JP2006132981A - Ultrasonic wall-thickness measuring instrument and ultrasonic wall-thickness measuring method - Google Patents

Ultrasonic wall-thickness measuring instrument and ultrasonic wall-thickness measuring method Download PDF

Info

Publication number
JP2006132981A
JP2006132981A JP2004319651A JP2004319651A JP2006132981A JP 2006132981 A JP2006132981 A JP 2006132981A JP 2004319651 A JP2004319651 A JP 2004319651A JP 2004319651 A JP2004319651 A JP 2004319651A JP 2006132981 A JP2006132981 A JP 2006132981A
Authority
JP
Japan
Prior art keywords
ultrasonic
signal
received
wave
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004319651A
Other languages
Japanese (ja)
Inventor
Masayoshi Nakai
正義 中井
Akihiro Kirito
章浩 切東
Masaaki Kurokawa
政秋 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004319651A priority Critical patent/JP2006132981A/en
Publication of JP2006132981A publication Critical patent/JP2006132981A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness

Abstract

<P>PROBLEM TO BE SOLVED: To prevent lowering of evaluation accuracy, with respect to a micro-change in wall thickness in the measurement of wall thickness, using ultrasonic inspection technique. <P>SOLUTION: The ultrasonic wall-thickness measuring instrument is constituted so that wall thickness variation or the like is determined in a received ultrasonic wave by using the optimum wave number signal of a repeatedly received ultrasonic wave to exaggerate wall thickness difference display on a display screen and the determination or the like of the micro-variation in wall thickness is made easy by the exaggerated display and the wall-thickness distribution display in the specimen as a whole. As a result, a measuring result can be easily determined, even by a person other than a skilled inspector, a determined mistake can be prevented and the reliability of evaluation data is also enhanced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、金属材料等の被検査体(以下、被検体と言う)の肉厚の測定を行い、その測定データから肉厚を評価する際において、その肉厚分布を画像表示する超音波肉厚測定装置及びその方法に関する。   The present invention measures the thickness of an object to be inspected such as a metal material (hereinafter referred to as a “subject”), and evaluates the thickness from the measurement data. The present invention relates to a thickness measuring apparatus and method.

金属容器や金属溶接部の肉厚測定として、非破壊検査手法が広く行われている。肉厚測定は、製品の信頼性および製品運用時の安全性を確保する上で極めて重要なものである。   Nondestructive inspection methods are widely used for measuring the thickness of metal containers and metal welds. Thickness measurement is extremely important for ensuring product reliability and safety during product operation.

例えば、高温流体が流れる配管の肉厚測定は、高温環境下において高圧力が負荷されるガスタービン装置などにおいて、非破壊検査による定期的な安全性の確認が必要不可欠である。   For example, in the measurement of the wall thickness of a pipe through which a high-temperature fluid flows, it is indispensable to periodically confirm safety by nondestructive inspection in a gas turbine apparatus or the like in which a high pressure is applied in a high-temperature environment.

肉厚測定には、超音波探傷センサ(Ultrasonic Testing Sensor:UTセンサ。以下探触子と言う。)を用いた超音波探傷装置が使用される。超音波探傷装置は、探触子と、探触子の動作を制御する制御部、探触子を送信状態又は受信状態とする為の切替部、探触子により取得したデータの処理を行う演算部、および演算部により処理された処理結果を表示する表示部を備えている。   For the wall thickness measurement, an ultrasonic flaw detection apparatus using an ultrasonic flaw detection sensor (Ultrasonic Testing Sensor: UT sensor; hereinafter referred to as a probe) is used. The ultrasonic flaw detector includes a probe, a control unit for controlling the operation of the probe, a switching unit for setting the probe in a transmission state or a reception state, and an operation for processing data acquired by the probe. And a display unit for displaying the processing results processed by the calculation unit.

超音波探傷装置を用いた肉厚測定の基本原理は、探触子から被検体に向けて超音波が送信される。そして、被検体の底面で発信された超音波信号が反射され、その反射波が探触子により受信される。前記探触子は超音波信号の送信と受信とを兼ねており、この探触子により反射されてきた超音波が受信されることにより、超音波を送信した時刻と前記送信した超音波を受信した時刻との時間差を求めることにより、被検体の肉厚が算出できる。   The basic principle of thickness measurement using an ultrasonic flaw detector is that an ultrasonic wave is transmitted from a probe toward a subject. Then, the ultrasonic signal transmitted from the bottom surface of the subject is reflected, and the reflected wave is received by the probe. The probe serves as both transmission and reception of an ultrasonic signal. When the ultrasonic wave reflected by the probe is received, the time when the ultrasonic wave is transmitted and the transmitted ultrasonic wave are received. The wall thickness of the subject can be calculated by obtaining the time difference from the measured time.

特に、肉厚測定精度向上と近接外乱、例えばスケール付着、内部傷などの欠陥及び溶接部等の材質変化等外乱との分離を行い、測定及び判定精度または測定及び判定分解能向上が強く望まれており、更にそれらに加えて、肉厚測定結果を画像化・視覚化して判定ミスを少なくし熟練者以外の人でも簡単に判定可能な視認性が高い、表示技術の要求も高まっている。   In particular, it is strongly desired to improve measurement accuracy and measurement accuracy or resolution by separating wall thickness measurement accuracy from external disturbances such as scale adhesion, internal flaws, and disturbances such as material changes such as welds. In addition, in addition to these, there is an increasing demand for display technology in which the thickness measurement result is imaged and visualized to reduce determination errors and can be easily determined by non-experts.

上述した目的を達成するための代表技術の一つとして、超音波試験法(以下UT法と言う)を用いた肉厚測定が知られている。図18は、UT法による配管の肉厚測定方法を説明する。図18中の比較的大口径被測定配管で、この被測定配管の肉厚を測定する場合には、図18に示したように作業者が超音波探触子を持って、例えば配管の円周方向を8分割し、配管の特定長手方向位置について、円周方向の8箇所について測定を行い、肉厚測定器へ測定信号を送り、前記8箇所で得られた肉厚値で、前記配管の特定長手方向位置での平均肉厚値等として評価する等の方法(特許文献1)が開示されている。   As one of representative techniques for achieving the above-described object, wall thickness measurement using an ultrasonic test method (hereinafter referred to as UT method) is known. FIG. 18 illustrates a pipe wall thickness measurement method by the UT method. When measuring the wall thickness of the pipe to be measured in the pipe having a relatively large diameter in FIG. 18, the operator holds the ultrasonic probe as shown in FIG. Divide the circumferential direction into 8 parts, measure the 8 positions in the circumferential direction for the specific longitudinal position of the pipe, send the measurement signal to the wall thickness measuring instrument, and use the wall thickness value obtained at the 8 places, the pipe A method (Patent Document 1) of evaluating as an average thickness value or the like at a specific longitudinal direction position is disclosed.

特開2000−346632号JP 2000-346632 A

従来の超音波法を用いた肉厚測定は、超音波探触子から得られた第1波の受信超音波信号を用いて超音波探触子から超音波を送信した時刻と前記第1波の受信超音波信号を受信した時刻との時間差を求め、対象被検体自身が持つ音速値を用いて、肉厚値を算出していた。また、被検体の端面(主に、探触子側から見た反対側の面)にスケールが付着している場合、それらにより、測定誤差が生じることがあった。更には、上述したように例えば、8箇所の測定結果より代表肉厚値を決定する等の方法で被検体の肉厚を評価していた為等の理由により、微小な肉厚変化の判定、識別及び被検体全体の肉厚分布の評価が困難であった。   The thickness measurement using the conventional ultrasonic method is based on the time when the ultrasonic wave is transmitted from the ultrasonic probe using the received ultrasonic signal of the first wave obtained from the ultrasonic probe and the first wave. The time difference from the time when the received ultrasonic signal was received was obtained, and the thickness value was calculated using the sound velocity value of the subject subject itself. Further, when a scale is attached to the end face of the subject (mainly, the opposite face as viewed from the probe side), measurement errors may occur due to them. Furthermore, as described above, for example, because the thickness of the subject was evaluated by a method such as determining the representative thickness value from the measurement results of 8 locations, the determination of a minute thickness change, It was difficult to identify and evaluate the thickness distribution of the entire subject.

上記課題を解決する本発明の請求項1に係る超音波肉厚測定装置は、
超音波探触子から超音波を被検体の測定部分へ送信し反射して返ってくる超音波信号を
受信する超音波探触子と、
前記受信超音波信号を表示する手段と、
繰り返し受信される受信超音波信号を順次表示する手段からなること、
を特徴とする。
The ultrasonic thickness measuring apparatus according to claim 1 of the present invention for solving the above problems is
An ultrasonic probe that transmits ultrasonic waves from the ultrasonic probe to the measurement portion of the subject and receives the ultrasonic signals that are reflected back; and
Means for displaying the received ultrasound signal;
Comprising means for sequentially displaying received ultrasonic signals received repeatedly;
It is characterized by.

上記課題を解決する本発明の請求項2に係る超音波肉厚測定装置は、
請求項1記載の超音波肉厚測定装置において、
前記受信超音波信号を表示させる際、受信超音波信号振幅を色調区分表示すること、
を特徴とする。
An ultrasonic thickness measuring apparatus according to claim 2 of the present invention for solving the above-mentioned problems is provided.
In the ultrasonic thickness measuring apparatus according to claim 1,
When displaying the received ultrasonic signal, displaying the received ultrasonic signal amplitude color tone classification,
It is characterized by.

