JP2008151588A - Flaw evaluation method of two-layered bellows and eddy current flaw detector used therein - Google Patents

Flaw evaluation method of two-layered bellows and eddy current flaw detector used therein Download PDF

Info

Publication number
JP2008151588A
JP2008151588A JP2006338636A JP2006338636A JP2008151588A JP 2008151588 A JP2008151588 A JP 2008151588A JP 2006338636 A JP2006338636 A JP 2006338636A JP 2006338636 A JP2006338636 A JP 2006338636A JP 2008151588 A JP2008151588 A JP 2008151588A
Authority
JP
Japan
Prior art keywords
layer
defect
flaw detection
eddy current
bellows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006338636A
Other languages
Japanese (ja)
Inventor
Yoshitoshi Yotsutsuji
美年 四辻
Nobuaki Hirota
信明 広田
Eiichi Kishi
栄一 岸
Tadashi Kawashima
正 河島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Engineering Co Ltd
Non Destructive Inspection Co Ltd
Original Assignee
Idemitsu Engineering Co Ltd
Non Destructive Inspection Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Engineering Co Ltd, Non Destructive Inspection Co Ltd filed Critical Idemitsu Engineering Co Ltd
Priority to JP2006338636A priority Critical patent/JP2008151588A/en
Publication of JP2008151588A publication Critical patent/JP2008151588A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flaw evaluation method of bellows capable of rapidly and simply evaluating the flaw such as corrosion or damage of the bellows even in the bellows having a two layered structure, and an eddy current flaw detector used therein. <P>SOLUTION: The flaw of the two-layered bellows 100 obtained by molding two metal thin plates is evaluated. A sensor 20 is scanned along the protruded surface 104a on the first layer side being the outside of the thin plate to perform eddy current flaw detection while a transmission and reception element is scanned along the protruded surface 104a on the side of the first layer to perform ultrasonic flaw detection. The flaw is evaluated on the basis of the receiving signals of eddy current flaw detection and ultrasonic flaw detection. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、二層ベローズの欠陥評価方法及びこれに用いる渦流探傷装置に関する。さらに詳しくは、二層の金属薄板を成形してなるベローズの腐食や傷等の欠陥を評価する二層ベローズの欠陥評価方法及びこれに用いる渦流探傷装置に関する。   The present invention relates to a defect evaluation method for a double-layer bellows and an eddy current flaw detection apparatus used therefor. More specifically, the present invention relates to a double-layer bellows defect evaluation method for evaluating defects such as corrosion and scratches on a bellows formed by forming a two-layer metal thin plate, and an eddy current flaw detection apparatus used therefor.

従来、ベローズの腐食や傷等の欠陥を非破壊試験する方法として、例えば渦流探傷や超音波探傷等が知られている。しかし、渦流探傷では、腐食や傷等の欠陥を定量的に評価することが困難であった。超音波探傷では、2層構造のベローズにおいて、層間の境界面により超音波が反射されるため、探傷面より内部の層の欠陥を検出することができなかった。そのため、定期的にベローズを開放して、内面からの目視及び浸透探傷試験が適用されていた。   Conventionally, eddy current testing, ultrasonic testing, and the like are known as methods for nondestructive testing of defects such as corrosion and scratches on bellows. However, in eddy current testing, it has been difficult to quantitatively evaluate defects such as corrosion and scratches. In ultrasonic flaw detection, in a two-layer bellows, ultrasonic waves are reflected by the boundary surface between layers, and therefore a defect in an inner layer from the flaw detection surface cannot be detected. For this reason, the bellows are periodically opened, and visual inspection from the inner surface and a penetration flaw detection test have been applied.

また、ベローズの欠陥評価方法としては、例えば特許文献1に記載の如きものが知られている。同文献記載の超音波探傷方法は、ベローズ部材内側の凹部に探触子を挿入し、その凹部に超音波を送信するものである。しかし、ベローズ部材内側からの探傷であるため、ベローズ部材を取り外さなければならず、検査作業が煩雑となっていた。また、超音波探傷であるため、上述の問題が解決されず、探傷側の表層側に存在する欠陥のみしか検出することができない。   Moreover, as a defect evaluation method for bellows, for example, the one described in Patent Document 1 is known. The ultrasonic flaw detection method described in this document inserts a probe into a concave portion inside the bellows member and transmits ultrasonic waves to the concave portion. However, since the flaw detection is from the inside of the bellows member, the bellows member has to be removed, and the inspection work is complicated. In addition, since the ultrasonic flaw detection is used, the above-described problem is not solved, and only the defects existing on the surface side on the flaw detection side can be detected.

