JP4118487B2 - Steel pipe corrosion diagnosis method - Google Patents

Steel pipe corrosion diagnosis method Download PDF

Info

Publication number
JP4118487B2
JP4118487B2 JP2000104691A JP2000104691A JP4118487B2 JP 4118487 B2 JP4118487 B2 JP 4118487B2 JP 2000104691 A JP2000104691 A JP 2000104691A JP 2000104691 A JP2000104691 A JP 2000104691A JP 4118487 B2 JP4118487 B2 JP 4118487B2
Authority
JP
Japan
Prior art keywords
thickness
steel pipe
flaw detection
ultrasonic probe
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000104691A
Other languages
Japanese (ja)
Other versions
JP2001289824A (en
Inventor
忠幸 曽木
英夫 高橋
隆 菊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2000104691A priority Critical patent/JP4118487B2/en
Publication of JP2001289824A publication Critical patent/JP2001289824A/en
Application granted granted Critical
Publication of JP4118487B2 publication Critical patent/JP4118487B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02836Flow rate, liquid level
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Description

【0001】
【発明の属する技術分野】
本発明は、鋼管の腐食状況を内部から診断する鋼管の腐食診断方法に関する。
【0002】
【従来の技術】
従来から、鉄鋼材料は各種構造材として広く利用されている。ただし、鉄鋼材料は比較的腐食しやすいので、各種の防食対策が施される。一般に、防食の効果を高めるほど、対策に要するコストも上昇する。したがって、ほとんど腐食を生じないような防食処理も可能であるけれども、コストの点で問題がある。そこで、実際の環境に合わせて必要と判断される程度の防食を施すに留め、腐食状況を経時的に診断し、腐食が進行していると判断されるときに、より強力な防食対策に切り換えるようにしている。
【0003】
鋼管、特に地中に埋設されている鋼管の腐食診断には、離隔渦流探傷法や、リモートフィールド渦流法と呼ばれる方法(以下、「RFEC法」と略称する)が用いられている。RFEC法に関連する先行技術は、たとえば本件出願人から特開平3−159741号公報などで開示されている。RFEC法は、内部から、鋼管の厚さの相対的変化を比較的容易に、かつ高速に求めることができ、位置による厚さの変化から、腐食減肉の程度を判断することができる。RFEC法で鋼管の腐食状況を診断する場合は、厚さの相対的な減少量としての減肉率を求め、予め設定される基準値と比較する。基準値よりも減肉率が大きくなっていると診断されれば、たとえばより強力な防食対策を施すことが必要と判断する。
【0004】
【発明が解決しようとする課題】
RFEC法による鋼管の腐食診断では、透磁率や導電率などの鋼管材料の電磁気特性が大きく影響する。これらの電磁気特性は、製造メーカーや製作ロットによって異なり、不安定であるので、解析精度上、大きな誤差を生じる障害となっている。
【0005】
また、鋼管の元の厚みについてもJIS規格上の許容値が比較的広く、製造メーカーによって差がある。たとえば、一般構造用炭素鋼鋼管であるSTK400の材料で、φ318.8および7.0tとして発注する鋼管の厚さは、JISG 3444で±10%の許容差が認められているので、6.3〜7.7mmの範囲で変動しうる。実際に購入した鋼管の厚さを測定してみた結果でも、ある製造メーカーでは7.1mm、他の製造メーカーでは6.5mmであり、0.6mmもの差異が認められた。鋼管の厚さが異なると、腐食量は同じでも、相対的な厚さの減少率である減肉率も異なることになる。
【0006】
RFEC法のみで鋼管の腐食を診断すると、以上で説明したような鋼管の材料の電磁特性の違いや元の厚さの違いが解析したデータに大きく影響し、誤差が大きくなる問題が生じる。したがって、RFEC法による解析データの信頼性を高めるには、何らかの手法により、解析データを校正する必要がある。
【0007】