上記課題を解決する本発明の請求項3に係る超音波肉厚測定装置は、
請求項1又は請求項2記載の超音波肉厚測定装置において、
前記超音波探触子を走査させることにより被検体全体の肉厚分布を表示する手段からなる
こと、
を特徴とする。
An ultrasonic thickness measuring apparatus according to claim 3 of the present invention for solving the above-described problems is provided.
In the ultrasonic thickness measuring apparatus according to claim 1 or 2,
Comprising means for displaying the thickness distribution of the entire subject by scanning the ultrasonic probe;
It is characterized by.

上記課題を解決する本発明の請求項4に係る超音波肉厚測定装置は、
請求項2記載の超音波肉厚測定装置において、
被検体内部の音響インピーダンスの異なる部分の色調区分表示を区別する手段からなること、
を特徴とする。
An ultrasonic thickness measuring apparatus according to claim 4 of the present invention for solving the above-mentioned problems is provided.
In the ultrasonic thickness measuring apparatus according to claim 2,
Comprising means for distinguishing between different color tone indications of different acoustic impedances within the subject;
It is characterized by.

上記課題を解決する本発明の請求項5に係る超音波肉厚測定方法は、
超音波探触子から超音波を被検体へ送信し反射して返ってくる超音波信号を受信する工程と、
前記受信超音波信号を表示する工程と、
繰り返し受信される受信超音波信号を順次表示する工程からなること、
を特徴とする。
The ultrasonic thickness measuring method according to claim 5 of the present invention for solving the above-mentioned problem is as follows.
A step of transmitting an ultrasonic wave from the ultrasonic probe to the subject and receiving an ultrasonic signal that is reflected and returned;
Displaying the received ultrasound signal;
Comprising a step of sequentially displaying received ultrasonic signals that are repeatedly received;
It is characterized by.

本発明は、以上説明したように構成されているので、以下へ記載されるような効果を奏する。   Since the present invention is configured as described above, the following effects can be obtained.

超音波探傷法を用いた肉厚測定において、被検体内部へ探触子から超音波が送信され、前記探触子で超音波信号を受信する際、従来の受信第1波信号のみを用いて肉厚測定をするのと異なり、繰り返し受信される信号を使用することにより、肉厚変化箇所での変化量が前記受信信号の繰り返し回数分、その回数倍だけ拡大され、更に、その肉厚変化信号を色調区分表示することにより、容易に肉厚変動の有無および肉厚評価が出来、その結果、肉厚測定精度の向上、探触子自身の上下動などの外乱による評価誤差低減など、高精度データの提供が出来、総合的に検査精度の向上、更には、検査対象物の安全性向上を提供することが出来る。   In wall thickness measurement using the ultrasonic flaw detection method, ultrasonic waves are transmitted from the probe to the inside of the subject, and when the ultrasonic signal is received by the probe, only the conventional reception first wave signal is used. Unlike measuring wall thickness, by using a signal that is repeatedly received, the amount of change at the thickness change point is expanded by the number of times the received signal is repeated, and the change in thickness is further increased. By displaying the color classification of the signal, it is possible to easily evaluate the presence or absence of wall thickness variation and the wall thickness, and as a result, improve the wall thickness measurement accuracy and reduce evaluation errors due to disturbances such as vertical movement of the probe itself. Accuracy data can be provided, and overall inspection accuracy can be improved, and further, safety of inspection objects can be improved.

添付図面を参照して、本発明による超音波肉厚測定装置及びその方法を実施するための最良の形態を以下に説明する。   The best mode for carrying out an ultrasonic thickness measuring apparatus and method according to the present invention will be described below with reference to the accompanying drawings.

(第1の実施形態)
図1は、本発明の実施の形態1に係わる超音波肉厚測定装置の構成を、図2は、前記同装置内の信号振幅/色調変換器10の詳細構成を、図3は、前記超音波肉厚測定装置を用いての測定状況及び送信/受信超音波信号例を、図9は、超音波探傷器の詳細構成図を示している。本実施の形態の超音波肉厚測定装置は、探触子1と信号処理部30と信号振幅/色調変換器10と表示切替器11とデータ表示部12より構成されている。信号処理部30は、先ず、超音波探傷器2より、探触子1で超音波信号を送信させるに必要な電気信号を出力し、送/受信切替器5を送信側(図示せず)へ切り替える。次に、被検体20への探傷に必要な超音波信号を探触子1へ送信し、かつその信号を受信する為に送/受信切替器5を受信側(図示せず)へ切り替える。更に、超音波探傷器2は、探触子1へ供給する為の超音波送信信号の増幅などの信号処理及び探触子1より得られる超音波受信信号の増幅等の信号処理機能として、受信フイルタ1の221、同222及び同223、更にそれらの信号を増幅などの処理を行う信号処理器1の231、同232及び同233、更に、目的とする周波数信号を出力するための信号切替器240を有する。次に、超音波探傷器2で得られた、受信超音波信号は、A/D変換器9によりデイジタル信号へ変換され、受信超音波信号90となり、信号振幅/色調変換器10及び表示切替器11へ送られる。信号振幅/色調変換器10では、受信超音波信号90が、受信超音波信号振幅値/電圧値変換器91で電圧値へ変換され、電圧値/色調値変換データベース92を用いて色調値データ93となり、表示切替器11へ送られる。
一方、被検体20全体を検査する為に、探触子1を走査(移動)させる為にモータ及びギア等の部品で構成された探触子移動器6、その走査を制御する為の探傷制御器7、探触子1の走査(移動)位置を検出する為の探触子位置検出器8、及び前述の超音波信号をデイジタル信号へ変換する為のA/D変換器9より構成されている。データ表示部12では、表示切替器11により、色調変換された受信波形表示、受信波形表示、あるいはそれらが同時表示された肉厚結果が表示される。
(First embodiment)
FIG. 1 shows the configuration of an ultrasonic thickness measuring apparatus according to Embodiment 1 of the present invention, FIG. 2 shows the detailed configuration of a signal amplitude / color tone converter 10 in the apparatus, and FIG. FIG. 9 shows a detailed configuration diagram of an ultrasonic flaw detector, with reference to a measurement situation and an example of transmission / reception ultrasonic signals using the sonic wall thickness measuring apparatus. The ultrasonic thickness measuring apparatus according to the present embodiment includes a probe 1, a signal processing unit 30, a signal amplitude / color tone converter 10, a display switch 11, and a data display unit 12. The signal processing unit 30 first outputs an electrical signal necessary for transmitting an ultrasonic signal by the probe 1 from the ultrasonic flaw detector 2 and sends the transmission / reception switch 5 to the transmission side (not shown). Switch. Next, an ultrasonic signal necessary for flaw detection on the subject 20 is transmitted to the probe 1, and the transmission / reception switch 5 is switched to the reception side (not shown) in order to receive the signal. Further, the ultrasonic flaw detector 2 receives signals as signal processing functions such as amplification of an ultrasonic transmission signal to be supplied to the probe 1 and amplification of an ultrasonic reception signal obtained from the probe 1. Filters 221, 222, and 223, and signal processors 1 231, 232, and 233 that perform processing such as amplification of these signals, and a signal switch for outputting a desired frequency signal 240. Next, the received ultrasonic signal obtained by the ultrasonic flaw detector 2 is converted into a digital signal by the A / D converter 9 to be a received ultrasonic signal 90, which is a signal amplitude / tone converter 10 and a display switcher. 11 is sent. In the signal amplitude / tone converter 10, the received ultrasound signal 90 is converted into a voltage value by the received ultrasound signal amplitude value / voltage value converter 91, and the tone value data 93 is converted using the voltage value / tone value conversion database 92. And is sent to the display switch 11.
On the other hand, in order to inspect the entire subject 20, the probe mover 6 composed of parts such as a motor and a gear for scanning (moving) the probe 1, and flaw detection control for controlling the scanning. And a probe position detector 8 for detecting the scanning (moving) position of the probe 1 and an A / D converter 9 for converting the above-mentioned ultrasonic signal into a digital signal. Yes. In the data display unit 12, the display switch 11 displays the received waveform display subjected to color conversion, the received waveform display, or the wall thickness result obtained by displaying them simultaneously.