一方、超音波探傷と渦流探傷とを併用して欠陥を検出する方法として、例えば特許文献2に記載の如き欠陥検出方法が知られている。しかし、この欠陥検出方法は、鋳造部品を検査対象物とし、対象物が多層構造の場合について詳細は記載されておらず、2層構造のベローズにおける欠陥評価について、具体的に解決手段は何ら開示されていない。
特開2000−266735号公報 特開2006−133031号公報
On the other hand, as a method for detecting defects by using both ultrasonic flaw detection and eddy current flaw detection, for example, a defect detection method as described in Patent Document 2 is known. However, this defect detection method is not described in detail for the case where a cast part is an inspection object and the object has a multilayer structure, and no specific solution is disclosed regarding the defect evaluation in the bellows of the two-layer structure. It has not been.
JP 2000-266735 A JP 2006-133031 A

かかる従来の実情に鑑みて、本発明は、2層構造のベローズであっても、迅速且つ簡便にベローズの腐食や傷等の欠陥を評価することが可能なベローズの欠陥評価方法及びこれに用いる渦流探傷装置を提供することを目的とする。   In view of such a conventional situation, the present invention uses a bellows defect evaluation method and a bellows defect evaluation method capable of quickly and easily evaluating defects such as corrosion and scratches on the bellows even if the bellows has a two-layer structure. An object is to provide an eddy current flaw detection apparatus.

発明者らの研究の結果、ベローズの伸縮等に伴う応力は、ベローズの凸部に集中し易く、それにより、ベローズの凸部に欠陥が生じ易いことが判明した。また、ベローズを水平に配置した場合、下側の凸部に内部を流れる流体の一部が滞留しやすく、それにより凸部の内面側が腐食を受け易いことが判明した。   As a result of the inventors' research, it has been found that the stress accompanying expansion and contraction of the bellows is likely to be concentrated on the convex portion of the bellows, thereby causing defects in the convex portion of the bellows. Further, it has been found that when the bellows is horizontally disposed, a part of the fluid flowing inside tends to stay in the lower convex portion, and thereby the inner surface side of the convex portion is easily corroded.

この点を鑑み、上記目的を達成するため、本発明に係る二層ベローズの欠陥評価方法の特徴は、二層の金属薄板を成形してなるベローズの欠陥を評価する二層ベローズの欠陥を評価する方法であって、前記薄板のうち外側である第一層側の凸部表面に沿ってセンサを走査させて渦流探傷を行うと共に、前記第一層側の凸部表面に沿って送受信子を走査させて超音波探傷を行い、前記渦流探傷及び前記超音波探傷の受信信号に基づいて前記欠陥を評価することにある。   In view of this point, in order to achieve the above object, the feature of the defect evaluation method for a two-layer bellows according to the present invention is to evaluate the defect of a two-layer bellows for evaluating a defect of a bellows formed by forming a two-layer metal sheet. And a sensor is scanned along the surface of the convex portion on the first layer side which is the outer side of the thin plate to perform eddy current flaw detection, and a transceiver is arranged along the surface of the convex portion on the first layer side. The ultrasonic inspection is performed by scanning, and the defect is evaluated based on the eddy current inspection and the reception signals of the ultrasonic inspection.

同構成により、欠陥が発生しやすい凸部表面に沿って探傷を行うことで、効率よくベローズの欠陥を評価することが可能となる。また、外部と接する第一層側を走査するので、ベローズを取り外すことなく稼働させた状態で簡便に欠陥評価を行うことができる。さらに、渦流探傷及び超音波探傷双方の受信信号により欠陥を評価するので、2層構造のベローズであっても確実に欠陥評価することが可能となる。   With this configuration, it is possible to efficiently evaluate the defects of the bellows by performing flaw detection along the convex surface where defects are likely to occur. Moreover, since the 1st layer side which contact | connects the exterior is scanned, defect evaluation can be performed simply in the state operated without removing the bellows. Furthermore, since the defect is evaluated based on the reception signals of both the eddy current flaw detection and the ultrasonic flaw detection, even if the bellows has a two-layer structure, the defect can be reliably evaluated.

前記渦流探傷による欠陥検査結果と前記超音波探傷による欠陥検査結果とを比較することにより第二層の欠陥の有無を評価するようにしても構わない。前記センサは走査方向に沿って少なくとも一対の車輪を有し、前記車輪の外周部には幅方向中央部が凹む凹部を有してもよい。係る場合、前記センサは前記車輪との相対的高さを調整可能であることが望ましい。   The presence or absence of a defect in the second layer may be evaluated by comparing the defect inspection result by the eddy current flaw detection and the defect inspection result by the ultrasonic flaw detection. The sensor may include at least a pair of wheels along the scanning direction, and a peripheral portion of the wheels may have a recess having a recessed central portion in the width direction. In such a case, it is desirable that the sensor can adjust the relative height with the wheel.

前記送受信子は前記渦流探傷により特定された欠陥位置の近傍において走査するようにしてもよい。また、前記薄板はステンレス鋼より構成されていても構わない。   The transceiver may be scanned in the vicinity of the defect position specified by the eddy current flaw detection. The thin plate may be made of stainless steel.

また、上記目的を達成するため、本発明に係る渦流探傷装置の特徴は、上記のいずれかに記載の二層ベローズの欠陥評価方法に用いられる渦流探傷装置において、プローブは本体部と走査方向に沿って少なくとも一対の車輪とコイルを備え、前記車輪の外周部には幅方向中央部が凹む凹部を有し、前記コイルは前記車輪との相対的高さが調整可能であることにある。   In order to achieve the above object, the eddy current flaw detection apparatus according to the present invention is characterized in that in the eddy current flaw detection apparatus used for the defect evaluation method for a two-layer bellows described above, the probe is in the scanning direction with the main body. Along with this, at least a pair of wheels and a coil are provided, and an outer peripheral portion of the wheel has a concave portion in which a central portion in the width direction is recessed, and the relative height of the coil with respect to the wheel is adjustable.

