputer 8 is stored in the calculation section 8D.
Shape arithmetic processing is performed, and the processing results, like the defect data described above, are converted into analog signals by the D/A converter 9 and displayed on the display device 10 together with the defect data described above.

以上の構成による本実施例の作用を第2図乃至第7図を
参照して説明する。
The operation of this embodiment with the above configuration will be explained with reference to FIGS. 2 to 7.

本実施例の作用の特徴としては、第2図に示すように欠
陥エコー信号UEとノイズ信号NSの周波数特性の違い
に着目し、即ち、欠陥エコー信号UEはノイズ信号NS
に比較して周波数成分が広帯域に存在しでいることを利
用し、1つのビーム路程での振幅値として、種々の周波
数成分での振幅値データの最小値を採用することにより
、S/N比の改善を図り、微小欠陥の検出を可能にした
点にある。以下、動作を詳細に説明する。
As a feature of the operation of this embodiment, as shown in FIG. 2, attention is paid to the difference in frequency characteristics between the defective echo signal UE and the noise signal NS.
By taking advantage of the fact that frequency components exist in a wide band compared to The aim is to improve this and make it possible to detect minute defects. The operation will be explained in detail below.

レシーバ6によって受信信号は、各チャンネル毎に第3
図に示すようにフィルタ特性は等しいが、中心周波数が
少しずつ異なるフィルタを複数有したフィルタ群4によ
って増幅され、各チャンネル毎に、ビーム路程計測回路
5及び路程計測回路6でビーム路程と振幅値とが計測さ
れた後、同一ビーム路程のデータが一つのデータ群とし
て演算用マイクロコンピュータ8の入力データ用メモリ
8Aに記憶される。
The receiver 6 converts the received signal into a third
As shown in the figure, the filter is amplified by a filter group 4 which has a plurality of filters with the same filter characteristics but slightly different center frequencies, and the beam path measurement circuit 5 and the beam path measurement circuit 6 measure the beam path and amplitude values for each channel. After the data of the same beam path is measured, the data of the same beam path is stored as one data group in the input data memory 8A of the calculation microcomputer 8.

また、これと同時に超音波探触子1の位−置は、探触子
位置検出器7によって検出され、演算用マイクロコンピ
ュータ8の入力データ用メモリ8Aに記憶される。
At the same time, the position of the ultrasound probe 1 is detected by the probe position detector 7 and stored in the input data memory 8A of the calculation microcomputer 8.

この演算用マイクロコンピュータ8の入力データ用メモ
リ8Aには、前述の各データが同一フィルタでのデータ
毎に下記表の形式で記憶される。
In the input data memory 8A of the arithmetic microcomputer 8, the above-mentioned data are stored in the format shown in the table below for each data of the same filter.

次に、上記入力データ用メモリ8Aに記憶されたデータ
は、演算部8Dで、一つの探触子の位置、一つのビーム
路程で、チャンネル1〜nで得られた振幅値の振幅絶対
値の最大値を検出する演算処理が行なわれ、その処理結
果のデータは入力データ用メモリ8Aに記憶される。
Next, the data stored in the input data memory 8A is processed by the calculation unit 8D to determine the amplitude absolute value of the amplitude values obtained in channels 1 to n at one probe position and one beam path length. Arithmetic processing for detecting the maximum value is performed, and data resulting from the processing is stored in the input data memory 8A.

次に、これらの入力データ用メモリ8Aに記憶されたデ
ータは、同じ探触子の位置でのデータを一組として、演
算用マイクロコンピュータ8のDAC曲線用メモリ8B
に記憶された第4図に示すようなりAC曲線25及び被
検体形状用メモリ8Cに記憶さねた形状値を用いて、演
算部8Dで、第5図に示す処理が実行される。
Next, the data stored in the input data memory 8A is stored in the DAC curve memory 8B of the calculation microcomputer 8, with data at the same probe position set as one set.
The processing shown in FIG. 5 is executed in the arithmetic unit 8D using the AC curve 25 as shown in FIG. 4 and the shape values stored in the object shape memory 8C.