ここで、表示切替器11を受信超音波信号側(図示せず)へ切り替えることにより、データ表示部12へ表示させる受信超音波信号は、図3へ示すごとく、例えばA点において送信超音波信号50を被検体20へ送信すると、その受信超音波信号の第1波信号51、同第2波信号52、同第3波信号53・・・と順次受信される。更に、例えばB点にて送信超音波信号60を被検体20へ送信すると、その受信超音波信号の第1波信号61、同第2波信号62、同第3波信号63・・・と順次受信される。ここで、受信超音波信号の第1波信号51及び同61に着目し、その時間差101については、A点とB点での被検体自身の肉厚差に相当する。ここで更に、受信超音波信号の第2波信号52及び同62との時間差102、同103・・・に着目していくと前記肉厚差が、受信超音波信号のN波倍されて表示されてくる。言い換えると、肉厚差を求める際に受信超音波信号の第1波での肉厚差で表示された画面で評価するよりも、第2波、第3波となるにつれてその差が誇張表示される。   Here, by switching the display switch 11 to the reception ultrasonic signal side (not shown), the reception ultrasonic signal to be displayed on the data display unit 12 is, for example, a transmission ultrasonic signal at point A as shown in FIG. When 50 is transmitted to the subject 20, a first wave signal 51, a second wave signal 52, a third wave signal 53,... Of the received ultrasonic signal are sequentially received. Further, for example, when the transmission ultrasonic signal 60 is transmitted to the subject 20 at the point B, the first wave signal 61, the second wave signal 62, the third wave signal 63,. Received. Here, paying attention to the first wave signals 51 and 61 of the received ultrasonic signal, the time difference 101 corresponds to the thickness difference of the subject itself at the points A and B. Here, when attention is paid to the time difference 102, 103,... Of the received ultrasonic signal from the second wave signal 52 and 62, the thickness difference is displayed by multiplying the received ultrasonic signal by N waves. It will be. In other words, when the difference in thickness is obtained, the difference is exaggerated as the second and third waves are displayed, rather than being evaluated on the screen displayed with the thickness difference in the first wave of the received ultrasonic signal. The

受信超音波の繰り返しの最適波数については、各受信超音波信号51、52、53・・・のS/N比で決定され、その一般的なS/N比は3以上程度が好ましく、それを満足する波数を最大値にし、評価し易さ及び表示の見易さ等を考慮の上、最適な繰り返し受信超音波信号波数が決定される。   The optimum wave number of the received ultrasonic wave is determined by the S / N ratio of each of the received ultrasonic signals 51, 52, 53... The general S / N ratio is preferably about 3 or more. The optimum wave number of the received ultrasonic wave signal is determined in consideration of ease of evaluation, ease of display, and the like with the wave number that satisfies the maximum value.

以上記述したように、受信超音波の最適な繰り返し受信超音波信号の波数で判断することにより、その表示画面上で肉厚差表示が誇張され、更に誇張された表示となるため肉厚差の確認が熟練された検査員以外の人でも容易に出来、従って、判定ミスが防止できると共に評価データの信頼性も向上する。   As described above, the thickness difference display is exaggerated on the display screen by judging by the wave number of the optimum repeated received ultrasound signal of the received ultrasound, and the display of the thickness difference is further exaggerated. Confirmation can be easily performed by a person other than a skilled inspector, so that a determination error can be prevented and the reliability of evaluation data is improved.

(第2の実施形態)
図1は、本発明の実施の形態2に係わる超音波肉厚測定装置の構成を、図2は、前記同装置内の信号振幅/色調変換器10の詳細構成を、図4は、超音波受信信号振幅と色調値データとの関係を示す説明図を、図5は、超音波受信信号振幅値と色調値データとの変換データベース例を示した表である。なお、本実施形態は、前述した第1の実施形態で記載した内容を一部改良した内容で、実施形態1と同等の構成のものには同じ符号を付し、重複する説明は省略する。
(Second Embodiment)
FIG. 1 shows a configuration of an ultrasonic thickness measuring apparatus according to Embodiment 2 of the present invention, FIG. 2 shows a detailed configuration of a signal amplitude / tone converter 10 in the apparatus, and FIG. FIG. 5 is an explanatory diagram showing the relationship between the received signal amplitude and the color tone value data, and FIG. 5 is a table showing an example of a conversion database of the ultrasonic received signal amplitude value and the color tone value data. In addition, this embodiment is a content obtained by partially improving the content described in the first embodiment described above, and the same components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

本実施の形態の超音波肉厚測定装置は、探触子1と信号処理部30と信号振幅/色調変換器10と表示切替器11とデータ表示部12より構成されている。信号処理部30は、先ず、超音波探傷器2より、探触子1で超音波信号を送信させるに必要な電気信号を出力し、送/受信切替器5を送信側(図示せず)へ切り替える。次に、被検体20への探傷に必要な超音波信号を探触子1へ送信し、かつその信号を受信する為に送/受信切替器5を受信側(図示せず)へ切り替える。更に、超音波探傷器2は、探触子1へ供給する為の超音波送信信号の増幅などの信号処理及び探触子1より得られる超音波受信信号の増幅等の信号処理機能を有する。次に、超音波探傷器2で得られた、受信超音波信号は、A/D変換器9によりデイジタル信号へ変換され、受信超音波信号90となり、信号振幅/色調変換器10及び表示切替器11へ送られる。信号振幅/色調変換器10では、受信超音波信号90が、受信超音波信号振幅値/電圧値変換器91で電圧値へ変換され、電圧値/色調値変換データベース92を用いて色調値データ93となり、表示切替器11へ送られる。
一方、被検体20全体を検査する為に、探触子1を走査(移動)させる為にモータ及びギア等の部品で構成された探触子移動器6、その走査を制御する為の探傷制御器7、探触子1の走査(移動)位置を検出する為の探触子位置検出器8、及び前述の超音波信号をデイジタル信号へ変換する為のA/D変換器9より構成されている。
データ表示部12では、表示切替器11により、色調変換された受信波形表示、受信波形表示、あるいはそれらが同時表示された肉厚結果が表示される。
The ultrasonic thickness measuring apparatus according to the present embodiment includes a probe 1, a signal processing unit 30, a signal amplitude / color tone converter 10, a display switch 11, and a data display unit 12. The signal processing unit 30 first outputs an electrical signal necessary for transmitting an ultrasonic signal by the probe 1 from the ultrasonic flaw detector 2 and sends the transmission / reception switch 5 to the transmission side (not shown). Switch. Next, an ultrasonic signal necessary for flaw detection on the subject 20 is transmitted to the probe 1, and the transmission / reception switch 5 is switched to the reception side (not shown) in order to receive the signal. Further, the ultrasonic flaw detector 2 has a signal processing function such as amplification of an ultrasonic transmission signal to be supplied to the probe 1 and amplification of an ultrasonic reception signal obtained from the probe 1. Next, the received ultrasonic signal obtained by the ultrasonic flaw detector 2 is converted into a digital signal by the A / D converter 9 to be a received ultrasonic signal 90, which is a signal amplitude / tone converter 10 and a display switcher. 11 is sent. In the signal amplitude / tone converter 10, the received ultrasound signal 90 is converted into a voltage value by the received ultrasound signal amplitude value / voltage value converter 91, and the tone value data 93 is converted using the voltage value / tone value conversion database 92. And is sent to the display switch 11.
On the other hand, in order to inspect the entire subject 20, the probe mover 6 composed of parts such as a motor and a gear for scanning (moving) the probe 1, and flaw detection control for controlling the scanning. And a probe position detector 8 for detecting the scanning (moving) position of the probe 1 and an A / D converter 9 for converting the above-mentioned ultrasonic signal into a digital signal. Yes.
In the data display unit 12, the display switch 11 displays the received waveform display subjected to color conversion, the received waveform display, or the wall thickness result obtained by displaying them simultaneously.

ここで、表示切替器11を色調値データ側(図示せず)へ切り替えることにより、データ表示部12へ表示させる受信超音波信号は、図4へ示すごとく、例えばA点において受信超音波信号の第1波信号51、同第2波信号52、同第3波信号53・・・と順次受信される信号が、受信超音波信号の第1波信号の色調値データ510、同第2波信号の色調値データ520、同第3波信号の色調値データ530・・・として表示される。更に、例えばB点において受信超音波信号の第1波信号61、同第2波信号62、同第3波信号63・・・と順次受信される信号が、受信超音波信号の第1波信号の色調値データ610、同第2波信号の色調値データ620、同第3波信号の色調値データ630・・・として表示される。また、受信超音波信号レベルと色調値データとの関係は、図5に示す例のように予めデータベース化する方法もある。ここで、受信超音波信号の第1波信号の色調値データ510及び610に着目し、その時間差101については、A点とB点での被検体自身の肉厚差に相当する。ここで更に、受信超音波信号の第2波信号の色調値データ520及び620との時間差102、同103・・・に着目していくと前記肉厚差が、受信超音波信号のN波倍されて表示されてくる。言い換えると、肉厚差を求める際に受信超音波信号の第1波での肉厚差で表示された画面で評価するよりも、第2波、第3波となるにつれてその差が誇張表示される。   Here, by switching the display switch 11 to the color tone value data side (not shown), the received ultrasonic signal to be displayed on the data display unit 12 is, for example, at point A as shown in FIG. The first wave signal 51, the second wave signal 52, the third wave signal 53, and so on, are sequentially received as color tone value data 510 of the first wave signal of the received ultrasonic signal, and the second wave signal. Color tone value data 520, the third wave signal color tone value data 530... Further, for example, the first wave signal 61, the second wave signal 62, the third wave signal 63,... Sequentially received at the point B are the first wave signal of the received ultrasonic signal. Color tone value data 610, second wave signal color tone value data 620, third wave signal color tone value data 630... In addition, there is a method in which the relationship between the received ultrasonic signal level and the color tone value data is stored in a database in advance as in the example shown in FIG. Here, paying attention to the tone value data 510 and 610 of the first wave signal of the received ultrasonic signal, the time difference 101 corresponds to the thickness difference of the subject itself at the points A and B. Here, when attention is paid to the time difference 102, 103,... Of the received ultrasonic signal from the tone value data 520 and 620 of the second wave signal, the thickness difference is N times the received ultrasonic signal. Will be displayed. In other words, when the difference in thickness is obtained, the difference is exaggerated as the second wave and the third wave are evaluated rather than being evaluated on the screen displayed with the thickness difference in the first wave of the received ultrasonic signal. The

以上記述したように、受信超音波の最適な繰り返し受信超音波の波数信号の色調データを主に用いて肉厚変動などを判断することにより、その表示画面上で肉厚差表示が誇張され、更に誇張された表示となるため肉厚差の確認が熟練された検査員以外の人でも容易に出来、従って、判定ミスが防止できると共に評価データの信頼性も向上する。   As described above, the thickness difference display is exaggerated on the display screen by judging the thickness variation etc. mainly using the color tone data of the wave number signal of the optimum received ultrasonic wave of the received ultrasonic wave, Further, since the display is exaggerated, it is easy for a person other than a skilled inspector to confirm the difference in thickness, and therefore, a determination error can be prevented and the reliability of the evaluation data is improved.