上記本発明に係る二層ベローズの欠陥評価方法及びこれに用いる渦流探傷装置の特徴によれば、2層構造のベローズであっても、迅速且つ簡便にベローズの腐食や傷等の欠陥を確実に評価することが可能となった。   According to the two-layer bellows defect evaluation method according to the present invention and the features of the eddy current flaw detection apparatus used therefor, even with a two-layer bellows, defects such as corrosion and scratches on the bellows can be reliably and quickly confirmed. It became possible to evaluate.

本発明の他の目的、構成及び効果については、以下の発明の実施の形態の項から明らかになるであろう。   Other objects, configurations, and effects of the present invention will become apparent from the following embodiments of the present invention.

次に、適宜添付図面を参照しながら、本発明をさらに詳しく説明する。
本発明は配管等に用いられるベローズ100に発生する割れや腐食等の欠陥を検出するためのものである。本実施形態では、図1に示す渦流探傷装置2と、図5に示す超音波探傷装置3との双方を含む検査装置1を用い、渦流探傷試験と超音波探傷試験とを併用して探傷試験を行う。
Next, the present invention will be described in more detail with reference to the accompanying drawings as appropriate.
The present invention is for detecting defects such as cracks and corrosion occurring in the bellows 100 used for piping and the like. In the present embodiment, the inspection apparatus 1 including both the eddy current flaw detection apparatus 2 shown in FIG. 1 and the ultrasonic flaw detection apparatus 3 shown in FIG. 5 is used, and the eddy current flaw detection test and the ultrasonic flaw detection test are used in combination. I do.

検査対象であるベローズ100は、図2,5,6に示すように、ステンレス鋼材よりなる第一層101及び第二層102の二層の薄板を成型したものであり、円筒状又はスパイラル状の蛇腹として形成されている。第一層101はベローズ100の外部Oと接する外側の層をいい、第二層102はベローズ100内部Iを流れる流体が接する内側層をいう。これらの探傷試験においては、外部Oに露出している第一層101側の山部表面104aに沿って走査を行う。   As shown in FIGS. 2, 5, and 6, the bellows 100 to be inspected is a two-layer thin plate formed of a stainless steel material and is formed into a cylindrical or spiral shape. It is formed as a bellows. The first layer 101 refers to an outer layer in contact with the outside O of the bellows 100, and the second layer 102 refers to an inner layer in contact with a fluid flowing inside the bellows 100. In these flaw detection tests, scanning is performed along the crest surface 104a on the first layer 101 side exposed to the outside O.

渦流探傷装置2を用いて行う渦流探傷試験について説明する。渦流探傷試験では、まず検査対象であるベローズ100にコイル21を内蔵したセンサ20を近づけ、そのコイル21を励磁することで、ベローズ100内部に渦電流を発生させる。そして、渦電流により生成される磁束の変化に伴うコイル21のインピーダンス変化を測定し、亀裂や腐食等の損傷を検出する。   An eddy current flaw detection test performed using the eddy current flaw detector 2 will be described. In the eddy current flaw detection test, first, the sensor 20 incorporating the coil 21 is brought close to the bellows 100 to be inspected, and the coil 21 is excited to generate an eddy current inside the bellows 100. And the impedance change of the coil 21 accompanying the change of the magnetic flux produced | generated by an eddy current is measured, and damages, such as a crack and corrosion, are detected.

図7に示すように、渦流探傷装置2は、大略、センサ20を支持するプローブ10、発振器22、ブリッジ23、移相器24、自動平衡器25、増幅器26、同期検波器27及び表示器29を備える。コイル21は同様に構成された第一、第二コイル21a,21bよりなり、ブリッジ23は、これら一対のコイル21a,21bと図示しない可変抵抗器により構成されるブリッジ回路である。   As shown in FIG. 7, the eddy current flaw detector 2 generally includes a probe 10 that supports the sensor 20, an oscillator 22, a bridge 23, a phase shifter 24, an automatic balancer 25, an amplifier 26, a synchronous detector 27, and a display 29. Is provided. The coil 21 includes first and second coils 21a and 21b that are similarly configured, and the bridge 23 is a bridge circuit that includes the pair of coils 21a and 21b and a variable resistor (not shown).

発振器22からの交流出力はコイル21に加えられてベローズ100を励磁し、渦電流に伴う磁束を検出する。自動平衡器25は健全部でのブリッジ23出力を零とするものである。第一、第二コイル21a,21b間の不平衡出力が増幅器26で増幅され、同期検波器27に送られて、移相器24の出力とあいまって検波される。そして、受信信号の波形をパーソナルコンピューター28に取り込むと共に表示器29に例えば図8に示す如き波形を表示する。   The AC output from the oscillator 22 is applied to the coil 21 to excite the bellows 100 and detect the magnetic flux accompanying the eddy current. The automatic balancer 25 makes the output of the bridge 23 at the healthy part zero. The unbalanced output between the first and second coils 21a and 21b is amplified by the amplifier 26, sent to the synchronous detector 27, and detected together with the output of the phase shifter 24. Then, the waveform of the received signal is taken into the personal computer 28, and the waveform as shown in FIG.

