JP2004251839A - Pipe inner surface flaw inspection device - Google Patents

Pipe inner surface flaw inspection device Download PDF

Info

Publication number
JP2004251839A
JP2004251839A JP2003044521A JP2003044521A JP2004251839A JP 2004251839 A JP2004251839 A JP 2004251839A JP 2003044521 A JP2003044521 A JP 2003044521A JP 2003044521 A JP2003044521 A JP 2003044521A JP 2004251839 A JP2004251839 A JP 2004251839A
Authority
JP
Japan
Prior art keywords
eddy current
flaw
segment
detection
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003044521A
Other languages
Japanese (ja)
Inventor
Shigenori Kamimura
繁憲 上村
Hiroaki Kondo
広章 近藤
Keiichiro Miyamoto
圭一郎 宮本
Koichi Nakajima
浩一 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003044521A priority Critical patent/JP2004251839A/en
Publication of JP2004251839A publication Critical patent/JP2004251839A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily and surely inspect an inner surface of a pipe over the whole circumference and the full length, without requiring any complicated rotary mechanism. <P>SOLUTION: This pipe inner surface flaw inspecting device is provided with a detecting head 14 inserted into the pipe 10 of an inspection object, segment probes 12 attached to respective positions around a periphery of the detecting head divided into a plurality of portions, and having an eddy current test function, a driving unit 18 for moving the detecting head 14 along an axial direction integrally with the plurality of segment probes 12 attached to the periphery, and an eddy current test equipment 22 for inspecting a surface flaw existing in an inside of the pipe, based on detection signals output from the plurality of segment probes 12. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
本発明は、管内表面傷検査装置、特に継目無鋼管等の金属管の管内表面に存在する傷を非破壊で検出する際に適用して好適な管内表面傷検査装置に関する。
【0002】
【従来の技術】
従来より継目無鋼管の管内表面を全周、全長に亘って非破壊的に検査するための技術が開発されている。その例として、管の外表面側から検査する超音波探傷技術を利用した斜角探傷法や、渦流探傷技術を利用した貫通コイル法がある。
【0003】
これらの方法は、いずれも管の外側から検査するため、検査装置の操作が容易であることから、管の全周、全長に亘る検査に確実に対応できる利点がある。
【0004】
ところが、斜角探傷法の場合は、管の外面に探傷プローブを接触させると、該プローブを通る垂線となす角度(屈折角)が、例えば40°の方向に存在する内面傷は、超音波の反射エコーが微弱になることから検出精度が悪く、又、貫通コイル法の場合は、交流表皮効果のために、外表面からせいぜい0.2mm程度の深さしか検査できないことから、内表面の検査には適用できないという問題があった。
【0005】
そこで、渦流探傷プローブ(コイル)を管に内挿可能とすると共に、円周方向に回転させることにより、管内表面を全周、全長に亘って検査する技術も提案されている(例えば、特許文献1参照)。
【0006】
【特許文献1】
特公平7−3409号公報
【0007】
【発明が解決しようとする課題】
しかしながら、特許文献1等に記載されている探傷技術には、探傷プローブを円周方向に回転させる必要があることから、該プローブ又は管自体を回転させるための複雑な回転機構が必要であるという問題があった。
【0008】
本発明は、前記従来の問題点を解決するべくなされたもので、複雑な回転機構を必要とすることなく、管内表面を全周、全長に亘って容易且つ確実に検査することができる管内表面傷検査装置を提供することを課題とする。
【0009】
【課題を解決するための手段】
本発明は、検査対象の管内に挿入可能な検出ヘッドと、該検出ヘッドの周囲を複数分割した各位置に付設された、渦流探傷機能を有するセグメントプローブと、前記検出ヘッドを、周囲に付設された複数のセグメントプローブと一体的に軸方向に移動させる駆動手段と、前記複数のセグメントプローブから出力される検出信号に基づいて管内に存在する表面傷を検査する渦流探傷装置と、を備えたことにより、前記課題を解決したものである。
【0010】
即ち、本発明においては、単独で探傷機能を有するセグメントプローブを、検出ヘッドの周方向を複数分割した各位置にそれぞれ付設し、全周が複数のセグメントプローブにより取り囲まれた構成にすると共に、検出ヘッドと一体で管に内挿できるようにしたので、検出信号が出力されるセグメントプローブの挿入位置と周方向の付設位置とから内面傷の存在位置を特定できることから、複雑な回転機構を設けることなく、管の内表面を全周に亘って容易且つ確実に検査することができる。
【0011】
本発明は、又、上記管内表面傷検査装置において、前記セグメントプローブが、前記検出ヘッドの周方向に配設された絶対値測定用渦流探傷コイルと、該絶対値測定用渦流コイルに平行に配設された一対の自己比較測定用渦流探傷コイルとを有しているようにしたので、1回の操作により管内に生じている表面傷の大きさ(深さ)と範囲(長さ)を検出することができる。
【0012】
【発明の実施の形態】
図1は、本発明に係る一実施形態の管内表面傷検査装置の要部を模式的に示す概略側面図である。
【0013】
本実施形態の管内表面傷検査装置は、検査対象の継目無鋼管10に内挿可能な、周囲に複数のセグメントプローブ(後述する)12が付設された円柱形状の検出ヘッド14と、該検出ヘッド14の軸中心に固定され保持バー16と、該保持バー16を矢印方向に移動させ、管10に内挿された検出ヘッド14を同方向に進退動させる往復駆動装置18と、検出ヘッド14が管10内を移動するに伴って発生する検出信号が、前記各セグメントプローブ12に電気的に接続されているケーブル20を介して入力されると、その検出信号に基づいて管内の表面傷の発生位置とその程度等を検出する渦流探傷装置22とを備えている。
【0014】
本実施形態では、前記検出ヘッド14の周囲には、全周囲を8つ(複数)に等分割した各位置に、渦流探傷機能を有するセグメントプローブ12がそれぞれ配設されている。即ち、この検出ヘッド14には、図2に拡大して模式的に示すようなセグメントプローブ12を単位として、8個(複数)のセグメントプローブ12がその円周方向に付設された構成になっている。
【0015】
1個のセグメングプローブ12は、矩形の絶縁材からなるベース24上に前記検出ヘッド14の周方向に沿って配設された絶対値測定用渦流探傷コイル26と、該コイル26に平行に配設された一対の自己比較測定用渦流探傷コイル28とにより形成されている。
【0016】
このセグメントプローブ12は、図3に一部を抽出したイメージを示すように、前記検出ヘッド14の周囲に、両探傷コイル26、28の配列方向を周方向に一致させて交互に、しかもコイルが存在しないベースのみの部分がオーバーラップして、各セグメントプローブ12に配設されているコイル26、28の両端部が周方向に関して実質上一致するように配設されている。これにより、図4に軸方向から見た状態を、オーバーラップ部分に斜線を付して模式的に示すように、符号12(1)〜12(8)で示す前記8個のセグメントプローブにより、検出ヘッド14が全周囲に亘って被われ、各セグメントプローブ12に形成されている各探傷コイル26、28が長さ方向に連続した構成になっている。
【0017】
なお、このように検出ヘッド14が周囲に亘って形成したセグメントプローブ12は、測定する対象に合わせて、管10に内挿したときに該管の内面までの距離(図1に示したG)が、例えば約1mmになるように調整する。
【0018】
次に、本実施形態の作用を説明する。
【0019】