(第3の実施形態)
図1は、本発明の実施の形態3に係わる超音波肉厚測定装置の構成を、図2は、前記同装置内信号振幅/色調変換器10の詳細構成を、図4は、超音波受信信号振幅と色調値データとの関係を示す説明図を、図5は、超音波受信信号振幅値と色調値データとの変換データベース例を示した表を、また、図6は、探触子1を連続的に走査させ、被検体20全体の肉厚分布を色調表示させた例である。なお、本実施形態は、前述した第1の実施形態及び第2の実施形態で記載した内容を一部改良した内容で、実施形態1、同2と同等の構成のものには同じ符号を付し、重複する説明は省略する。
(Third embodiment)
FIG. 1 shows the configuration of an ultrasonic thickness measuring apparatus according to Embodiment 3 of the present invention, FIG. 2 shows the detailed configuration of the signal amplitude / color tone converter 10 in the apparatus, and FIG. FIG. 5 is an explanatory diagram showing the relationship between the signal amplitude and the color tone value data, FIG. 5 is a table showing an example of a conversion database between the ultrasonic wave reception signal amplitude value and the color tone value data, and FIG. Are continuously scanned, and the thickness distribution of the entire subject 20 is displayed in color tone. This embodiment is a content obtained by partially improving the contents described in the first embodiment and the second embodiment described above, and the same reference numerals are given to components having the same configurations as those in the first and second embodiments. In addition, overlapping explanation is omitted.

本実施の形態の超音波肉厚測定装置は、探触子1と信号処理部30と信号振幅/色調変換器10と表示切替器11とデータ表示部12より構成されている。信号処理部30は、先ず、超音波探傷器2より、探触子1で超音波信号を送信させるに必要な電気信号を出力し、送/受信切替器5を送信側(図示せず)へ切り替える。次に、被検体20への探傷に必要な超音波信号を探触子1へ送信し、かつその信号を受信する為に送/受信切替器5を受信側(図示せず)へ切り替える。更に、超音波探傷器2は、探触子1へ供給する為の超音波送信信号の増幅などの信号処理及び探触子1より得られる超音波受信信号の増幅等の信号処理機能として、受信フイルタ1の221、同222及び同223、更にそれらの信号を増幅などの処理を行う信号処理器1の231、同232及び同233、更に、目的とする周波数信号を出力するための信号切替器240を有する。次に、超音波探傷器2で得られた、超音波信号は、A/D変換器9によりデイジタル信号へ変換され、受信超音波信号90となり、信号振幅/色調変換器10及び表示切替器11へ送られる。信号振幅/色調変換器10では、受信超音波信号90が、受信超音波信号振幅値/電圧値変換器91で電圧値へ変換され、電圧値/色調値変換データベース92を用いて色調値データ93となり、表示切替器11へ送られる。
一方、被検体20全体を検査する為に、探触子1を走査(移動)させる為にモータ及びギア等の部品で構成された探触子移動器6、その走査を制御する為の探傷制御器7、探触子1の走査(移動)位置を検出する為の探触子位置検出器8、及び前述の超音波信号をデイジタル信号へ変換する為のA/D変換器9より構成されている。データ表示部12では、表示切替器11により、色調変換された受信波形表示、受信波形表示、あるいはそれらが同時表示された肉厚結果が表示される。
The ultrasonic thickness measuring apparatus according to the present embodiment includes a probe 1, a signal processing unit 30, a signal amplitude / color tone converter 10, a display switch 11, and a data display unit 12. The signal processing unit 30 first outputs an electrical signal necessary for transmitting an ultrasonic signal by the probe 1 from the ultrasonic flaw detector 2 and sends the transmission / reception switch 5 to the transmission side (not shown). Switch. Next, an ultrasonic signal necessary for flaw detection on the subject 20 is transmitted to the probe 1, and the transmission / reception switch 5 is switched to the reception side (not shown) in order to receive the signal. Further, the ultrasonic flaw detector 2 receives signals as signal processing functions such as amplification of an ultrasonic transmission signal to be supplied to the probe 1 and amplification of an ultrasonic reception signal obtained from the probe 1. Filters 221, 222, and 223, and signal processors 1 231, 232, and 233 that perform processing such as amplification of these signals, and a signal switch for outputting a desired frequency signal 240. Next, the ultrasonic signal obtained by the ultrasonic flaw detector 2 is converted into a digital signal by the A / D converter 9 to be a received ultrasonic signal 90, which is a signal amplitude / color tone converter 10 and a display switcher 11. Sent to. In the signal amplitude / tone converter 10, the received ultrasound signal 90 is converted into a voltage value by the received ultrasound signal amplitude value / voltage value converter 91, and the tone value data 93 is converted using the voltage value / tone value conversion database 92. And is sent to the display switch 11.
On the other hand, in order to inspect the entire subject 20, the probe mover 6 composed of parts such as a motor and a gear for scanning (moving) the probe 1, and flaw detection control for controlling the scanning. And a probe position detector 8 for detecting the scanning (moving) position of the probe 1 and an A / D converter 9 for converting the above-mentioned ultrasonic signal into a digital signal. Yes. In the data display unit 12, the display switch 11 displays the received waveform display subjected to color conversion, the received waveform display, or the wall thickness result obtained by displaying them simultaneously.

ここで、表示切替器11を色調値データ側(図示せず)へ切り替えることにより、データ表示部12へ表示させる受信超音波信号は、図4へ示すごとく、例えばA点において受信超音波信号の第1波信号51、同第2波信号52、同第3波信号53・・・と順次受信される信号が、受信超音波信号の第1波信号の色調値データ510、同第2波信号の色調値データ520、同第3波信号の色調値データ530・・・として表示される。更に、例えばB点において受信超音波信号の第1波信号61、同第2波信号62、同第3波信号63・・・と順次受信される信号が、受信超音波信号の第1波信号の色調値データ610、同第2波信号の色調値データ620、同第3波信号の色調値データ630・・・として表示される。また、受信超音波信号レベルと色調値データとの関係は、図5に示す例のように予めデータベース化する方法もある。ここで、受信超音波信号の第1波信号の色調値データ510及び610に着目し、その時間差101については、A点とB点での被検体自身の肉厚差に相当する。ここで更に、受信超音波信号の第2波信号の色調値データ520及び620との時間差102、同103・・・に着目していくと前記肉厚差が、受信超音波信号のN波倍されて表示されてくる。言い換えると、肉厚差を求める際に受信超音波信号の第1波での肉厚差で表示された画面で評価するよりも、第2波、第3波となるにつれてその差が誇張されて表示される。以上記述した、A点及びB点に限定せず、探触子1を被検体20の測定対象箇所全体について、連続的に走査させ、逐次データを採取し更に逐次その信号を色調変換し表示切替器11内へ各受信超音波信号及び色調データを記録蓄積させ(図示せず)、更に、必要に応じて、データ表示部にて全体及び必要箇所などの拡大/縮小表示を行う。   Here, by switching the display switch 11 to the color tone value data side (not shown), the received ultrasonic signal to be displayed on the data display unit 12 is, for example, at point A as shown in FIG. The first wave signal 51, the second wave signal 52, the third wave signal 53, and so on, are sequentially received as color tone value data 510 of the first wave signal of the received ultrasonic signal, and the second wave signal. Color tone value data 520, the third wave signal color tone value data 530... Further, for example, the first wave signal 61, the second wave signal 62, the third wave signal 63,... Sequentially received at the point B are the first wave signal of the received ultrasonic signal. Color tone value data 610, second wave signal color tone value data 620, third wave signal color tone value data 630... In addition, there is a method in which the relationship between the received ultrasonic signal level and the color tone value data is stored in a database in advance as in the example shown in FIG. Here, paying attention to the tone value data 510 and 610 of the first wave signal of the received ultrasonic signal, the time difference 101 corresponds to the thickness difference of the subject itself at the points A and B. Here, when attention is paid to the time difference 102, 103,... Of the received ultrasonic signal from the tone value data 520 and 620 of the second wave signal, the thickness difference is N times the received ultrasonic signal. Will be displayed. In other words, the difference is exaggerated as the second wave and the third wave, rather than evaluating on the screen displayed by the thickness difference in the first wave of the received ultrasonic signal when obtaining the wall thickness difference. Is displayed. As described above, the probe 1 is not limited to the points A and B, and the probe 1 is continuously scanned over the entire measurement target portion of the subject 20 to sequentially collect data, and further sequentially convert the color of the signal to change the display. Each received ultrasonic signal and color tone data are recorded and stored in the device 11 (not shown), and the whole and necessary parts are enlarged / reduced on the data display unit as necessary.