渦流探傷においては、図5に示すように、第一層101及び第二層102に跨って存在する欠陥D1が可能であると共に、符号20’に示すセンサにおいて第二層102内にのみ存在する欠陥D2をも検出することが可能である。よって、渦流探傷によりベローズの山部104内全体の欠陥を検出する。   In the eddy current flaw detection, as shown in FIG. 5, a defect D1 that exists across the first layer 101 and the second layer 102 is possible, and is present only in the second layer 102 in the sensor indicated by reference numeral 20 ′. It is also possible to detect the defect D2. Therefore, the entire defect in the peak portion 104 of the bellows is detected by eddy current flaw detection.

続いて、超音波探傷装置3について説明する。この装置は、主として上述の渦流探傷試験により欠陥信号を検出した箇所に対し試験を行う。   Next, the ultrasonic flaw detector 3 will be described. This apparatus mainly tests a portion where a defect signal is detected by the above-described eddy current flaw detection test.

図7に示すように、超音波探傷装置3は、第一層101の表面101aを走査する一対の送信子30a及び受信子30bよりなる送受信子30と、送信子30aを励起するためのパルサー31と、受信子30bで受信した波形を処理するレシーバー32とを備えている。また、送受信子30にはワイヤーエンコーダー33が取り付けられており、送受信子30の移動位置が記録される。レシーバー32の出力はパーソナルコンピュータ34に取り込まれてエンコーダー33により記録された位置情報と共に処理され、その結果を例えば図9に示す如きBスコープ画像として表示器35に表示する。   As shown in FIG. 7, the ultrasonic flaw detector 3 includes a transmitter / receiver 30 including a pair of transmitters 30a and 30b that scan the surface 101a of the first layer 101, and a pulsar 31 for exciting the transmitter 30a. And a receiver 32 for processing the waveform received by the receiver 30b. Further, a wire encoder 33 is attached to the transceiver 30, and the movement position of the transceiver 30 is recorded. The output of the receiver 32 is processed by the personal computer 34 together with the positional information recorded by the encoder 33, and the result is displayed on the display 35 as a B scope image as shown in FIG.

超音波探傷においては、図6に示すように、第一層101及び第二層102に跨って存在する欠陥D1は、欠陥D1からの反射信号により検出し、欠陥D1の深さを測定することが可能である。しかし、第二層102内にのみ存在する欠陥D2は、符号30’に示す送受信子において第一層101と第二層102との境界面103で超音波が反射するため、欠陥D2を検出することができない。   In ultrasonic flaw detection, as shown in FIG. 6, the defect D1 existing across the first layer 101 and the second layer 102 is detected by a reflection signal from the defect D1, and the depth of the defect D1 is measured. Is possible. However, the defect D2 existing only in the second layer 102 is detected by the ultrasonic wave reflected by the boundary surface 103 between the first layer 101 and the second layer 102 in the transmitter / receiver indicated by reference numeral 30 ′. I can't.

そこで、渦流探傷と超音波探傷を組み合わせて検査することにより、山部104の欠陥を渦流探傷で検出すると共に、第一層101及び第二層102に跨って存在する欠陥D1の深さを超音波探傷により測定することができる。また、渦流探傷により欠陥を検出したが、超音波探傷により欠陥が検出できない箇所は、欠陥D2が存在している箇所であることが分かり、少なくとも第一層101の健全性を評価することができる。   Therefore, by inspecting in combination with eddy current flaw detection and ultrasonic flaw detection, a defect in the peak portion 104 is detected by eddy current flaw detection, and the depth of the defect D1 existing across the first layer 101 and the second layer 102 is exceeded. It can be measured by acoustic flaw detection. Moreover, although the defect was detected by the eddy current flaw detection, it can be understood that the portion where the defect cannot be detected by the ultrasonic flaw detection is a portion where the defect D2 exists, and at least the soundness of the first layer 101 can be evaluated. .

次に、図1,3を参照しながら、渦流探傷装置2のプローブ10について説明する。
プローブ10は、大略、樹脂等により形成される本体部11と、一対の車輪12とセンサ20のリフトオフ距離を調整する調整機構15とよりなる。センサ20のコイル21は、プローブ進行方向Yに一対の第一、第二コイル21a,21bを備えており、ベローズ100に渦電流を発生させる。図4に示すように、コイル21は全体を棒状に形成してあり、第一、第二コイル21a,21bをセンサ20の筐体20aに支持した芯材21cに巻き付けてある。
Next, the probe 10 of the eddy current flaw detector 2 will be described with reference to FIGS.
The probe 10 generally includes a main body 11 formed of resin or the like, and a pair of wheels 12 and an adjustment mechanism 15 that adjusts the lift-off distance of the sensor 20. The coil 21 of the sensor 20 includes a pair of first and second coils 21 a and 21 b in the probe traveling direction Y, and generates an eddy current in the bellows 100. As shown in FIG. 4, the coil 21 is entirely formed in a rod shape, and the first and second coils 21 a and 21 b are wound around a core material 21 c supported on the housing 20 a of the sensor 20.