本発明の目的は、RFEC法を用いて得られるような相対的な肉厚変化を示す解析データを容易に校正し、精度よく鋼管の腐食程度を診断することができる鋼管の腐食診断方法を提供することである。
【0008】
【課題を解決するための手段】
本発明は、鋼管の内部で、肉厚の相対的な変化を連続的に測定可能な離隔渦流探傷手段と、水浸法超音波探触子からのエコーが安定するときに絶対的な肉厚を測定可能な超音波探傷手段とを搭載するヘッドを軸線に沿って移動させ、移動に伴う相対厚さの変化を記録しながら、超音波探傷手段の測定条件を監視し、水浸法超音波探触子からのエコーが安定する位置で測定される絶対的な肉厚で相対厚さの記録値を校正し、超音波探傷手段が絶対厚さを測定しない位置での鋼管の肉厚を求めて、肉厚の減少割合から腐食の程度を診断し、
相対厚さの記録値を校正するときには、リサージュ平面位相角と減肉率との関係を表す直線の傾きを、鋼管の材質および厚さに関わらず同じとし、水浸法超音波探触子による1点または数点の厚さの測定結果と、前記直線の傾きとに基づいて校正することを特徴とする鋼管の腐食診断方法である。
【0009】
本発明に従えば、鋼管の肉厚の位置による変化を、離隔渦流探傷手段で連続的に測定しておく。超音波探傷手段で絶対的な肉厚を測定する位置で相対厚さを校正すれば、他の位置では、校正された肉厚に対する相対的な変化に基づいて、連続的に絶対的な厚さを求めて、肉厚の減少割合から腐食の程度を診断することができる。
【0010】
また本発明は、前記離隔渦流探傷手段は、離隔渦流探傷法を用いて得られるリサージュ平面位相角から鋼管の相対的な肉厚の変化を測定して測定値を出力し、前記超音波探傷手段は、超音波探傷法を用いて得られるエコー信号を出力しする超音波探触子を備え、前記水浸法超音波探触子からのエコーが安定するか否かの判断は、該超音波探触子が受信するエコー信号を観測して行い、該水浸法超音波探触子からのエコーが安定すると判断されるときは、エコー信号の受信に要する時間に基づいて鋼管の絶対的な肉厚を算出することを特徴とする。
【0011】
本発明に従えば、たとえば、離隔渦流探傷法で肉厚測定を行うための励磁コイルと受信コイルを搭載した探傷治具に、絶対的な厚さを測定することができる水浸法超音波探触子を組込み、鋼管の或る箇所の厚みの絶対値を測定する。その箇所の厚みを基準に、離隔渦流探傷法の信号から作成した解析グラフを校正し、鋼管全体の腐食減肉量を求める。水浸法超音波探触子は比較的狭い範囲の測定しかできないので、鋼管の全周の減肉率を測定するには多くの探触子を必要とする。また、鋼管の内周面が腐食していたりすると、厚さを測定することができない。離隔渦流探傷法では、鋼管の内周面の状態の影響を受けず、全周に配置する受信コイルから比較的少数のチャネルに分けて得られる信号を解析して全周の減肉率を測定することができる。離隔渦流探傷法で得られる測定データは、位置の違いに対する相対的な変化としては精度が高いので、或る位置で絶対的に校正することができれば、その位置での減肉率を基準にして、鋼管全体の腐食減肉量を高速で精度よく求めることができる。
【0012】
【発明の実施の形態】
図1は、離隔渦流探傷法で地中の鋼管杭1の部分減肉を測定して、腐食の診断を行うRFEC探傷装置2の概略的な構成を示す。RFEC法の励磁コイル3と受信コイル4とを搭載した探傷治具としての検査プローブ5に、水浸法超音波探触子6も組み込む。検査プローブ5は、走行装置7によって、鋼管杭1内部を移動することができる。RFEC探傷装置2は、超音波厚み計8を含み、機器収納ラック9に搭載される検査装置10、およびデータ収録装置としての信号処理用パソコン11から構成されている。
【0013】
水浸法超音波探触子6は、RFEC法の受信コイル4の近傍に配置される。水浸法超音波探触子6の先端はガイドで囲まれている。ガイドは、ばねで鋼管杭1の管壁に密着するように取り付けられている。ガイドによって、水浸法超音波探触子6の先端と管壁との間にすきまを設けている。水浸法超音波探触子6からの信号は、高周波ケーブル12で地上の超音波厚み計8に伝送される。超音波厚み計8のCRTモニタ13には、水浸法超音波探触子8から鋼管杭1の内周面側から管壁内に入射されたパルス信号に対する反射としてのエコーが表示される。エコーは、鋼管杭1の外周面からの反射であり、パルス信号の入射からエコーが戻ってくるまでの時間で、鋼管杭1の肉厚分の距離を超音波が往復していることになる。したがって、鋼管杭1中の音速が判っていれば、エコーの戻る時間から厚さを求めることができる。鋼管杭1中の音速は、電磁気特性とは異なり、製造メーカ−や製作ロットなどが違っても、ほとんど変わらない。超音波探傷器では、エコーが良好に得られる限り、時間を厚さに変換し、デジタル表示することができる。CRTモニタ13に表示されるエコーの形状や高さを見れば、鋼管杭1の内周面や外周面の情報も得ることができる。
【0014】
RFEC探傷用の検査プローブ5は、励磁コイル3と受信コイル4とを含む。受信コイル4は、周方向に一定間隔で複数個が配置される。各受信コイル4で受信された信号は、アンプで増幅され、アナログ信号からデジタル信号へのA/D変換後、高周波ケーブル12で検査装置10のRFEC探傷装置に送られる。RFEC探傷装置は、たとえば信号処理用パソコン11などで実現され、データ収録装置としてのプログラムに従って、RFEC解析、RFEC解析グラフの校正、および解析データの出力等の処理を行う。解析データは、たとえばディスプレイモニタ14の画面に図示のように表示される。