以上記述したように、受信超音波の最適な繰り返し受信超音波の波数信号の色調データを主に用いて肉厚変動などを判断することにより、その表示画面上で肉厚差表示が誇張され、更に誇張された表示及び被検体20全体での肉厚分布表示などにより、微小な肉厚変動の判定などが容易となり、その結果、熟練された検査員以外の人でも容易に測定結果に対する判定が出来、従って、判定ミスが防止できると共に評価データの信頼性も向上する。   As described above, the thickness difference display is exaggerated on the display screen by judging the thickness variation etc. mainly using the color tone data of the wave number signal of the optimum received ultrasonic wave of the received ultrasonic wave, Furthermore, the exaggerated display and the thickness distribution display of the entire subject 20 make it easy to determine minute thickness fluctuations, and as a result, even a person other than a skilled inspector can easily determine the measurement result. Therefore, determination errors can be prevented and the reliability of the evaluation data is improved.

更に、他の効果として、測定時における探触子1の上下変動、例えば探触子が被検体より浮いた状態が発生した状況などの場合は、受信超音波信号の第1波、第2波・・・及び同前記受信超音波信号を色調変換した色調データ共に、前記受信超音波信号又は色調データの第1波と同第2波との間隔値及び同前記第2波と同第3波との間隔値・・・は、いずれも等間隔値となり、上述した第1波受信信号を用いたA点とB点との肉厚差に相当した時間差値101、同102、・・・のように、肉厚値が変動したような表示とは異なり、従って探触子1の上下変動との相違点判断も可能である。 Furthermore, as another effect, in the case where the probe 1 fluctuates up and down at the time of measurement, for example, when the probe is lifted from the subject, the first wave and the second wave of the received ultrasonic signal. ... and the color data obtained by color-tone-converting the received ultrasonic signal, the interval value between the first wave and the second wave of the received ultrasonic signal or the color data, and the second wave and the third wave. Are equal interval values, and the time difference values 101, 102,... Corresponding to the thickness difference between the point A and the point B using the first wave reception signal described above. Thus, unlike the display in which the thickness value fluctuates, it is possible to determine the difference from the vertical fluctuation of the probe 1.

(第4の実施形態)
図12は、本発明の実施の形態4に係わる超音波肉厚測定装置の構成を、図13は、前記同装置内信号振幅/色調変換器100の詳細構成を、図14は、超音波受信信号振幅と色調値データとの関係を示す説明図を、図15は、異なる音響インピーダンス境界部での反射及び透過の説明図を、図16は、異なる音響インピーダンス境界部での反射信号の反転有無を示したデータベース例を、図17は、各種材料の音響インピーダンス値の例を、図9は、超音波探傷器2の詳細構成を示した図である。なお、本実施形態は、前述した第1の実施形態で記載した内容を一部改良した内容で、実施形態1、同2及び同3と同等の構成のものには同じ符号を付し、重複する説明は省略する。
(Fourth embodiment)
12 shows the configuration of the ultrasonic thickness measuring apparatus according to the fourth embodiment of the present invention, FIG. 13 shows the detailed configuration of the signal amplitude / tone converter 100 in the apparatus, and FIG. 14 shows the ultrasonic reception. FIG. 15 is an explanatory diagram showing the relationship between the signal amplitude and the tone value data, FIG. 15 is an explanatory diagram of reflection and transmission at different acoustic impedance boundaries, and FIG. 16 is the presence or absence of inversion of the reflected signal at different acoustic impedance boundaries. FIG. 17 is a diagram showing an example of acoustic impedance values of various materials, and FIG. 9 is a diagram showing a detailed configuration of the ultrasonic flaw detector 2. In addition, this embodiment is a content obtained by partially improving the content described in the first embodiment described above, and the same components as those in the first, second, and third embodiments are denoted by the same reference numerals, and duplicated. The description to be omitted is omitted.

本実施の形態の超音波肉厚測定装置は、探触子1と信号処理部30と信号振幅/色調変換器100と表示切替器11とデータ表示部12より構成されている。信号処理部30は、先ず、超音波探傷器2より、探触子1で超音波信号を送信させるに必要な電気信号を出力し、送/受信切替器5を送信側(図示せず)へ切り替える。次に、被検体20への探傷に必要な超音波信号を探触子1へ送信し、かつその信号を受信する為に送/受信切替器5を受信側(図示せず)へ切り替える。更に、超音波探傷器2は、探触子1へ供給する為の超音波送信信号の増幅などの信号処理及び探触子1より得られる超音波受信信号の増幅等の信号処理機能として、受信フイルタ1の221、同222及び同223、更にそれらの信号を増幅などの処理を行う信号処理器1の232、同232及び同233、更に、目的とする周波数信号を出力するための信号切替器240を有する。次に、超音波探傷器2で得られた、超音波信号は、A/D変換器9によりデイジタル信号へ変換され、受信超音波信号90となり、信号振幅/色調変換器100及び表示切替器11へ送られる。信号振幅/色調変換器100では、受信超音波信号90が、信号立上がり方向判定器89を介して、受信超音波信号振幅値/電圧値変換器91で電圧値へ変換され、電圧値/色調値変換データベース92を用いて色調値データ93となり、表示切替器11へ送られる。
受信超音波信号は、A/D変換器9によりデイジタル信号へ変換され信号振幅/色調変換器100及び表示切替器11へ送る。一方、被検体20全体を検査する為に、探触子1を走査(移動)させる為にモータ及びギア等の部品で構成された探触子移動器6、その走査を制御する為の探傷制御器7、探触子1の走査(移動)位置を検出する為の探触子位置検出器8、及び前述の超音波信号をデイジタル信号へ変換する為のA/D変換器9より構成されている。データ表示部12では、表示切替器11により、色調変換された受信波形表示、受信波形表示、あるいはそれらが同時表示された肉厚結果が表示される。
The ultrasonic thickness measuring apparatus according to the present embodiment includes a probe 1, a signal processing unit 30, a signal amplitude / color tone converter 100, a display switch 11, and a data display unit 12. The signal processing unit 30 first outputs an electrical signal necessary for transmitting an ultrasonic signal by the probe 1 from the ultrasonic flaw detector 2 and sends the transmission / reception switch 5 to the transmission side (not shown). Switch. Next, an ultrasonic signal necessary for flaw detection on the subject 20 is transmitted to the probe 1, and the transmission / reception switch 5 is switched to the reception side (not shown) in order to receive the signal. Further, the ultrasonic flaw detector 2 receives signals as signal processing functions such as amplification of an ultrasonic transmission signal to be supplied to the probe 1 and amplification of an ultrasonic reception signal obtained from the probe 1. 221, 222 and 223 of the filter 1, 232, 232 and 233 of the signal processor 1 that performs processing such as amplification of these signals, and a signal switch for outputting a target frequency signal 240. Next, the ultrasonic signal obtained by the ultrasonic flaw detector 2 is converted into a digital signal by the A / D converter 9 to be a received ultrasonic signal 90, which is a signal amplitude / color tone converter 100 and a display switcher 11. Sent to. In the signal amplitude / tone converter 100, the received ultrasonic signal 90 is converted into a voltage value by the received ultrasonic signal amplitude value / voltage value converter 91 via the signal rising direction determiner 89, and the voltage value / tone value is changed. It becomes color tone value data 93 using the conversion database 92 and is sent to the display switch 11.
The received ultrasonic signal is converted into a digital signal by the A / D converter 9 and sent to the signal amplitude / tone converter 100 and the display switch 11. On the other hand, in order to inspect the entire subject 20, the probe mover 6 composed of parts such as a motor and a gear for scanning (moving) the probe 1, and flaw detection control for controlling the scanning. And a probe position detector 8 for detecting the scanning (moving) position of the probe 1 and an A / D converter 9 for converting the above-mentioned ultrasonic signal into a digital signal. Yes. In the data display unit 12, the display switch 11 displays the received waveform display subjected to color conversion, the received waveform display, or the wall thickness result obtained by displaying them simultaneously.