一対の車輪12はプローブ10の進行方向Y前後にセンサ20を挟んで設けられている。この車輪12の周方向には凹部となるV溝12aが形成され、その両側端部がベローズ100の山部表面104aと接触する接触部12bとなる。よって、前後一対の車輪12,12の各接触部12bによりプローブ10が支持されるので、プローブの横ずれが防止され、走査を安定して行うことができる。また、図3に示すように、符号104’で示す如く山部表面の曲率が変化しても、凹部によって一対の接触部が生じるので、曲率が変化した場合であってもプローブの横ずれを防止できる。   The pair of wheels 12 is provided with the sensor 20 interposed therebetween in the traveling direction Y of the probe 10. V-grooves 12 a serving as recesses are formed in the circumferential direction of the wheel 12, and both end portions thereof become contact portions 12 b that come into contact with the peak surface 104 a of the bellows 100. Therefore, since the probe 10 is supported by the contact portions 12b of the pair of front and rear wheels 12, 12, the lateral displacement of the probe is prevented, and scanning can be performed stably. In addition, as shown in FIG. 3, even if the curvature of the ridge surface changes as shown by reference numeral 104 ', a pair of contact portions are formed by the recess, so that even if the curvature changes, the lateral displacement of the probe is prevented. it can.

また、調整機構15は、大略、センサ20を取り付ける固定板16と本体部11aと螺合するねじ17とナット18とよりなる。ねじ17は、固定板16と連結しており、このねじ17により、センサ20と車輪12との相対高さ、すなわち、センサ20と山部表面104aとのリフトオフ距離Hを調整することができる。図3に示すように、この調整機構15により、山部104の走査位置の相違により符号104’で示す如く山部表面の曲率が変化しても、一定のリフトオフ距離Hにより検査することができる。また、曲率の異なるベローズに対してもこのプローブ10を適用させることができる。   The adjustment mechanism 15 is generally composed of a fixing plate 16 to which the sensor 20 is attached, a screw 17 and a nut 18 that are screwed into the main body portion 11a. The screw 17 is connected to the fixing plate 16, and the screw 17 can adjust the relative height between the sensor 20 and the wheel 12, that is, the lift-off distance H between the sensor 20 and the mountain surface 104a. As shown in FIG. 3, the adjustment mechanism 15 can inspect with a constant lift-off distance H even if the curvature of the ridge surface changes as indicated by reference numeral 104 ′ due to the difference in the scanning position of the ridge 104. . Further, the probe 10 can be applied to bellows having different curvatures.

次に、ベローズ100の探傷試験手順について説明する。
まず、渦流探傷装置2を用いて渦流探傷試験を行う。プローブ10にセンサ20を取り付けると共に調整機構15によりセンサ20と山部104の第一層表面101aとのリフトオフ距離を調整する。そして、ベローズ100の山部表面104aに沿って、山部104の長手方向Y(ベローズ100の管周方向)にプローブ10を走行させて走査を行う。
Next, the flaw detection test procedure for the bellows 100 will be described.
First, an eddy current flaw detection test is performed using the eddy current flaw detector 2. The sensor 20 is attached to the probe 10, and the adjustment mechanism 15 adjusts the lift-off distance between the sensor 20 and the first layer surface 101a of the peak portion 104. Then, scanning is performed by moving the probe 10 in the longitudinal direction Y of the peak 104 (the pipe circumferential direction of the bellows 100) along the peak surface 104a of the bellows 100.

そして、表示器29に表示された受信信号の波形を確認しながら、検査員がベローズ100に欠陥信号箇所をマーキングしていく。次に先の走査方向Yに対し直交する方向Xへ間隔をおいて、その走査方向と平行に山部表面104aに沿って走査を行い、欠陥信号箇所をマーキングしていく。この手順を繰り返し行い、山部104の面探傷を行う。   Then, while checking the waveform of the reception signal displayed on the display device 29, the inspector marks the defect signal portion on the bellows 100. Next, scanning is performed along the crest surface 104a in parallel with the scanning direction at intervals in the direction X orthogonal to the previous scanning direction Y, and the defect signal portion is marked. This procedure is repeated to perform surface flaw detection on the crest 104.

次に、その山部104に対して超音波探傷装置3を用いて超音波探傷試験を行う。まず、山部104に送信子30a及び受信子30bを配置する。次に、送信子30aから超音波を山部表面104aに向けて送信すると共に、反射する反射波を受信子30bで受信する。この送受信を行いながら先の走査と同一経路を走査する。そして、受信した受信信号とエンコーダー33により取得した位置情報により、Bスコープ画像を表示される。   Next, an ultrasonic flaw detection test is performed on the mountain portion 104 using the ultrasonic flaw detector 3. First, the transmitter 30 a and the receiver 30 b are arranged on the mountain portion 104. Next, an ultrasonic wave is transmitted from the transmitter 30a toward the mountain surface 104a, and a reflected wave to be reflected is received by the receiver 30b. The same path as the previous scan is scanned while performing this transmission / reception. Then, the B scope image is displayed based on the received signal received and the position information acquired by the encoder 33.