図5に示すように、複数のセグメントプローブ12が円周方向に付設されている検出ヘッド14を矢印方向に移動させ、管10の内部に挿入することにより、内表面の検査を行なう。この管10には、図6(A)に長さ方向に切った縦断面を斜め方向から見た状態を、同図(B)にその管の横断面をそれぞれ示すように、管の長さ方向に範囲(長さ)Lで、大きさ(深さ)Dの傷Xが内表面に発生しているとする。
【0020】
この場合、セグメントプローブ12が傷Xに到達すると、その傷の位置に対応するセグメントプローブ12の絶対値測定用渦流探傷コイル26から、図7(A)に示すような傷の深さ、即ち傷の大きさDに相当する波形の検出信号が出力されると共に、一対の自己比較測定用渦流探傷コイル28からは同図(B)に示すような傷の長さLに相当する2つのピークからなる検出信号が出力される。
【0021】
即ち、前記図2に示した1つのセグメントプローブ12では、絶対値測定用渦流探傷コイル26と自己比較測定用渦流探傷コイル28は、それぞれが励磁コイルと検出コイルの機能を有し、一方が検出しているときは他方が励磁している関係になる。そして、絶対値測定用渦流探傷コイル26を、図8に管断面の一部と対応する出力波形と共に模式的に示すように、このコイル26は矢印方向に移動し、傷の位置(凹部)に到達すると、該傷の表面までの距離に応じた振幅波形の検出信号を出力するため、この振幅の大きさから傷の深さを検出することができる。
【0022】
一方、自己比較測定用渦流探傷コイル28は、同様に図9(A)に一対のコイルを符号A、Bを付して模式的に示すように、これら2つのコイルA、Bについて、同図(B)に示すようにインピーダンスZ4を可変とした回路を構成し、Z1×Z3=Z2×Z4となるようにバランスをとるようにZ4で補正をするようにする。このような構成にすることにより、一対のコイルA、Bは矢印方向に移動し、傷の始端と終端に一致したときにそれぞれピーク信号を出力する。即ち、コイルBが始端部を通過した時に出力波形が出るが、コイルAがそれを通過すると、バランスを保つようになるため出力波形は平坦になり、終端部でも同様の変化をするため2つのピーク波形の間隔から傷の長さを検出することができる。
【0023】
又、セグメントプローブ12が絶対値測定用渦流探傷コイル26と自己比較測定用渦流探傷コイル28を有する構成にしたことにより、それぞれの出力と傷の断面形状との関係を図10(A)、(B)に模式的に示したように、自己比較測定用渦流探傷コイル28の出力は見掛け上同一である2つの傷でも、絶対値測定用渦流探傷コイル26を併用することによりその違いを明確に区別することができる。逆に、絶対値測定用渦流探傷コイル26のみの場合はノイズを拾うことが多いため、傷の範囲が不明確になるが、併用することによりそれを明確にすることができる。
【0024】
以上のように、本実施形態によれば、管10の内表面に発生している傷の長さ方向の位置は、往復駆動装置18によるセグメントプローブ12の移動距離から、円周方向の位置は検出ヘッド14に付設されているセグメントプローブ12の配設位置、即ち12(1)〜12(8)のいずれのセグメントプローブからの出力信号かにより、周方向の位置を検出することができる。
【0025】
従って、管の内表面に発生している傷の位置を、複雑な回転機構を使用することなく、正確に検出することができると同時に、その傷の大きさ(深さ)と長さをも正確に検出することができる。
【0026】
次に、本実施形態の検査装置を実際に使用して検査した結果について説明する。
【0027】
寸法が60.3〜244.5mmφ、長さ12mの13CR油井管のねじり切りラインにオンラインで適用し、探傷速度1〜2m/秒で検査したところ、12.5mmφ×0.5mm深さの内表面傷を100%検出することができた。その際、鋼管内径とセグメントプローブ12の間隔(エアギャップ)は最大1.6mmであった。
【0028】
又、従来の貫通コイル法では、鋼管の肉厚の25%以上の深さの傷しか検出できなかったのに対し、本実施形態によれば、同一の鋼管について肉厚の5%以上の深さの傷を検出できた。
【0029】
以上、本発明について具体的に説明したが、本発明は、前記実施形態に示したものに限られるものでなく、その要旨を逸脱しない範囲で種々変更可能である。
【0030】
例えば、本発明に係る管内表面傷検査装置の具体的な構成は、前記実施形態に示したものに限定されず、セグメントプローブも、全周囲を8分割にしたものに限定されない。
【0031】
又、セグメントプローブは、渦流探傷機能を有するものであれば、必ずしも絶対値測定用渦流探傷コイルと自己比較測定用渦流探傷コイルを組合わせたものに限定されない。
【0032】
【発明の効果】
以上説明したとおり、本発明によれば、複雑な回転機構を必要とすることなく、管の内表面を全周、全長に亘って容易且つ確実に検査することができる。
【図面の簡単な説明】
【図1】本発明に係る一実施形態の管内表面傷検査装置の要部を模式的に示す概略側面図
【図2】本実施形態の管内表面傷検査装置に適用されるセグメントプローブを模式的に示す概略平面図
【図3】セグメントプローブの配設方法を示す概略斜視図
【図4】セグメントプローブ全体を軸方向から見た状態を模式的に示す概略正面図
【図5】本実施形態の作用を示す概略斜視図
【図6】管の内面に存在する傷の長さと大きさを示す概略断面図
【図7】本実施形態の管内表面傷検査装置による測定結果の一例を示す線図
【図8】本実施形態の管内表面傷検査装置による測定原理を示す説明図
【図9】本実施形態の管内表面傷検査装置による測定原理を示す他の説明図
【図10】本実施形態の管内表面傷検査装置による他の測定結果を示す説明図
【符号の説明】
10…鋼管
12…セグメントプローブ
14…検出ヘッド
16…保持バー
18…往復駆動装置
20…ケーブル
22…渦流探傷装置
24…ベース
26…絶対値測定用渦流探傷コイル
28…自己比較測定用渦流探傷コイル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an in-pipe surface flaw inspection apparatus, and more particularly to an in-pipe surface flaw inspection apparatus that is suitably applied when non-destructively detecting a flaw existing on an inner surface of a metal pipe such as a seamless steel pipe.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a technique for non-destructively inspecting the inner surface of a seamless steel pipe over its entire circumference and length has been developed. Examples thereof include an oblique flaw detection method using an ultrasonic flaw detection technique for inspecting from the outer surface side of a pipe, and a penetration coil method using an eddy current flaw detection technique.
[0003]
All of these methods perform inspections from the outside of the tube, so that the operation of the inspection device is easy. Therefore, there is an advantage that the inspection can be reliably performed over the entire circumference and the entire length of the tube.
[0004]
However, in the case of the oblique flaw detection method, when the flaw detection probe is brought into contact with the outer surface of the tube, an inner surface flaw existing in a direction of a perpendicular line passing through the probe (refractive angle) of, for example, 40 ° is generated by ultrasonic waves. The detection accuracy is poor because the reflected echo is weak, and in the case of the penetration coil method, the inner surface can be inspected only at a depth of about 0.2 mm at most from the outer surface due to the AC skin effect. There was a problem that could not be applied.
[0005]
Therefore, a technique has been proposed in which an eddy current flaw detection probe (coil) can be inserted into a pipe and is rotated in a circumferential direction to inspect the inner surface of the pipe over the entire circumference and the entire length. 1).