ここで、表示切替器11を受信超音波信号側(図示せず)へ切り替えることにより、データ表示部12へ表示させる受信超音波信号は、図14へ示すごとく、例えばA点において受信超音波信号の第1波信号51、同第2波信号52、同第3波信号53・・・と順次受信される。更に、例えばB点において受信超音波信号の第1波信号61、同第2波信号62、同第3波信号63・・・と順次受信される。ここで例えば、被検体の底面(探触子1の反対面)に被検体の材質と異なるスケールなどの付着物(図示せず)が存在している場合、被検体1と前記スケールとの音響インピーダンスが異なるため、その境界部で反射が起こりその結果、前記スケールによる受信超音波信号の第1波信号81、同第2波信号82、同第3波信号83・・・と順次受信される。この、スケールによる受信超音波信号は、図15へ示すごとく、音響インピーダンスの組合せにより、受信超音波信号の立ち上がり方向が異なる。図14の例で説明すると、被検体端面からの受信超音波信号の立ち上がり方向はプラス(+)側へ(紙面の上方向)、一方、スケールによる受信超音波信号の立ち上がり方向はマイナス(−)側へ(紙面の下方向)となる。ここで、信号振幅/色調変換器100へ入力された受信超音波信号は、信号立ち上がり方向判定器89により、プラス側またはマイナス側と判定され、その情報を電圧値/色調値変換データベース95へ送ることにより、受信超音波信号振幅値とそれに対応した色調値との関係で表示する色調値データを選択する際、その信号の立ち上がり方向も区別した色調値データで表示される。   Here, by switching the display switch 11 to the reception ultrasonic signal side (not shown), the reception ultrasonic signal to be displayed on the data display unit 12 is, for example, at the point A as shown in FIG. The first wave signal 51, the second wave signal 52, the third wave signal 53,. Further, for example, at the point B, the first wave signal 61, the second wave signal 62, the third wave signal 63,. Here, for example, when there is a deposit (not shown) such as a scale different from the material of the subject on the bottom surface (opposite surface of the probe 1) of the subject, the sound of the subject 1 and the scale is detected. Since the impedance is different, reflection occurs at the boundary portion, and as a result, the first wave signal 81, the second wave signal 82, the third wave signal 83,. . As shown in FIG. 15, the reception ultrasonic signal by the scale differs in the rising direction of the reception ultrasonic signal depending on the combination of acoustic impedances. In the example of FIG. 14, the rising direction of the received ultrasonic signal from the subject end face is toward the plus (+) side (upward on the paper surface), while the rising direction of the received ultrasonic signal due to the scale is minus (−). To the side (downward on the page). Here, the received ultrasonic signal input to the signal amplitude / tone converter 100 is determined to be a plus side or a minus side by the signal rising direction determiner 89, and the information is sent to the voltage value / tone value conversion database 95. Thus, when selecting the color tone value data to be displayed based on the relationship between the received ultrasonic signal amplitude value and the corresponding color tone value, the rising direction of the signal is also displayed with the color tone value data distinguished.

上述した説明を、図15、図16及び図17を用いて、材料固有の音響インピーダンスの観点で詳細に説明すると、送信超音波信号450が材料A410へ送信され、前記材料Aと材料B430との境界部420では、前記送信超音波信号450は、その一部は、反射超音波信号452として反射し、また、前記送信超音波信号450の一部は、透過超音波信号451として、透過する。一般的に、前記境界部420で反射の割合は、両者の音響インピーダンス値の差が大きいほど反射超音波の信号振幅が大きいと言われている。 その関係を数式(1)へ示す。   The above description will be described in detail with reference to FIGS. 15, 16, and 17 in terms of the acoustic impedance inherent to the material. A transmission ultrasonic signal 450 is transmitted to the material A 410, and the material A and the material B 430 are transmitted. At the boundary 420, a part of the transmission ultrasonic signal 450 is reflected as a reflected ultrasonic signal 452, and a part of the transmission ultrasonic signal 450 is transmitted as a transmitted ultrasonic signal 451. In general, the ratio of reflection at the boundary 420 is said to be such that the greater the difference between the acoustic impedance values of the two, the greater the signal amplitude of the reflected ultrasound. The relationship is shown in Equation (1).

Figure 2006132981
Figure 2006132981

ここで、Xは反射超音波信号452、Yは送信超音波信号450、Z1は材料Aの音響インピーダンス値、Z2は材料Bの音響インピーダンス値であり、ここで、その反射超音波信号452の位相の反転有無は、式(1)の材料Bの音響インピーダンス値Z2と材料Aの音響インピーダンス値Z1の関係で、Z2>Z1の場合は、反転無し、また、Z2<Z1の場合は、反転有りとなる。従って、その関係をあらかじめデータベースとして保管しておき、そのデータを参照することにより、反射超音波信号の反転有無を判定できる。 Here, X is the reflected ultrasonic signal 452, Y is the transmitted ultrasonic signal 450, Z1 is the acoustic impedance value of the material A, and Z2 is the acoustic impedance value of the material B, where the phase of the reflected ultrasonic signal 452 is Is the relationship between the acoustic impedance value Z2 of the material B and the acoustic impedance value Z1 of the material A in equation (1). When Z2> Z1, there is no inversion, and when Z2 <Z1, there is inversion. It becomes. Therefore, it is possible to determine whether or not the reflected ultrasonic signal is inverted by storing the relationship as a database in advance and referring to the data.

上述した、受信超音波信号の立ち上がりの色調データ区別の他の例としては、その受信信号の立ち上がり方向で色を固定し、その信号振幅値が前記固定した色の濃度などで表示する方法などもある。例えば具体的には、信号の立ち上がり方向でプラス側の信号は、赤色、同マイナス側の信号は、青色などと、識別及び認識し易い組合せなどで選択することも出来る。   As another example of distinguishing the tone data of the rising edge of the received ultrasonic signal described above, there is a method of fixing the color in the rising direction of the received signal and displaying the signal amplitude value by the density of the fixed color or the like. is there. For example, specifically, the positive signal in the rising direction of the signal can be selected by a combination that is easy to identify and recognize, such as red for the negative signal and blue for the negative signal.

以上記述したように、肉厚変動とスケールなど付着物などの音響インピーダンス変動に伴う信号との、相違の判断を、より容易にすることが出来、熟練された検査員以外の人でも判定ミスが防止できると共に、評価データの信頼性も向上する。また、スケール厚さ及びそれらの変動と肉厚及びそれらの変動とを分離して、各々の厚さを評価することもできる。   As described above, it is easier to judge the difference between the wall thickness fluctuation and the signal due to the acoustic impedance fluctuation such as deposits such as scales. The reliability of the evaluation data can be improved. Further, it is also possible to separate the scale thickness and the variation thereof from the wall thickness and the variation and evaluate each thickness.

(第5の実施形態)
図10は、本発明の実施の形態5に係わる超音波肉厚測定装置の構成を、図11は、超音波探傷器の詳細構成図を示している。本実施の形態の超音波肉厚測定装置は、探触子1と信号処理部300と信号演算処理部1000とデータ表示部12より構成されている。信号処理部300は、先ず、超音波探傷器200より、探触子1で超音波信号を送信させるに必要な電気信号を出力し、送/受信切替器5を送信側(図示せず)へ切り替える。次に、被検体20への探傷に必要な超音波信号を探触子1へ送信し、かつその信号を受信する為に送/受信切替器5を受信側(図示せず)へ切り替える。更に、超音波探傷器200は、探触子1へ供給する為の超音波送信信号の増幅などの信号処理及び探触子1より得られる超音波受信信号の増幅等の信号処理機能として、受信フイルタ1の221、同222及び同223、更にそれらの信号を増幅などの処理を行う信号処理器1の232、同232及び同233を有する。次に、超音波探傷器200で得られた、受信超音波信号は、A/D変換器1の910、A/D変換器2の920及びA/D変換器3の930・・・により各周波数帯の独立したデイジタル信号へ変換される。その後、各周波数での特質を利用した演算を行い、肉厚結果などを表示する装置である。
(Fifth embodiment)
FIG. 10 shows a configuration of an ultrasonic thickness measuring apparatus according to the fifth embodiment of the present invention, and FIG. 11 shows a detailed configuration diagram of the ultrasonic flaw detector. The ultrasonic thickness measuring apparatus according to the present embodiment includes a probe 1, a signal processing unit 300, a signal calculation processing unit 1000, and a data display unit 12. First, the signal processing unit 300 outputs an electrical signal necessary for transmitting an ultrasonic signal by the probe 1 from the ultrasonic flaw detector 200, and sends the transmission / reception switch 5 to the transmission side (not shown). Switch. Next, an ultrasonic signal necessary for flaw detection on the subject 20 is transmitted to the probe 1, and the transmission / reception switch 5 is switched to the reception side (not shown) in order to receive the signal. Furthermore, the ultrasonic flaw detector 200 receives signal processing functions such as amplification of an ultrasonic transmission signal to be supplied to the probe 1 and signal processing functions such as amplification of an ultrasonic reception signal obtained from the probe 1. Filters 221, 222, and 223, and signal processors 1 232, 232, and 233 that perform processing such as amplification of these signals are included. Next, the received ultrasonic signal obtained by the ultrasonic flaw detector 200 is received by the A / D converter 1 910, the A / D converter 2 920, the A / D converter 3 930. It is converted into an independent digital signal in the frequency band. Then, it is a device that performs calculations using the characteristics at each frequency and displays the wall thickness results.