上述のマーキングを施した箇所において、超音波探傷により欠陥が検出された場合は、第一、第二層101,102共に侵されているときであり、その欠陥深さを測定することが可能である。一方、マーキング箇所において、超音波探傷により欠陥が検出されなかった場合、第二層102に存在する欠陥D2であると判定し、第一層101に欠陥は存在せず少なくとも第一層101は健全であると評価する。   If a defect is detected by ultrasonic flaw detection at the above-mentioned marking, it is when both the first and second layers 101 and 102 are eroded, and the defect depth can be measured. is there. On the other hand, if no defect is detected by ultrasonic flaw detection at the marking location, it is determined that the defect D2 exists in the second layer 102, and there is no defect in the first layer 101. At least the first layer 101 is healthy. It is evaluated that it is.

最後に、本発明の他の実施形態の可能性について言及する。
上記実施形態において、センサ20には自己誘導自己比較方式のコイルを用いた。しかし、コイルの態様は自己誘導自己比較方式に限らず、種々の方式のコイルを適用しても構わない。
Finally, reference is made to the possibilities of other embodiments of the invention.
In the embodiment, the sensor 20 is a self-inductive self-comparison coil. However, the coil mode is not limited to the self-induction self-comparison method, and various types of coils may be applied.

上記実施形態において、センサ20のリフトオフ距離の調整をねじ17により行ったが、ねじに限らず、各種調整手段が適用可能である。また、車輪に形成した凹部はV字形状であったが、一対の接触部が形成される形状であれば円弧状であってもよく、用途に応じて改変が可能である。   In the embodiment described above, the lift-off distance of the sensor 20 is adjusted by the screw 17, but not only the screw but also various adjustment means can be applied. Moreover, although the recessed part formed in the wheel was V-shaped, if it is a shape in which a pair of contact part is formed, circular arc shape may be sufficient and it can change according to a use.

また、上記実施形態において、渦流探傷の結果を検査員がマーキングするようにしていた。しかし、渦流探傷において欠陥位置情報を記録させ、その欠陥位置情報に基づいて超音波探傷を行うようにしても構わない。上記実施形態において、超音波探傷結果をBスコープ画像として表示した。しかし、二軸スキャナーを用いCスコープ画像を表示させることも可能である。   In the above embodiment, the inspector marks the result of the eddy current flaw detection. However, defect position information may be recorded in eddy current flaw detection, and ultrasonic flaw detection may be performed based on the defect position information. In the above embodiment, the ultrasonic flaw detection result is displayed as a B scope image. However, it is also possible to display a C scope image using a biaxial scanner.

本発明は、2層構造のベローズの欠陥評価方法及びこれに用いる欠陥評価装置として利用することができる。なお、2層構造に限定されるわけではなく、単一層のベローズにおいても適用することができる。   The present invention can be used as a defect evaluation method for a two-layer bellows and a defect evaluation apparatus used therefor. Note that the present invention is not limited to the two-layer structure, and can be applied to a single-layer bellows.

ベローズと渦流探傷装置との関係を示す側面図である。It is a side view which shows the relationship between a bellows and an eddy current flaw detector. ベローズの構造を模式的に表した図である。It is the figure which represented the structure of the bellows typically. プローブの正面図である。It is a front view of a probe. コイルの断面図である。It is sectional drawing of a coil. 渦流探傷試験での欠陥検出を説明する模式図である。It is a schematic diagram explaining the defect detection in an eddy current test. 超音波探傷試験での欠陥検出を説明する模式図である。It is a schematic diagram explaining the defect detection in an ultrasonic flaw detection test. 検査装置のブロック図である。It is a block diagram of an inspection device. 渦流探傷の走査結果例の波形例を示すグラフである。It is a graph which shows the example of a waveform of the scanning result example of eddy current flaw detection. 超音波探傷の走査結果例のBスコープ画像である。It is a B scope image of the scanning result example of ultrasonic flaw detection.

符号の説明Explanation of symbols

1:欠陥検出装置、2:渦流探傷装置、3:超音波探傷装置、10:プローブ、11:本体部、12:車輪、12a:V溝(凹部)、12b:接触部、13:軸、15:調整機構、16:固定板、17:ねじ、18:ナット、20:センサ、21a:第一コイル、21b:第二コイル、21c:芯材、22:発振器、23:ブリッジ、24:移相器、25:自動平衡器、26:増幅器、27:同期検波器、28:パーソナルコンピューター、29:表示器、30:送受信子、30a:送信子、30b:受信子、31:パルサー、32:レシーバー、33:ワイヤーエンコーダー、34:PC、35:表示器、100:ベローズ、100a:ひだ、101:第一層、102:第二層、103:境界面、104:山部、D1,2:欠陥、I:内部、O:外部 DESCRIPTION OF SYMBOLS 1: Defect detection apparatus, 2: Eddy current flaw detection apparatus, 3: Ultrasonic flaw detection apparatus, 10: Probe, 11: Main part, 12: Wheel, 12a: V groove (recessed part), 12b: Contact part, 13: Shaft, 15 : Adjustment mechanism, 16: fixing plate, 17: screw, 18: nut, 20: sensor, 21a: first coil, 21b: second coil, 21c: core material, 22: oscillator, 23: bridge, 24: phase shift 25: Automatic balancer, 26: Amplifier, 27: Synchronous detector, 28: Personal computer, 29: Display, 30: Transceiver, 30a: Transmitter, 30b: Receiver, 31: Pulser, 32: Receiver 33: wire encoder, 34: PC, 35: display, 100: bellows, 100a: fold, 101: first layer, 102: second layer, 103: boundary surface, 104: mountain, D1, 2: defect , I: Inside O: External