即ち、第5図においてはステップS1で探触子位置検出
器7から探触子位置データが入力される。
That is, in FIG. 5, probe position data is input from the probe position detector 7 in step S1.

ステップS2ではビーム路程計測回路5、振幅値計測回
路6から各ビーム路程しとその時の振幅値データAを入
力すると共に、DAC曲線用メモリ8B、被検体形状用
メモリ8Cから夫々DAC曲IIF、fi幅値基準値E
を入力する。
In step S2, each beam path and the amplitude value data A at that time are input from the beam path measurement circuit 5 and the amplitude value measurement circuit 6, and the DAC songs IIF and fi are input from the DAC curve memory 8B and the object shape memory 8C, respectively. Width value reference value E
Enter.

ステップS3では各ビーム路程でのDAC曲線値を計算
し、ステップS4では振幅値データにDAC曲線値の逆
数を乗じる。ステップS5では振幅値の最大値の検出を
11ない、ステップS6で各振幅値データの最大値での
規格化を行ない、ステップS7で各ビーム路程毎に振幅
1直の最小値AMIN(M)を検出する。
In step S3, the DAC curve value at each beam path is calculated, and in step S4, the amplitude value data is multiplied by the reciprocal of the DAC curve value. In step S5, the maximum value of the amplitude value is detected. In step S6, each amplitude value data is normalized by the maximum value. In step S7, the minimum value AMIN(M) of one amplitude value is determined for each beam path. To detect.

ステップS8ではステップS7での最小値AIvllN
(M)が上記振幅値基準Eを超えているか否かを判別し
、超えている場合は、ステップS9で欠陥位置座標の計
算を行ない、その結果を表示装置1oへ出力する。また
、超えていない場合は、探触子位置を移動し、その後再
びステップS1へ戻り、上記と同様の処理を実行する。
In step S8, the minimum value AIvllN in step S7
It is determined whether or not (M) exceeds the amplitude value reference E. If it does, the defect position coordinates are calculated in step S9, and the result is output to the display device 1o. If the distance is not exceeded, the probe position is moved, and then the process returns to step S1 to execute the same process as described above.

一方、ステップS1の別系統処理としてステップSfl
では、被検体の形状データを入力し、ステップS1tに
て欠陥位置座標の計算を行ない、その計算結果を上記と
同様に表示装置10へ出力する。
On the other hand, as another system process of step S1, step Sfl
Then, shape data of the object to be inspected is input, defect position coordinates are calculated in step S1t, and the calculation result is output to the display device 10 in the same manner as above.

上記演算により、欠陥データ形状データとが位置座標と
して求められ、D/A変換器1によりアナログ信号に変
換され、その探傷結果が表示装置10に表示する。また
、演算用マイクロコンピュータ8の被検体形状メモリ8
Cに記憶されたデータも演算部8Dで処理され、同時に
表示装置10に表示されるため、探傷結果としては、第
6図に示すように断面像(Bスコープ像)で表示される
Through the above calculation, defect data and shape data are obtained as position coordinates, which are converted into analog signals by the D/A converter 1, and the flaw detection results are displayed on the display device 10. In addition, the object shape memory 8 of the calculation microcomputer 8
Since the data stored in C is also processed by the calculation unit 8D and displayed on the display device 10 at the same time, the flaw detection result is displayed as a cross-sectional image (B scope image) as shown in FIG.

以上のように実施例によれば、欠陥エコー信号とノイズ
信号との周波数特性の違い、即ち、欠陥エコー信号の周
波数成分がノイズ信号に比較して広帯域に存在している
という点を利用してフィルタを選定するようにしている
ので、S/Nの改善ができ、従って、微小欠陥の検出が
可能となる。
As described above, according to the embodiment, the difference in frequency characteristics between the defective echo signal and the noise signal, that is, the fact that the frequency component of the defective echo signal exists in a wider band than that of the noise signal, is utilized. Since the filter is selected, the S/N ratio can be improved, and therefore, it is possible to detect minute defects.