【0015】
図2は、各種300A鋼管の実測減肉率と、RFEC法で測定した減肉部の信号から求められたリサージュ平面位相角との関係を示す。なお、実測減肉率とは、試験体である鋼管の減肉深さを超音波厚み計等で測定し、元の厚さに換算した割合(%)をいう。リサージュ平面位相角とは、後述するように、RFEC法の受信コイルにおける起電力の信号振幅をAとし、起電力の位相をΦとしたとき、X軸をAcosΦ、Y軸をAsinΦとして描かれるリサージュ波形と、X軸との角度をθとして、このθをリサージュ平面位相角という。
【0016】
図2では、肉厚および減肉形状や材質の違いで4種類となる試験用管について、RFEC法で測定したときの減肉率とリサージュ平面位相角の関係を示す。試験用管は、STK400のφ318.8mm×t7.0mmとして発注して購入した或る製造メーカーの管で肉厚の実測値が7.1mmのものと、他の製造メーカーの管で肉厚の実測値が6.5mmものと、SGPのφ318.8mm×t6.9mmのものとについて、部分減肉および全周減肉に相当する加工を施して形成した。部分減肉は、各管について100mm×50mmの大きさとし、全周減肉はSTK400で肉厚の実測値が7.1mmの管に80mm幅で全周を削って形成した。なお、SGPは、JIS G 3452に規定されている配管用炭素鋼鋼管である。次の表1は、減肉欠陥の加工形状と実測減肉率とを示す。
【0017】
【表1】

Figure 0004118487
【0018】
図2および表1から、全体として、実測減肉率とリサージュ平面位相角とは、いずれの管も減肉形状や肉厚、さらに材質が異なっても大略的に比例関係にあるといえる。図2からは、次のようなグラフの傾きに関する情報が得られる。
1)STK400管の部分減肉試験用管では、黒角印で示す肉厚7.1mmと、黒三角印で示す肉厚6.5mmとの間に、20〜25度の平面位相角の差があるけれども、傾きはほぼ同一かつ一定である。
2)STK400管の肉厚7.1mmで、黒角印で示す部分減肉試験用管と、黒菱印で示す全周減肉試験用管との間に、約15度の平面位相角の差があるけれども、傾きはほぼ同一である。
3)SGP管で肉厚が6.9mmの部分減肉試験用管は、黒丸印で示すように、同じ減肉形状のSTK400管の黒角印で示す肉厚7.1mmや黒三角印で示す肉厚6.5mmの部分減肉用試験管と、平面位相角にずれはあっても、傾きはほぼ同一である。
【0019】
リサージュ平面位相角と減肉率との関係は、材質や厚さが変わっても傾きが同じ直線関係にあることから、RFEC図2に示すような減肉率−位相角校正グラフを作成することができる。実際の探傷では、水浸法超音波探触子6による厚さの測定を1点または数点で行い、その位置におけるRFEC法による解析値のグラフが測定結果と一致するようにグラフを減肉率の方向に移動して校正すれば、水浸法超音波探触子6による測定を行っていない位置についても高精度の解析データを得ることができる。
【0020】
図1での実際の探傷操作手順を以下に示す。
1)検査プローブ5を水封された鋼管杭1に挿入し、探傷範囲の最深部まで検査プローブ5を降ろす。この間、水浸法超音波探触子6からのエコーが超音波厚み計8のCRTモニタ13に連続的に表示されている。
2)水浸法超音波探触子6からのエコーが安定する複数の位置で、鋼管杭1の長さ方向の距離と厚さとの関係をデジタル表示からそれぞれ読み取る。
3)鋼管杭1の最深部から、走行装置7で高周波ケーブル12を巻き取りながらRFEC法による探傷を行う。
4)超音波厚さ計8で測定した位置のデータを検査装置10に入力し、RFEC法による解析データのグラフの校正を行う。
5)校正されたRFECデータを出力する。
【0021】
図3は、RFEC法での信号解析に用いるリサージュ平面位相角の定義を示す。図4は、RFEC法で、受信コイルの信号から得られる情報を示す。図4(a)に示すように、長さ方向で肉厚を変化させた試験管内でRFEC法による探傷を行うと、図4(b)に示すような振幅Aおよび位相Φの関係が得られる。振幅Aと位相Φとに基づいて、A・cosΦを横軸X、A・sinΦを縦軸Yとし、データをXY平面内二次元的に表現すれば、図3に示すようなリサージュ波形が得られる。リサージュ平面位相角は、リサージュ波形の長軸の横軸からの傾きを示す。
【0022】
図5、図6、図7および図8は、図1の検査プローブ5の構成を示す。図5は側断面を示し、図6は正面を示し、図7および図8は図5の切断面線VII−VIIおよび切断面線VIII−VIIIから見た構成をそれぞれ示す。検査プローブ5の先端には、励磁コイル3が配置され、直径の2倍以上の距離離して受信コイル4が配置される。受信コイル4は、複数、例えば12個ずつ、前後で位置がずれるように、周方向に一定間隔で配置される。受信コイル4に近接して、水浸法超音波探触子6が配置される。検査プローブ5は、複数の保持車輪15によって、鋼管杭1などの鋼管内の中心軸付近に保持されながら、鋼管内を軸線方向に移動することができる。
【0023】