Claims (7)

二層の金属薄板を成形してなるベローズの腐食や傷等の欠陥を評価する二層ベローズの欠陥評価方法であって、
前記薄板のうち外側である第一層側の凸部表面に沿ってセンサを走査させて渦流探傷を行うと共に、前記第一層側の凸部表面に沿って送受信子を走査させて超音波探傷を行い、前記渦流探傷及び前記超音波探傷の受信信号に基づいて前記欠陥を評価することを特徴とする二層ベローズの欠陥評価方法。
A double-layer bellows defect evaluation method for evaluating defects such as corrosion and scratches on a bellows formed by forming a two-layer metal sheet,
An ultrasonic flaw detection is performed by scanning the sensor along the convex surface on the first layer, which is the outer side of the thin plate, and scanning the transceiver along the convex surface on the first layer side. A defect evaluation method for a two-layer bellows, characterized in that the defect is evaluated based on reception signals of the eddy current flaw detection and the ultrasonic flaw detection.
前記渦流探傷による欠陥検査結果と前記超音波探傷による欠陥検査結果とを比較することにより第二層の欠陥の有無を評価することを特徴とする請求項1記載の二層ベローズの欠陥評価方法。 The defect evaluation method for a two-layer bellows according to claim 1, wherein the presence or absence of a defect in the second layer is evaluated by comparing a defect inspection result by the eddy current flaw detection and a defect inspection result by the ultrasonic flaw detection. 前記センサは走査方向に沿って少なくとも一対の車輪を有し、前記車輪の外周部には幅方向中央部が凹む凹部を有していることを特徴とする請求項1又は2記載の二層ベローズの欠陥評価方法。 3. The double-layer bellows according to claim 1, wherein the sensor has at least a pair of wheels along a scanning direction, and an outer peripheral portion of the wheels has a concave portion in which a central portion in the width direction is recessed. Defect evaluation method. 前記センサは前記車輪との相対的高さを調整可能であることを特徴とする請求項3に記載の二層ベローズの欠陥評価方法。 The defect evaluation method for a double-layer bellows according to claim 3, wherein the sensor is capable of adjusting a height relative to the wheel. 前記送受信子は前記渦流探傷により特定された欠陥位置の近傍において走査されることを特徴とする請求項1〜4のいずれかに記載の二層ベローズの欠陥評価方法。 The defect evaluation method for a double-layer bellows according to claim 1, wherein the transceiver is scanned in the vicinity of a defect position specified by the eddy current flaw detection. 前記薄板はステンレス鋼よりなることを特徴とする請求項1〜5のいずれかに記載の二層ベローズの欠陥評価方法。 The said thin plate consists of stainless steel, The defect evaluation method of the double layer bellows in any one of Claims 1-5 characterized by the above-mentioned. 請求項1〜6のいずれかに記載の二層ベローズの欠陥評価方法に用いられる渦流探傷装置であって、
プローブは本体部と走査方向に沿って少なくとも一対の車輪とコイルを備え、前記車輪の外周部には幅方向中央部が凹む凹部を有し、前記コイルは前記車輪との相対的高さが調整可能であることを特徴とする渦流探傷装置。
An eddy current flaw detector used in the defect evaluation method for a double-layer bellows according to any one of claims 1 to 6,
The probe includes at least a pair of wheels and a coil along the scanning direction with the main body, and the outer peripheral portion of the wheel has a concave portion whose central portion in the width direction is recessed, and the coil has a relative height adjusted with the wheel. Eddy current flaw detector characterized in that it is possible.
JP2006338636A 2006-12-15 2006-12-15 Flaw evaluation method of two-layered bellows and eddy current flaw detector used therein Pending JP2008151588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006338636A JP2008151588A (en) 2006-12-15 2006-12-15 Flaw evaluation method of two-layered bellows and eddy current flaw detector used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006338636A JP2008151588A (en) 2006-12-15 2006-12-15 Flaw evaluation method of two-layered bellows and eddy current flaw detector used therein

Publications (1)

Publication Number Publication Date
JP2008151588A true JP2008151588A (en) 2008-07-03

Family

ID=39653904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006338636A Pending JP2008151588A (en) 2006-12-15 2006-12-15 Flaw evaluation method of two-layered bellows and eddy current flaw detector used therein

Country Status (1)