また、探傷結果は、断面像表示されるため、欠陥位置の
把握が容易となるばかりでなく、フィルタ通過後の信号
を規格化することによる信号の処理方法は周波数解析の
一手法を用いているので振幅値のピーク位置のズレも小
さく、従って欠陥位置も精度よく表示できる。
In addition, the flaw detection results are displayed as cross-sectional images, which not only makes it easier to understand the defect location, but also uses a frequency analysis method to process the signal by normalizing the signal after passing through the filter. Therefore, the deviation in the peak position of the amplitude value is small, and therefore the defect position can be displayed with high accuracy.

次に第7図を参照して本発明による他の実施例について
説明する。上記実施例ではS /’ N比は大幅に改善
可能であるが、欠陥エコーと形状等による疑似エコーの
弁別策に若干の問題が残る。即ち、形状等による疑似エ
コーを欠陥エコーであると判定してしまう可能性がある
ということである。
Next, another embodiment of the present invention will be described with reference to FIG. Although the S/'N ratio can be greatly improved in the embodiments described above, some problems remain in the discrimination between defective echoes and pseudo echoes based on shape and the like. That is, there is a possibility that a false echo due to the shape or the like may be determined to be a defective echo.

この対策として第7図に示すように、欠陥エコーと形状
等による疑似エコーの周波数特性の差を表わすテーブル
を演算用マイクロコンピュータ8のメモリに予め装備し
ておき前述の各ビーム路程での振幅値の最小iiiIA
MINうちである基準値Eを越えたものについて、第7
図の欠陥エコーエと疑似エコー■のどちらの領域に含ま
れるかという判定を加え、欠陥エコー領tiilに含ま
れるものだけを欠陥として表示装置10へ表示するよう
に改良すれば、信頼性がますます向上できる。
As a countermeasure against this problem, as shown in FIG. 7, a table representing the difference in frequency characteristics between defective echoes and pseudo echoes due to shape, etc. is stored in the memory of the calculation microcomputer 8 in advance, and the amplitude values at each beam path mentioned above are stored in advance. Minimum iiiA of
For those exceeding the standard value E of MIN, the seventh
Reliability can be further improved by adding a judgment as to which region is included in the defective echo region or the pseudo echo region shown in the figure, and improving the display device 10 so that only those included in the defective echo region tiil are displayed as defects. You can improve.

本発明は上記実施例に限定されるものではなく、本発明
の要旨を逸脱しない範囲で種々変更して実施できる。
The present invention is not limited to the above embodiments, and can be implemented with various modifications without departing from the gist of the present invention.