[0006]
[Patent Document 1]
Japanese Patent Publication No. 7-3409
[Problems to be solved by the invention]
However, the flaw detection technology described in Patent Document 1 and the like requires that a flaw detection probe be rotated in a circumferential direction, and therefore requires a complicated rotation mechanism for rotating the probe or the tube itself. There was a problem.
[0008]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and can easily and reliably inspect the inner surface of a tube over its entire circumference and length without requiring a complicated rotating mechanism. It is an object to provide a flaw inspection device.
[0009]
[Means for Solving the Problems]
The present invention provides a detection head that can be inserted into a tube to be inspected, a segment probe having an eddy current flaw detection function provided at each of a plurality of divided positions around the detection head, and the detection head provided around the detection head. Drive means for moving in an axial direction integrally with the plurality of segment probes, and an eddy current flaw detector for inspecting surface flaws present in the pipe based on detection signals output from the plurality of segment probes. Thus, the above problem has been solved.
[0010]
That is, in the present invention, a segment probe having a flaw detection function alone is attached to each position obtained by dividing the circumferential direction of the detection head into a plurality of parts, so that the entire circumference is surrounded by the plurality of segment probes. Since a tube can be inserted into the tube integrally with the head, the existence position of the internal surface flaw can be specified from the insertion position of the segment probe from which the detection signal is output and the attached position in the circumferential direction. In addition, the inner surface of the tube can be easily and reliably inspected over the entire circumference.
[0011]
According to the present invention, in the pipe inner surface flaw inspection apparatus, the segment probe may be disposed in parallel with the absolute value measuring eddy current testing coil disposed in a circumferential direction of the detection head. Detects the size (depth) and range (length) of surface flaws generated in the pipe by one operation because it has a pair of eddy current detection coils for self-comparison measurement provided can do.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a schematic side view schematically showing a main part of a tube surface flaw inspection apparatus according to an embodiment of the present invention.
[0013]
The pipe surface damage inspection apparatus according to the present embodiment includes a cylindrical detection head 14 having a plurality of segment probes (described later) 12 attached to the periphery thereof, which can be inserted into a seamless steel pipe 10 to be inspected, and the detection head. A reciprocating drive device 18 that is fixed to the center of the axis of 14, moves the holding bar 16 in the direction of the arrow, and moves the detection head 14 inserted in the tube 10 forward and backward in the same direction; When a detection signal generated as a result of moving in the tube 10 is input via the cable 20 electrically connected to each of the segment probes 12, a surface flaw in the tube is generated based on the detection signal. An eddy current flaw detection device 22 for detecting the position and the degree thereof is provided.
[0014]
In the present embodiment, segment probes 12 each having an eddy current flaw detection function are arranged around the detection head 14 at respective positions equally divided into eight (plural) areas. That is, the detection head 14 has a configuration in which eight (plural) segment probes 12 are provided in the circumferential direction with the segment probe 12 as a unit schematically illustrated in FIG. I have.
[0015]
One segment probe 12 includes an absolute value measuring eddy current flaw detection coil 26 disposed on a base 24 made of a rectangular insulating material along the circumferential direction of the detection head 14, and is disposed in parallel with the coil 26. And a pair of eddy current inspection coils 28 for self-comparison measurement provided.
[0016]