ここで、例えば溶接金属部を含む肉厚測定箇所または被検体の部分的材質変化などの場合では、狭帯域の探触子を使用した場合、受信超音波周波数特有の現象、例えば受信感度低下、受信信号振幅値の変動及び被検体底面(肉厚測定面)からの反射の変化などの周波数特有現象により、肉厚評価の誤差要因が生じる場合がある。また、狭帯域の周波数によっては、肉厚測定の基本となる底面エコー自身も減衰により得られない場合がある。この場合、周波数の異なる探触子により再度探傷するのが通常であった。これらは、時間を要することになり、かつ複数の探触子を準備する必要があった。これらに対して、周波数帯域の広い探触子を用いて、上述したように、各周波数の複数受信信号をもとに、各種パラメータを用いて演算することにより、上述した誤差要因の排除および各種周波数による肉厚測定に相当する結果が得られる。具体的には、信号演算処理部では、各周波数毎の肉厚測定、各周波数で測定結果の肉厚平均値、各周波数波形を時間領域において足し算し、それらをもとにした肉厚測定および前項での信号振幅/色調変換および表示切替機能も具備している。したがって、周波数帯域の広い1個の探触子と信号演算により、複数の狭帯域探触子で複数回探傷したのと同様な結果が得られ、探傷時間の短縮化、超音波の難透過材の肉厚測定が可能となる。   Here, for example, in the case of a thickness measurement location including a weld metal part or a partial material change of the subject, when a narrow-band probe is used, a phenomenon peculiar to the reception ultrasonic frequency, for example, a decrease in reception sensitivity, An error factor in the wall thickness evaluation may occur due to a frequency-specific phenomenon such as a change in the received signal amplitude value and a change in reflection from the bottom surface of the object (wall thickness measurement surface). Also, depending on the frequency of the narrow band, the bottom echo itself that is the basis of the thickness measurement may not be obtained due to attenuation. In this case, the flaw detection is usually performed again with a probe having a different frequency. These were time consuming and required preparation of multiple probes. On the other hand, by using a probe having a wide frequency band and calculating using various parameters based on a plurality of received signals of each frequency as described above, the above-mentioned error factors can be eliminated and various types of signals can be calculated. A result corresponding to the thickness measurement by frequency is obtained. Specifically, in the signal calculation processing unit, the wall thickness measurement for each frequency, the wall thickness average value of the measurement result at each frequency, and each frequency waveform are added in the time domain, and the wall thickness measurement and It also has the signal amplitude / tone conversion and display switching functions described in the previous section. Therefore, a single probe with a wide frequency band and signal calculation yield the same results as multiple flaw detection with multiple narrow band probes, shortening the flaw detection time, and transmitting materials that are difficult to transmit ultrasonic waves Wall thickness can be measured.

超音波肉厚測定装置及び同方法において、受信超音波信号を用いて肉厚測定及び判定及び評価を行う際、受信超音波の最適受信超音波の波数信号及び前記最適受信波数信号を色調データへ変換したデータを用いて肉厚変動などを判断することにより、その表示画面上で肉厚差表示が誇張され、更に誇張された表示及び被検体全体での肉厚分布表示などにより、肉厚変動の有無、微小な肉厚変動の判定などが容易となり、その結果、熟練された検査員以外の人でも容易に測定結果に対する判定が出来、従って、判定ミスが防止できると共に評価データの信頼性も向上する。 In the ultrasonic thickness measurement apparatus and method, when performing thickness measurement, determination, and evaluation using the received ultrasonic signal, the optimum received ultrasonic wave number signal of the received ultrasonic wave and the optimum received wave number signal are converted into color tone data. By judging the thickness variation using the converted data, the thickness difference display is exaggerated on the display screen, and the exaggerated display and the thickness distribution display of the entire subject are displayed. As a result, it is easy to judge measurement results even by a person other than a skilled inspector, thus preventing judgment errors and improving the reliability of evaluation data. improves.

本発明に係る第1、第2及び第3の実施形態の超音波肉厚測定装置の構成図である。It is a block diagram of the ultrasonic thickness measuring apparatus of 1st, 2nd and 3rd embodiment which concerns on this invention. 本発明に係る第1、第2及び第3の実施形態の信号振幅/色調変換器の詳細構成図である。It is a detailed block diagram of the signal amplitude / tone converter of 1st, 2nd and 3rd embodiment which concerns on this invention. 本発明に係る第1の実施形態の超音波送信及び受信信号例である。It is an example of the ultrasonic transmission and reception signal of 1st Embodiment which concerns on this invention. 本発明に係る第2及び第3の実施形態の超音波受信信号振幅と色調値データの関係を示した説明例である。It is an explanatory example showing the relationship between the ultrasonic wave reception signal amplitude and the tone value data of the second and third embodiments according to the present invention. 本発明に係る第2及び第3の実施形態の受信超音波信号振幅値と色調値変換データベース例である。It is an example of the received ultrasonic signal amplitude value and color tone value conversion database of the second and third embodiments according to the present invention. 本発明に係る第3の実施形態の被検体全体の肉厚分布色調表示例である。It is an example of thickness distribution color tone display of the whole subject of the 3rd embodiment concerning the present invention. 本発明に係る第1、第2及び第3の実施形態の色調表示例である。It is an example of the color tone display of 1st, 2nd and 3rd embodiment which concerns on this invention. 本発明に係る第4の実施形態の強調処理の色調表示例である。It is a color tone display example of the emphasis process of the fourth embodiment according to the present invention. 本発明に係る第1、第2、第3及び第4の実施形態の超音波探傷器の詳細構成図である。It is a detailed block diagram of the ultrasonic flaw detector of 1st, 2nd, 3rd and 4th embodiment which concerns on this invention. 本発明に係る第5の実施形態の超音波肉厚測定装置の構成図である。It is a block diagram of the ultrasonic thickness measuring apparatus of 5th Embodiment which concerns on this invention. 本発明に係る第5の実施形態の超音波探傷器の詳細構成図である。It is a detailed block diagram of the ultrasonic flaw detector of 5th Embodiment which concerns on this invention. 本発明に係る第4の実施形態の超音波肉厚測定装置の構成図である。It is a block diagram of the ultrasonic thickness measuring apparatus of 4th Embodiment which concerns on this invention. 本発明に係る第4の実施形態の信号振幅/色調変換器の詳細構成図である。It is a detailed block diagram of the signal amplitude / tone converter of 4th Embodiment which concerns on this invention. 本発明に係る第4の実施形態の超音波受信信号振幅及びスケールによる超音波受信信号と色調値データの関係を示した説明例である。It is an explanatory example showing the relationship between the ultrasonic reception signal and the tone value data based on the ultrasonic reception signal amplitude and scale according to the fourth embodiment of the present invention. 本発明に係る第4の実施形態の異なる音響インピーダンス境界部での反射及び透過の説明図である。It is explanatory drawing of reflection and permeation | transmission in the different acoustic impedance boundary part of 4th Embodiment which concerns on this invention. 本発明に係る第4の実施形態の異なる音響インピーダンス境界部での反射信号の反転有無を示したデータベース例である。It is the example of a database which showed the presence or absence of inversion of the reflected signal in the different acoustic impedance boundary part of 4th Embodiment which concerns on this invention. 本発明に係る第4の実施形態の各種材料の音響インピーダンス値の例である。It is an example of the acoustic impedance value of the various materials of 4th Embodiment which concerns on this invention. 従来の超音波肉厚測定概略図である。It is the conventional ultrasonic thickness measurement schematic.