[発明の効果] 以上述べたように本発明によれば、フィルタ特性の形状
は同一であるが中心周波数が各別に異なる複数のフィル
タからなるフィルタ群を超音波受信系に設け、欠陥エコ
ー信号はノイズ信号に比較して周波数成分が広帯域に存
在していることを利用し、受信信号の中から所望の信号
成分のみが得られるように上記フィルタ群を通過した信
号を演痺処理したので、被検体の材料の種類、及びその
大きざ欠陥の種類等によらずに、受信信号のSZN比の
向上及び欠陥分解能を向上させることを可能とした超音
波探傷装置が提供できる。
[Effects of the Invention] As described above, according to the present invention, a filter group consisting of a plurality of filters having the same filter characteristic shape but different center frequencies is provided in the ultrasonic receiving system, and defective echo signals are Taking advantage of the fact that frequency components exist in a wider band than noise signals, the signal that has passed through the above filter group is subjected to paralysis processing so that only the desired signal component is obtained from the received signal. It is possible to provide an ultrasonic flaw detection device that can improve the SZN ratio of the received signal and the defect resolution regardless of the type of material of the specimen, its size, type of defect, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による超音波探傷装置の一実施例の構成
を示す図、第2図乃至第6図は同実施例の作用を説明す
るもので第2図は欠陥エコー信号とノイズ信号との周波
数特性の違いを示す模式図、第3図はフィルタ群の内の
個々のフィルタの特性を示す図、第4図はDAC曲線を
示す図、第5図は演算部で行なわれる処理手順を示す流
れ図、第6図は表示装置に表示された探傷結果の一例を
示す図、第7図は本発明による他の実施□例を説明する
ためのもので欠陥エコー信号とノイズ信号を弁別するた
めに演算用マイクロコンピュータのメモリに装備された
テーブルを示す図である。 1・・・超音波探触子、1A・・・超音波振動子、2・
・・バルサ1.3・・・レシーバ、4・・・フィルタ群
、5・・・ビーム路程計測回路、6・・・振幅値計測回
路、7・・・探触子位置検出器、8・・・演算用マイク
ロコンピュータ、8A・・・入力データ用メモリ、8B
・・・DAC曲線用メモリ、8C・・・被検体形状メモ
リ、8D・・・演算部、8日・・・フィルタ用メモリ、
9・・・D/A変換器、10・・・表示装置、11・・
・制御用マイクロコンピュータ。 出願人代理人 弁理士 鈴江武彦 区 ”;b−xrt\4走
Fig. 1 is a diagram showing the configuration of an embodiment of an ultrasonic flaw detection device according to the present invention, and Figs. 2 to 6 explain the operation of the embodiment. Figure 3 is a diagram showing the characteristics of individual filters in the filter group, Figure 4 is a diagram showing the DAC curve, and Figure 5 is a diagram showing the processing procedure performed in the calculation section. 6 is a diagram showing an example of the flaw detection results displayed on the display device, and FIG. 7 is for explaining another example of implementation according to the present invention, which is for discriminating defect echo signals and noise signals. FIG. 2 is a diagram showing a table installed in the memory of the calculation microcomputer. 1... Ultrasonic probe, 1A... Ultrasonic transducer, 2.
... Balsa 1.3... Receiver, 4... Filter group, 5... Beam path measuring circuit, 6... Amplitude value measuring circuit, 7... Probe position detector, 8...・Microcomputer for calculation, 8A...Memory for input data, 8B
... DAC curve memory, 8C... object shape memory, 8D... calculation unit, 8th... filter memory,
9...D/A converter, 10...Display device, 11...
- Control microcomputer. Applicant's agent Patent attorney Suzue Takehiko-ku";b-xrt\4th race

Claims (1)

【特許請求の範囲】[Claims] 被検体に超音波を送受信して上記被検体の内部に存在す
る欠陥を超音波探傷するようにした超音波探傷装置にお
いて、フィルタ特性の形状は同一であるが中心周波数が
格別に異なる複数のフィルタからなるフィルタ群を超音
波受信系に設け欠陥エコー信号はノイズ信号に比較して
周波数成分が広帯域に存在していることを利用し、受信
信号の中から所望の信号成分のみが得られるように上記
フィルタ群を通過した信号群を演算処理し、受信信号の
S/N比の向上及び欠陥分解能を向上させたことを特徴
とする超音波探傷装置。
In an ultrasonic flaw detection device that sends and receives ultrasonic waves to and from a test object to ultrasonically detect defects existing inside the test object, multiple filters are used that have the same filter characteristic shape but exceptionally different center frequencies. A filter group consisting of the above is installed in the ultrasonic receiving system to take advantage of the fact that defective echo signals have frequency components in a wider band than noise signals, so that only desired signal components can be obtained from the received signal. An ultrasonic flaw detection apparatus characterized in that the signal group that has passed through the filter group is subjected to arithmetic processing to improve the S/N ratio of the received signal and the defect resolution.
JP59261080A 1984-12-11 1984-12-11 Ultrasonic flaw detector Pending JPS61138160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59261080A JPS61138160A (en) 1984-12-11 1984-12-11 Ultrasonic flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59261080A JPS61138160A (en) 1984-12-11 1984-12-11 Ultrasonic flaw detector