As shown in FIG. 3, a part of the segment probe 12 is arranged around the detection head 14 so that the arrangement directions of the flaw detection coils 26 and 28 are aligned with each other in the circumferential direction. The portions of only the non-existent base are overlapped, and the coils 26 and 28 provided on each segment probe 12 are disposed so that both ends thereof substantially coincide with each other in the circumferential direction. Thereby, as schematically shown in FIG. 4 in the state viewed from the axial direction with the overlapped portions being hatched, the eight segment probes indicated by reference numerals 12 (1) to 12 (8) The detection head 14 is covered over the entire circumference, and each of the flaw detection coils 26 and 28 formed on each of the segment probes 12 is configured to be continuous in the length direction.
[0017]
The segment probe 12 formed around the periphery by the detection head 14 as described above has a distance (G shown in FIG. 1) to the inner surface of the tube when the segment probe 12 is inserted into the tube 10 according to an object to be measured. Is adjusted, for example, to about 1 mm.
[0018]
Next, the operation of the present embodiment will be described.
[0019]
As shown in FIG. 5, the inner surface is inspected by moving the detection head 14 provided with the plurality of segment probes 12 in the circumferential direction in the direction of the arrow and inserting it into the tube 10. As shown in FIG. 6 (A), a longitudinal section taken in a longitudinal direction is viewed from an oblique direction, and FIG. 6 (B) shows a transverse section of the tube. It is assumed that a scratch X having a size (depth) D in a range (length) L in the direction is generated on the inner surface.
[0020]
In this case, when the segment probe 12 reaches the flaw X, the depth of the flaw as shown in FIG. 7A, that is, the flaw, as shown in FIG. A detection signal having a waveform corresponding to the size D is output, and a pair of self-comparative measurement eddy current flaw detection coils 28 output two peaks corresponding to the length L of the flaw as shown in FIG. Is output.
[0021]
That is, in one segment probe 12 shown in FIG. 2, the eddy current inspection coil 26 for absolute value measurement and the eddy current inspection coil 28 for self-comparison measurement have the functions of an excitation coil and a detection coil, respectively. When it is, the other is excited. Then, as shown schematically in FIG. 8, the absolute value measurement eddy current flaw detection coil 26 together with an output waveform corresponding to a part of the tube cross section, the coil 26 moves in the direction of the arrow, and moves to the position of the flaw (recess). Upon arrival, a detection signal having an amplitude waveform corresponding to the distance to the surface of the flaw is output, so that the depth of the flaw can be detected from the magnitude of the amplitude.
[0022]
On the other hand, the eddy current flaw detection coil 28 for self-comparison measurement is similar to the two coils A and B shown in FIG. As shown in (B), a circuit in which the impedance Z4 is variable is configured, and correction is made with Z4 so as to balance Z1 × Z3 = Z2 × Z4. With such a configuration, the pair of coils A and B move in the direction of the arrow, and output a peak signal when the start and end of the wound coincide. That is, when the coil B passes through the start end, an output waveform appears. When the coil A passes through the start end, the output waveform becomes flat because the balance is maintained, and the output waveform has the same change at the end. The length of the flaw can be detected from the interval between the peak waveforms.
[0023]
In addition, since the segment probe 12 has the eddy current inspection coil 26 for absolute value measurement and the eddy current inspection coil 28 for self-comparison measurement, the relationship between each output and the cross-sectional shape of the flaw is shown in FIGS. As schematically shown in FIG. 2B, even if two outputs have the same apparent output from the eddy current inspection coil 28 for self-comparison measurement, the difference is clearly clarified by using the eddy current inspection coil 26 for absolute value measurement in combination. Can be distinguished. Conversely, in the case of only the absolute value measurement eddy current flaw detection coil 26, noise is often picked up, so that the range of the flaw becomes unclear, but it can be clarified by using the coil together.