図9は、図1に示すような鋼管杭1の減肉測定に基づいて、LNGタンク20の基礎杭21の腐食診断を行う考え方を示す。腐食診断の結果、腐食が進行していると判断されれば、電気防食用に埋設されている鋼管杭1を使用して電気防食を施す。しかしながら、基礎杭21は、LNGタンク20の下方で地中に埋込まれているので、直接検査プローブ5を挿入して検査することは困難である。そこで基礎杭21の周囲に、基礎杭21の電気防食用に埋込まれる鋼管杭1は、電気防食を行うまでは基礎杭21と同様に腐食することを利用し、鋼管杭1の減肉評価に基づいて、基礎杭21の腐食診断を行う。
【0024】
なお、本発明は、図1や図9に示すような鋼管杭1などのように、鋼管内を鉛直方向に移動しながら腐食の診断を行うことができるばかりではなく、都市ガスの配管網などを構成する地中埋設管などの内部を水平に移動しながら腐食の診断を行うこともできるのはもちろんである。また、絶対的な厚さは、水浸法探触子6とは異なるタイヤ型探触子などを用いて測定することもできる。さらに、放射線やX線などを用いて測定することもできる。
【0025】
【発明の効果】
以上のように本発明によれば、鋼管の肉厚の位置による変化を相対的に測定しておき、絶対的な肉厚を測定する位置で相対厚さを校正し、鋼管の肉厚の変化に基づく減肉率を精度よく求めて、腐食の程度を診断することができる。
【0026】
また本発明によれば、離隔渦流探傷法で肉厚測定を行うための励磁コイルと受信コイルとを搭載した治具に、絶対的な厚さを測定することができる水浸法超音波探触子などを組込み、鋼管の或る箇所の厚みの絶対値を測定する。その箇所の厚みを基準に、離隔渦流探傷法の信号から作成した解析グラフを校正し、鋼管全体の腐食減肉量を求める。水浸法超音波探触子は比較的狭い範囲の測定しかできないので、鋼管の全周の減肉率を測定するには多くの探触子を必要とし、超音波の送受信に障害があると良好な測定を行うことができない。離隔渦流探傷法では、鋼管の内周面の状態の影響を受けず、全周に配置する受信コイルから得られる信号を解析して全周の減肉率を測定することができる。離隔渦流探傷法で得られる測定データは、位置の違いに対する相対的な変化としては精度が高いので、或る位置で絶対的に校正することができれば、その位置での減肉率を基準にして、鋼管全体の腐食減肉量を高速で精度よく求めることができる。
【図面の簡単な説明】
【図1】本発明の実施の一形態に従って、地中の鋼管杭1の腐食診断を行う構成を示すブロック図である。
【図2】RFEC法で得られる位相角と減肉率との関係の例を示すグラフである。
【図3】RFEC法によって求められるリサージュ平面位相角の定義を示す図である。
【図4】鋼管の肉厚の違いとRFEC法で得られる信号の振幅および位相との関係を示す断面図およびグラフである。
【図5】図1の検査プローブ5の側面断面図である。
【図6】図5の検査プローブ5の正面図である。
【図7】図5の切断面線VII−VIIから見た断面図である。
【図8】図5の切断面線VIII−VIIIから見た断面図である。
【図9】図1の診断方法を、LNGタンクの基礎杭21に対する腐食診断に適用する状態を示す簡略化した断面図である。
【符号の説明】
1 鋼管杭
2 RFEC探傷装置
3 励磁コイル
4 受信コイル
5 検査プローブ
6 水浸法超音波探触子
7 走行装置
8 超音波厚み計
10 検査装置
11 信号処理用パソコン
12 高周波ケーブル
13 CRTモニタ
14 ディスプレイモニタ
21 基礎杭[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel pipe corrosion diagnosis method for diagnosing the corrosion status of a steel pipe from the inside.
[0002]
[Prior art]
Conventionally, steel materials have been widely used as various structural materials. However, since steel materials are relatively easily corroded, various anticorrosion measures are taken. In general, the higher the effect of anticorrosion, the higher the cost required for the countermeasure. Therefore, although anticorrosion treatment that hardly causes corrosion is possible, there is a problem in terms of cost. Therefore, the corrosion protection is judged to be necessary according to the actual environment, the corrosion status is diagnosed over time, and when it is judged that the corrosion is progressing, switch to a stronger anticorrosion measure. I am doing so.