Publications (1)

Publication Number Publication Date
JPS61138160A true JPS61138160A (en) 1986-06-25

Family

ID=17356801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59261080A Pending JPS61138160A (en) 1984-12-11 1984-12-11 Ultrasonic flaw detector

Country Status (1)

Country Link
JP (1) JPS61138160A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438652A (en) * 1987-08-03 1989-02-08 Nippon Kokan Kk Ultrasonic flaw detection method and apparatus
JPH02105054A (en) * 1988-10-13 1990-04-17 Idemitsu Eng Co Ltd Ultrasonic flaw detecting method
US6234649B1 (en) 1997-07-04 2001-05-22 Moriyama Sangyo Kabushiki Kaisha Electric lamp device and lighting apparatus
CN109596707A (en) * 2018-12-07 2019-04-09 中航复合材料有限责任公司 It is a kind of based on position-ultrasonic signal honeycomb sandwich construction detection method
WO2023058292A1 (en) * 2021-10-04 2023-04-13 株式会社日立パワーソリューションズ Ultrasonic inspection apparatus and ultrasonic inspection method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438652A (en) * 1987-08-03 1989-02-08 Nippon Kokan Kk Ultrasonic flaw detection method and apparatus
JPH02105054A (en) * 1988-10-13 1990-04-17 Idemitsu Eng Co Ltd Ultrasonic flaw detecting method
US6234649B1 (en) 1997-07-04 2001-05-22 Moriyama Sangyo Kabushiki Kaisha Electric lamp device and lighting apparatus
CN109596707A (en) * 2018-12-07 2019-04-09 中航复合材料有限责任公司 It is a kind of based on position-ultrasonic signal honeycomb sandwich construction detection method
WO2023058292A1 (en) * 2021-10-04 2023-04-13 株式会社日立パワーソリューションズ Ultrasonic inspection apparatus and ultrasonic inspection method

Similar Documents

Publication Publication Date Title
US4428237A (en) System and method for measuring ultrasonic return signals
CA1201525A (en) Test system for defect determination in welding seams
JP2007500340A (en) Method and circuit apparatus for ultrasonic nondestructive testing of an object
KR860001348A (en) Ultrasonic Scanning Methods and Devices
US3453871A (en) Method and apparatus for detecting flaws in materials
JPS61138160A (en) Ultrasonic flaw detector
JPS61184458A (en) Measuring device for depth of crack of surface
US4187725A (en) Method for ultrasonic inspection of materials and device for effecting same
JPS6229023B2 (en)
JPS6151563A (en) Ultrasonic flaw detecting device
JP2002139478A (en) Creep damage detection method and device of structural material
JP3492217B2 (en) Non-destructive inspection equipment for welds
JP3006477B2 (en) Plate wave ultrasonic inspection method
JPH0373846A (en) Instrument for measuring ultarsonic wave
JPS61210953A (en) Ultrasonic flaw inspector
JP2761928B2 (en) Non-destructive inspection method and device
JPS61151458A (en) C-scanning ultrasonic flaw detection method and apparatus thereof
JP4538928B2 (en) Crystal grain size abnormality judgment device and crystal grain size abnormality judgment method
JP2006132981A (en) Ultrasonic wall-thickness measuring instrument and ultrasonic wall-thickness measuring method
JP3327870B2 (en) Ultrasonic signal processor
JPS5819986B2 (en) AE Shingo Shinpuku Bunpusokutei Souchi
JPH0587784A (en) Method and apparatus for estimation for quantification of defect
JPH0136064B2 (en)
JPS6199863A (en) Ultrasonic inspecting device
JPS60256052A (en) Non-destructive inspection method