Country Link
JP (1) JP2008151588A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108008007A (en) * 2017-12-26 2018-05-08 天津忠旺铝业有限公司 Aluminium alloy cast ingot defect-detecting equipment and method of detection
CN110887895A (en) * 2019-11-08 2020-03-17 上海应用技术大学 Stainless steel square welded tube welding seam eddy current on-line measuring device
CN111272865A (en) * 2020-03-11 2020-06-12 洛阳双瑞特种装备有限公司 Method for detecting defects of metal corrugated pipe based on array eddy current
JP2020201114A (en) * 2019-06-10 2020-12-17 株式会社東芝 Eddy current flaw detection device and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59218946A (en) * 1983-05-24 1984-12-10 Nippon Benkan Kogyo Kk Method for eddy current flaw detection and flaw detector to be used for the method
JPS6098060U (en) * 1983-12-09 1985-07-04 三菱電機株式会社 probe
JPS6138290A (en) * 1984-07-31 1986-02-24 川崎重工業株式会社 Double bellows joint
JPS61213667A (en) * 1985-03-20 1986-09-22 Mitsubishi Heavy Ind Ltd Magnetic flaw detecting device
JPH06258295A (en) * 1993-03-10 1994-09-16 Ishikawajima Harima Heavy Ind Co Ltd Welding seam inspection device
JP2002028714A (en) * 2000-07-10 2002-01-29 Daido Steel Co Ltd Wire drawing device
JP2006133031A (en) * 2004-11-04 2006-05-25 Toyota Motor Corp Method and device for detecting defect of casting member

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59218946A (en) * 1983-05-24 1984-12-10 Nippon Benkan Kogyo Kk Method for eddy current flaw detection and flaw detector to be used for the method
JPS6098060U (en) * 1983-12-09 1985-07-04 三菱電機株式会社 probe
JPS6138290A (en) * 1984-07-31 1986-02-24 川崎重工業株式会社 Double bellows joint
JPS61213667A (en) * 1985-03-20 1986-09-22 Mitsubishi Heavy Ind Ltd Magnetic flaw detecting device
JPH06258295A (en) * 1993-03-10 1994-09-16 Ishikawajima Harima Heavy Ind Co Ltd Welding seam inspection device
JP2002028714A (en) * 2000-07-10 2002-01-29 Daido Steel Co Ltd Wire drawing device
JP2006133031A (en) * 2004-11-04 2006-05-25 Toyota Motor Corp Method and device for detecting defect of casting member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108008007A (en) * 2017-12-26 2018-05-08 天津忠旺铝业有限公司 Aluminium alloy cast ingot defect-detecting equipment and method of detection
JP2020201114A (en) * 2019-06-10 2020-12-17 株式会社東芝 Eddy current flaw detection device and method
JP7237737B2 (en) 2019-06-10 2023-03-13 株式会社東芝 Eddy current flaw detector and method
CN110887895A (en) * 2019-11-08 2020-03-17 上海应用技术大学 Stainless steel square welded tube welding seam eddy current on-line measuring device
CN111272865A (en) * 2020-03-11 2020-06-12 洛阳双瑞特种装备有限公司 Method for detecting defects of metal corrugated pipe based on array eddy current

Similar Documents

Publication Publication Date Title
US5161413A (en) Apparatus and method for guided inspection of an object
AU2003254189B2 (en) Configurations and methods for ultrasonic time of flight diffraction analysis
US20100131210A1 (en) Method and system for non-destructive inspection of a colony of stress corrosion cracks
US6373245B1 (en) Method for inspecting electric resistance welds using magnetostrictive sensors
KR101163554B1 (en) Calibration block for phased-array ultrasonic inspection and verification
KR101921685B1 (en) Apparatus for inspecting defect and mehtod for inspecting defect using the same
WO2008072508A1 (en) Nondestructive test instrument and nondestructive test method
JP2008151588A (en) Flaw evaluation method of two-layered bellows and eddy current flaw detector used therein
JP2007322350A (en) Ultrasonic flaw detector and method
KR20100124238A (en) Calibration block (reference block) and calibration procedure for phased-array ultrasonic inspection
KR20180103567A (en) Apparatus and method for detecting defects of structures
JP4364031B2 (en) Ultrasonic flaw detection image processing apparatus and processing method thereof
EP0981047A3 (en) Method and apparatus for ultrasonic inspection of steel pipes
JP2008164396A (en) Flaw detection method and flaw detector used therefor
JP2006300854A (en) Piping plate thickness measuring device
JP2006138784A (en) Eddy current flaw detection probe and eddy current flaw detection system
JP2008164397A (en) Flaw detection method and flaw detector used therein
JP2011529170A (en) Improved ultrasonic non-destructive inspection using coupling check
WO2010019039A1 (en) Method and device for ultrasonic inspection
JP2004251839A (en) Pipe inner surface flaw inspection device
JP2006138672A (en) Method of and device for ultrasonic inspection
JP2005083907A (en) Defect inspection method
CN103207240B (en) The measuring method of the longitudinal acoustic pressure distribution of a kind of angle probe ultrasonic field
JP5431905B2 (en) Nondestructive inspection method and nondestructive inspection apparatus using guide wave
Beller Pipeline inspection utilizing ultrasound technology: on the issue of resolution

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090915

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20111111

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120110

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120612