[0024]
As described above, according to the present embodiment, the position in the length direction of the flaw generated on the inner surface of the tube 10 is determined based on the moving distance of the segment probe 12 by the reciprocating drive device 18 in the circumferential direction. The position in the circumferential direction can be detected from the arrangement position of the segment probe 12 attached to the detection head 14, that is, from any of the segment probes 12 (1) to 12 (8).
[0025]
Therefore, the position of the flaw occurring on the inner surface of the tube can be accurately detected without using a complicated rotating mechanism, and at the same time, the size (depth) and length of the flaw can be determined. It can be detected accurately.
[0026]
Next, a result of an inspection performed by actually using the inspection apparatus of the present embodiment will be described.
[0027]
It was applied to the torsion line of 13CR oil country tubular goods with dimensions of 60.3 to 244.5 mmφ and length of 12 m, and was inspected at a flaw detection speed of 1 to 2 m / sec. 100% of surface scratches could be detected. At that time, the distance (air gap) between the inner diameter of the steel pipe and the segment probe 12 was 1.6 mm at the maximum.
[0028]
Also, while the conventional through-coil method could detect only a flaw of 25% or more of the wall thickness of the steel pipe, according to the present embodiment, the same steel pipe had a depth of 5% or more of the wall thickness. Scars could be detected.
[0029]
As described above, the present invention has been specifically described. However, the present invention is not limited to the above-described embodiment, and can be variously modified without departing from the gist thereof.
[0030]
For example, the specific configuration of the in-tube surface flaw inspection apparatus according to the present invention is not limited to the one shown in the above-described embodiment, and the segment probe is not limited to the one in which the entire circumference is divided into eight.
[0031]
Further, the segment probe is not necessarily limited to a combination of the eddy current inspection coil for absolute value measurement and the eddy current inspection coil for self-comparison measurement as long as it has an eddy current inspection function.
[0032]
【The invention's effect】
As described above, according to the present invention, the inner surface of a pipe can be easily and reliably inspected over the entire circumference and the entire length without requiring a complicated rotation mechanism.
[Brief description of the drawings]
FIG. 1 is a schematic side view schematically showing a main part of an in-pipe surface flaw inspection apparatus according to an embodiment of the present invention. FIG. 2 is a schematic view of a segment probe applied to the in-pipe surface flaw inspection apparatus of this embodiment. FIG. 3 is a schematic perspective view showing a method of disposing a segment probe. FIG. 4 is a schematic front view schematically showing a state in which the entire segment probe is viewed from an axial direction. FIG. FIG. 6 is a schematic cross-sectional view showing the length and size of a flaw present on the inner surface of the pipe. FIG. 7 is a diagram showing an example of the measurement results obtained by the pipe inner surface flaw inspection apparatus of the present embodiment. FIG. 8 is an explanatory view showing the principle of measurement by the in-pipe surface flaw inspection device of the present embodiment. FIG. 9 is another explanatory view showing the measurement principle by the in-pipe surface flaw inspection apparatus of the present embodiment. Explanatory drawing showing another measurement result by the surface scratch inspection device Description of the code]
DESCRIPTION OF SYMBOLS 10 ... Steel pipe 12 ... Segment probe 14 ... Detection head 16 ... Holding bar 18 ... Reciprocating drive device 20 ... Cable 22 ... Eddy current flaw detector 24 ... Base 26 ... Eddy current flaw detection coil 28 for absolute value measurement ... Eddy current flaw detection coil for self-comparison measurement