符号の説明Explanation of symbols

1、探触子
2、超音波探傷器
3、データ収録系
5、送受信切替器
6、探触子移動器
7、探傷制御器
8、探触子位置検出器
9、A/D変換器
10、信号振幅/色調変換器
11、表示切替器
12、データ表示部
20、被検体
30、信号処理部
50、A点での送信超音波信号
51、A点での受信第1波信号
52、A点での受信第2波信号
53、A点での受信第3波信号
54、A点での受信第4波信号
60、B点での送信超音波信号
61、B点での受信第1波信号
62、B点での受信第2波信号
63、B点での受信第3波信号
64、B点での受信第4波信号
81、スケールによる受信第1波信号
82、スケールによる受信第2波信号
83、スケールによる受信第3波信号
84、スケールによる受信第4波信号
89、信号立ち上がり方向判定器
90、受信超音波信号
91、信号の振幅値/電圧値変換器
92、電圧値/色調値変換データベース
93、色調値データ
95、電圧値/色調値変換データベース
100、信号振幅/色調変換器
101、第1波受信信号を用いたA点とB点との肉厚差に相当した時間差値
102、第2波受信信号を用いたA点とB点との肉厚差に相当した時間差値
103、第3波受信信号を用いたA点とB点との肉厚差に相当した時間差値
104、第4波受信信号を用いたA点とB点との肉厚差に相当した時間差値
200、超音波探傷器
210、送/受信号のバッファ
221、受信フイルタ1
222、受信フイルタ2
223、受信フイルタ3
231、信号処理器1
232、信号処理器2
233、信号処理器3
240、信号切替器
300、信号処理部
410、材料A
420、境界部
430、材料B
450、送信超音波信号
451、透過超音波信号
452、反射超音波信号
500、A点での肉厚に相当した時間値
510、A点での受信第1波信号の色調値データ
520、A点での受信第2波信号の色調値データ
530、A点での受信第3波信号の色調値データ
540、A点での受信第4波信号の色調値データ
600、B点での肉厚に相当した時間値
610、B点での受信第1波信号の色調値データ
620、B点での受信第2波信号の色調値データ
630、B点での受信第3波信号の色調値データ
640、B点での受信第4波信号の色調値データ
810、スケールによる受信第1波信号の色調値データ
820、スケールによる受信第2波信号の色調値データ
830、スケールによる受信第3波信号の色調値データ
840、スケールによる受信第4波信号の色調値データ
910、A/D変換器1
920、A/D変換器2
930、A/D変換器3
1000、信号演算処理部
1, probe 2, ultrasonic flaw detector 3, data recording system 5, transmission / reception switch 6, probe mover 7, flaw controller 8, probe position detector 9, A / D converter 10, Signal amplitude / color tone converter 11, display switcher 12, data display unit 20, subject 30, signal processing unit 50, transmission ultrasonic signal 51 at point A, received first wave signal 52 at point A, point A Received second wave signal 53 at point A, received third wave signal 54 at point A, received fourth wave signal 60 at point A, transmitted ultrasonic signal 61 at point B, received first wave signal at point B 62, received second wave signal 63 at point B, received third wave signal 64 at point B, received fourth wave signal 81 at point B, received first wave signal 82 by scale, received second wave by scale Signal 83, received third wave signal 84 based on scale, received fourth wave signal 89 based on scale, signal rising direction determiner 90, received Sound wave signal 91, signal amplitude value / voltage value converter 92, voltage value / color value conversion database 93, color value data 95, voltage value / color value conversion database 100, signal amplitude / color value converter 101, first wave reception Time difference value 102 corresponding to the wall thickness difference between point A and point B using the signal, time difference value 103 corresponding to the wall thickness difference between point A and point B using the second wave reception signal, third wave reception Time difference value 104 corresponding to the wall thickness difference between point A and B using the signal, time difference value 200 corresponding to the wall thickness difference between point A and B using the fourth wave received signal, ultrasonic flaw detector 210, transmission / reception signal buffer 221, reception filter 1
222, reception filter 2
223, reception filter 3
231, signal processor 1
232, signal processor 2
233, signal processor 3
240, signal switcher 300, signal processor 410, material A
420, boundary portion 430, material B
450, transmitted ultrasonic signal 451, transmitted ultrasonic signal 452, reflected ultrasonic signal 500, time value 510 corresponding to the thickness at point A, color tone value data 520 of received first wave signal at point A, point A Color tone value data 530 of the received second wave signal at, color tone value data 540 of the received third wave signal at point A, color tone value data 600 of the received fourth wave signal at point A, and thickness at point B Corresponding time value 610, color tone value data 620 of the received first wave signal at point B, color tone value data 630 of the received second wave signal at point B, color tone value data 640 of the received third wave signal at point B , Color tone value data 810 of the received fourth wave signal at point B, color tone value data 820 of the received first wave signal based on the scale, color tone value data 830 of the received second wave signal based on the scale, and the received third wave signal based on the scale Tone value data 840, reception by scale Tonal value data 910 of the four-wave signal, A / D converter 1
920, A / D converter 2
930, A / D converter 3
1000, signal arithmetic processing unit

Claims (5)

超音波探触子から超音波を被検体の測定部分へ送信し反射して返ってくる超音波信号を
受信する超音波探触子と、
前記受信超音波信号を表示する手段と、
繰り返し受信される受信超音波信号を順次表示する手段からなることを特徴とする、
超音波肉厚測定装置。
An ultrasonic probe that transmits ultrasonic waves from the ultrasonic probe to the measurement portion of the subject and receives the ultrasonic signals that are reflected back; and
Means for displaying the received ultrasound signal;
It comprises means for sequentially displaying received ultrasonic signals that are repeatedly received,
Ultrasonic wall thickness measuring device.
請求項1記載の超音波肉厚測定装置において、
前記受信超音波信号を表示させる際、受信超音波信号振幅を色調区分表示することを特徴と
する、
超音波肉厚測定装置。
In the ultrasonic thickness measuring apparatus according to claim 1,
When displaying the received ultrasonic signal, the received ultrasonic signal amplitude is displayed in color tone classification,
Ultrasonic wall thickness measuring device.
請求項1又は請求項2記載の超音波肉厚測定装置において、
前記超音波探触子を走査させることにより被検体全体の肉厚分布を表示する手段からなる
ことを特徴とする、
超音波肉厚測定装置。
In the ultrasonic thickness measuring apparatus according to claim 1 or 2,
It comprises means for displaying the thickness distribution of the entire subject by scanning the ultrasonic probe,
Ultrasonic wall thickness measuring device.
請求項2記載の超音波肉厚測定装置において、
被検体内部の音響インピーダンスの異なる部分の色調区分表示を区別する手段からなることを特徴とする、
超音波肉厚測定装置。
In the ultrasonic thickness measuring apparatus according to claim 2,
It is characterized by comprising means for distinguishing the color classification display of different parts of the acoustic impedance inside the subject,
Ultrasonic wall thickness measuring device.
超音波探触子から超音波を被検体へ送信し反射して返ってくる超音波信号を受信する工程と、
前記受信超音波信号を表示する工程と、
繰り返し受信される受信超音波信号を順次表示する工程からなることを特徴とする、
超音波肉厚測定方法。
A step of transmitting an ultrasonic wave from the ultrasonic probe to the subject and receiving an ultrasonic signal that is reflected and returned;
Displaying the received ultrasound signal;
It comprises a step of sequentially displaying received ultrasonic signals that are repeatedly received,
Ultrasonic wall thickness measurement method.
JP2004319651A 2004-11-02 2004-11-02 Ultrasonic wall-thickness measuring instrument and ultrasonic wall-thickness measuring method Withdrawn JP2006132981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004319651A JP2006132981A (en) 2004-11-02 2004-11-02 Ultrasonic wall-thickness measuring instrument and ultrasonic wall-thickness measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004319651A JP2006132981A (en) 2004-11-02 2004-11-02 Ultrasonic wall-thickness measuring instrument and ultrasonic wall-thickness measuring method

Publications (1)

Publication Number Publication Date
JP2006132981A true JP2006132981A (en) 2006-05-25

Family

ID=36726658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004319651A Withdrawn JP2006132981A (en) 2004-11-02 2004-11-02 Ultrasonic wall-thickness measuring instrument and ultrasonic wall-thickness measuring method

Country Status (1)

Country Link
JP (1) JP2006132981A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011095210A (en) * 2009-11-02 2011-05-12 Toyota Motor Corp Method and system for detecting property value of object to be measured
WO2013114639A1 (en) * 2012-01-31 2013-08-08 Jfeスチール株式会社 Ultrasonic flaw-detection method, ultrasonic flaw-detection device, and method for producing pipe material
CN105806274A (en) * 2016-05-13 2016-07-27 镇江同舟螺旋桨有限公司 Multifunctional efficient ultrasonic thickness measurement equipment for marine propeller blades

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011095210A (en) * 2009-11-02 2011-05-12 Toyota Motor Corp Method and system for detecting property value of object to be measured
WO2013114639A1 (en) * 2012-01-31 2013-08-08 Jfeスチール株式会社 Ultrasonic flaw-detection method, ultrasonic flaw-detection device, and method for producing pipe material
US9341599B2 (en) 2012-01-31 2016-05-17 Jfe Steel Corporation Ultrasonic flaw detection method, ultrasonic flaw detection apparatus, and pipe manufacturing method
CN105806274A (en) * 2016-05-13 2016-07-27 镇江同舟螺旋桨有限公司 Multifunctional efficient ultrasonic thickness measurement equipment for marine propeller blades

Similar Documents

Publication Publication Date Title
EP2598866B1 (en) Ultrasonic pipe inspection with signal processing arrangement
JP2007315820A (en) Ultrasonic flaw inspection device and ultrasonic flaw inspection program
CA2616900C (en) Method for error-free checking of tubes for surface faults
EP1474680B1 (en) System and method for detecting defects in a manufactured object
JP2011027571A (en) Piping thickness reduction inspection apparatus and piping thickness reduction inspection method
JP4591850B2 (en) Ultrasonic inspection method and apparatus
JP7300383B2 (en) LAMINATED PEELING INSPECTION METHOD AND PEELING INSPECTION APPARATUS
JP4364031B2 (en) Ultrasonic flaw detection image processing apparatus and processing method thereof
JP3713007B2 (en) Ultrasonic inspection equipment
JP2006132981A (en) Ultrasonic wall-thickness measuring instrument and ultrasonic wall-thickness measuring method
JP2009058238A (en) Method and device for defect inspection
JPH02129544A (en) Ultrasonic flaw detecting device
JP2011122827A (en) Array probe measuring method and array probe measuring instrument
JP4482884B2 (en) Ultrasonic flaw detection method
JP2008151588A (en) Flaw evaluation method of two-layered bellows and eddy current flaw detector used therein
JP4672441B2 (en) Ultrasonic flaw detection method and flaw detection apparatus
JP2008111742A (en) Method and apparatus for non-destructive inspection of wheel welded part
JP5431905B2 (en) Nondestructive inspection method and nondestructive inspection apparatus using guide wave
KR20180011418A (en) Multi-channel ultrasonic diagnostic method for long distance piping
JP2005147770A (en) Ultrasonic flaw detector
JP2014070968A (en) Ultrasonic inspection device and ultrasonic inspection method
KR20040099762A (en) System and its method for processing digital ultrasonic image
JP7294283B2 (en) Ultrasonic flaw detection method, ultrasonic flaw detector, and steel manufacturing method
JPS61210947A (en) Ultrasonic defectscope
JPS61138160A (en) Ultrasonic flaw detector

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108