[0003]
For corrosion diagnosis of steel pipes, particularly steel pipes buried in the ground, a method called remote eddy current flaw detection method or remote field eddy current method (hereinafter referred to as “RFEC method”) is used. Prior art related to the RFEC method is disclosed, for example, in Japanese Patent Laid-Open No. Hei 3-159741 by the present applicant. In the RFEC method, the relative change in the thickness of the steel pipe can be obtained relatively easily and at high speed from the inside, and the degree of corrosion thinning can be determined from the change in thickness depending on the position. When diagnosing the corrosion state of a steel pipe by the RFEC method, the thickness reduction rate as a relative reduction in thickness is obtained and compared with a preset reference value. If it is diagnosed that the thinning rate is greater than the reference value, it is determined that, for example, it is necessary to take stronger anticorrosive measures.
[0004]
[Problems to be solved by the invention]
In the corrosion diagnosis of steel pipes by the RFEC method, the electromagnetic characteristics of the steel pipe material such as permeability and conductivity are greatly affected. These electromagnetic characteristics vary depending on the manufacturer and production lot and are unstable, which is an obstacle that causes a large error in analysis accuracy.
[0005]
In addition, the original thickness of the steel pipe has a relatively wide allowable value according to the JIS standard, and varies depending on the manufacturer. For example, the thickness of the steel pipe ordered as φ318.8 and 7.0t with the material of STK400, which is a general structural carbon steel pipe, has a tolerance of ± 10% according to JISG 3444. It can vary in the range of ~ 7.7 mm. As a result of measuring the thickness of the actually purchased steel pipe, it was 7.1 mm in one manufacturer and 6.5 mm in another manufacturer, and a difference of 0.6 mm was recognized. When the thickness of the steel pipe is different, the amount of corrosion is the same, but the thickness reduction rate, which is the relative rate of thickness reduction, is also different.