Claims (2)

検査対象の管内に挿入可能な検出ヘッドと、
該検出ヘッドの周囲を複数分割した各位置に付設された、渦流探傷機能を有するセグメントプローブと、
前記検出ヘッドを、周囲に付設された複数のセグメントプローブと一体的に軸方向に移動させる駆動手段と、
前記複数のセグメントプローブから出力される検出信号に基づいて管内に存在する表面傷を検査する渦流探傷装置と、を備えたことを特徴とする管内表面傷検査装置。
A detection head that can be inserted into a tube to be inspected,
A segment probe having an eddy current flaw detection function attached to each position obtained by dividing the periphery of the detection head into a plurality,
Driving means for moving the detection head in the axial direction integrally with a plurality of segment probes attached to the periphery,
An in-tube surface flaw inspection device, comprising: an eddy current flaw detection device for inspecting surface flaws present in the tube based on detection signals output from the plurality of segment probes.
前記セグメントプローブが、前記検出ヘッドの周方向に配設された絶対値測定用渦流探傷コイルと、該絶対値測定用渦流コイルに平行に配設された一対の自己比較測定用渦流探傷コイルとを有していることを特徴とする請求項1に記載の管内表面傷検査装置。The segment probe includes an absolute value measurement eddy current inspection coil disposed in the circumferential direction of the detection head, and a pair of self-comparison measurement eddy current inspection coils disposed in parallel to the absolute value measurement eddy current coil. The intra-tube surface flaw inspection apparatus according to claim 1, wherein the inspection apparatus has an internal surface.
JP2003044521A 2003-02-21 2003-02-21 Pipe inner surface flaw inspection device Pending JP2004251839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003044521A JP2004251839A (en) 2003-02-21 2003-02-21 Pipe inner surface flaw inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003044521A JP2004251839A (en) 2003-02-21 2003-02-21 Pipe inner surface flaw inspection device

Publications (1)

Publication Number Publication Date
JP2004251839A true JP2004251839A (en) 2004-09-09

Family

ID=33027198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003044521A Pending JP2004251839A (en) 2003-02-21 2003-02-21 Pipe inner surface flaw inspection device

Country Status (1)

Country Link
JP (1) JP2004251839A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263946A (en) * 2006-03-03 2007-10-11 Hitachi Ltd Sensor and method for eddy current flaw detection
JP2008008806A (en) * 2006-06-30 2008-01-17 Hitachi Ltd Method and apparatus for evaluating surface flaw length by eddy current flaw detection method
JP2009517694A (en) * 2005-11-30 2009-04-30 ゼネラル・エレクトリック・カンパニイ Pulsed eddy current pipeline inspection system and method
JP2010101824A (en) * 2008-10-27 2010-05-06 Toshiba Corp Method and apparatus for eddy current flaw detection testing
CN105866243A (en) * 2016-05-27 2016-08-17 三峡大学 Large-diameter metal round tube defect detecting device and method
JP2016153753A (en) * 2015-02-20 2016-08-25 三菱日立パワーシステムズ株式会社 Pipe flaw detector and pipe flaw detection method
CN107505389A (en) * 2017-09-08 2017-12-22 上海尊马汽车管件股份有限公司 A kind of hard state short tube eddy-current crack detector of stainless steel
CN111380952A (en) * 2018-12-29 2020-07-07 宝武特种冶金有限公司 Nondestructive testing device and method for dirt and carburization defects of inner wall of seamless steel pipe

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55132665U (en) * 1979-03-13 1980-09-19
JPH0257964A (en) * 1988-08-23 1990-02-27 Osaka Gas Co Ltd Method and apparatus for measuring inner diameter and state of inner wall utilizing eddy current flaw detection method for pipe
JPH04231899A (en) * 1990-05-24 1992-08-20 General Electric Co <Ge> Inspecting apparatus for housing in reactor core
JPH06249836A (en) * 1993-02-26 1994-09-09 Nippon Steel Corp Insertion eddy current flaw detecting method for double pipe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55132665U (en) * 1979-03-13 1980-09-19
JPH0257964A (en) * 1988-08-23 1990-02-27 Osaka Gas Co Ltd Method and apparatus for measuring inner diameter and state of inner wall utilizing eddy current flaw detection method for pipe
JPH04231899A (en) * 1990-05-24 1992-08-20 General Electric Co <Ge> Inspecting apparatus for housing in reactor core
JPH06249836A (en) * 1993-02-26 1994-09-09 Nippon Steel Corp Insertion eddy current flaw detecting method for double pipe

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009517694A (en) * 2005-11-30 2009-04-30 ゼネラル・エレクトリック・カンパニイ Pulsed eddy current pipeline inspection system and method
JP2007263946A (en) * 2006-03-03 2007-10-11 Hitachi Ltd Sensor and method for eddy current flaw detection
JP2008008806A (en) * 2006-06-30 2008-01-17 Hitachi Ltd Method and apparatus for evaluating surface flaw length by eddy current flaw detection method
US7911206B2 (en) 2006-06-30 2011-03-22 Hitachi, Ltd. Method and apparatus for evaluating length of defect in eddy current testing
US8339130B2 (en) 2006-06-30 2012-12-25 Hitachi, Ltd. Method and apparatus for evaluating length of defect in eddy current testing
JP2010101824A (en) * 2008-10-27 2010-05-06 Toshiba Corp Method and apparatus for eddy current flaw detection testing
JP2016153753A (en) * 2015-02-20 2016-08-25 三菱日立パワーシステムズ株式会社 Pipe flaw detector and pipe flaw detection method
CN105866243A (en) * 2016-05-27 2016-08-17 三峡大学 Large-diameter metal round tube defect detecting device and method
CN107505389A (en) * 2017-09-08 2017-12-22 上海尊马汽车管件股份有限公司 A kind of hard state short tube eddy-current crack detector of stainless steel
CN111380952A (en) * 2018-12-29 2020-07-07 宝武特种冶金有限公司 Nondestructive testing device and method for dirt and carburization defects of inner wall of seamless steel pipe
CN111380952B (en) * 2018-12-29 2023-05-19 宝武特种冶金有限公司 Nondestructive testing device and method for dirt and carburization defects of inner wall of seamless steel tube

Similar Documents

Publication Publication Date Title
JP4247723B2 (en) Eddy current flaw detection method and eddy current flaw detection apparatus
CN109115867B (en) Plane rotation eddy current detection sensor and detection method
JPH01123143A (en) Method and apparatus for detection of flaw by eddy current
EP2098860B1 (en) Eddy current testing method
JP2004251839A (en) Pipe inner surface flaw inspection device
WO2008072508A1 (en) Nondestructive test instrument and nondestructive test method
AU1053100A (en) Method and device for measuring in situ the distance between two specific elements in a tubular pipe
KR101977921B1 (en) A nondestructive testing apparatus including spiral direction current induction means
JP2003322640A (en) Surface scratch detecting apparatus for steel material
JP2008151588A (en) Flaw evaluation method of two-layered bellows and eddy current flaw detector used therein
EP1877767A2 (en) Near fieldtm and combination near fieldtm - remote field electromagnetic testing (et) probes for inspecting ferromagnetic pipes and tubes such as those used in heat exchangers
JP4118487B2 (en) Steel pipe corrosion diagnosis method
JPH0552816A (en) Internally inserted probe for pulse-type eddy current examination
CN211553856U (en) Ring type eddy current testing probe
EP4310492A1 (en) Inspection device for tubular good
US20240044842A1 (en) System and method for inspecting metal parts
JP2743109B2 (en) Non-destructive inspection method of heating tube
JPH0465618A (en) Thickness measuring instrument
JP2010054415A (en) Method for inspecting flaw of tube plate welded part
JPH0342629B2 (en)
JPH075408Y2 (en) Metal flaw detection probe
JP2000275223A (en) Inspecting tool and its using method
JP2000258397A (en) Nondestructive inspection device of pipe
JPH10170481A (en) Eddy current flaw detector
Singh et al. Detection of localised flaws in small-diameter carbon steel tubes using multi-NDE techniques

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016