[0006]
If the corrosion of the steel pipe is diagnosed only by the RFEC method, the difference in the electromagnetic characteristics and the original thickness of the steel pipe material as described above greatly affects the analyzed data, resulting in a problem that the error becomes large. Therefore, in order to increase the reliability of the analysis data by the RFEC method, it is necessary to calibrate the analysis data by some method.
[0007]
An object of the present invention is to provide a steel pipe corrosion diagnosis method that can easily calibrate analysis data showing relative wall thickness changes obtained using the RFEC method and accurately diagnose the degree of corrosion of the steel pipe. It is to be.
[0008]
[Means for Solving the Problems]
The present invention, in the interior of the steel pipe, absolute meat echo stable to Rutoki of the relative change in thickness and continuously measurable separation eddy current unit, water immersion method ultrasonic probe a head equipped with an ultrasonic flaw detecting unit capable of measuring thickness to move along the axis, while recording the change in relative thickness caused by the movement, to monitor the measurement conditions of the ultrasonic flaw detection means, the water immersion method than Calibrate the recorded value of the relative thickness with the absolute thickness measured at the position where the echo from the acoustic probe is stable, and the thickness of the steel pipe at the position where the ultrasonic flaw detector does not measure the absolute thickness. Find the degree of corrosion from the rate of thickness reduction ,
When calibrating the recorded value of the relative thickness, the slope of the straight line representing the relationship between the Lissajous plane phase angle and the thinning rate should be the same regardless of the material and thickness of the steel pipe. A corrosion diagnosis method for steel pipes , wherein calibration is performed based on the measurement results of one or several thicknesses and the inclination of the straight line .
[0009]
According to the present invention, the change due to the position of the thickness of the steel pipe is continuously measured by the separated eddy current flaw detection means. If the relative thickness is calibrated at the position where the ultrasonic wall thickness is measured by the ultrasonic flaw detector , the absolute thickness is continuously measured at other positions based on the relative change to the calibrated thickness. Thus, the degree of corrosion can be diagnosed from the thickness reduction rate.
[0010]
Further, according to the present invention, the separated eddy current flaw detection means outputs a measurement value by measuring a relative change in the thickness of a steel pipe from a Lissajous plane phase angle obtained by using a separate eddy current flaw detection method, and the ultrasonic flaw detection means. comprises an ultrasonic probe which outputs an echo signal obtained by using an ultrasonic flaw detection method, it echoes stable to determining whether to determine from the water immersion method ultrasonic probe, ultra performed by observing an echo signal wave probe to receive the echo from the water immersion method ultrasonic probe is determined that you stabilize Rutoki is a steel pipe based on the time required for reception of the echo signal The absolute wall thickness is calculated.
[0011]
According to the present invention, for example, a water immersion ultrasonic probe capable of measuring an absolute thickness on a flaw detection jig equipped with an excitation coil and a reception coil for measuring wall thickness by a separate eddy current flaw detection method. A tentacle is installed and the absolute value of the thickness of a certain part of the steel pipe is measured. Based on the thickness of the part, the analysis graph created from the signal of the separated eddy current flaw detection method is calibrated, and the corrosion thinning amount of the entire steel pipe is obtained. Since the immersion ultrasonic probe can measure only a relatively narrow range, many probes are required to measure the thinning rate of the entire circumference of the steel pipe. Further, if the inner peripheral surface of the steel pipe is corroded, the thickness cannot be measured. In the separated eddy current flaw detection method, the thinning rate of the entire circumference is measured by analyzing the signal obtained by dividing the receiving coil placed around the circumference into a relatively small number of channels without being affected by the state of the inner circumference of the steel pipe. can do. The measurement data obtained by the separated eddy current flaw detection method is highly accurate as a relative change with respect to the difference in position, so if it can be absolutely calibrated at a certain position, the thinning rate at that position is used as a reference. The amount of corrosion reduction of the entire steel pipe can be obtained at high speed and with high accuracy.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a schematic configuration of an RFEC flaw detection apparatus 2 for diagnosing corrosion by measuring partial thinning of a steel pipe pile 1 in the ground by a separate eddy current flaw detection method. A water immersion ultrasonic probe 6 is also incorporated in an inspection probe 5 as a flaw detection jig equipped with an excitation coil 3 and a reception coil 4 of the RFEC method. The inspection probe 5 can move inside the steel pipe pile 1 by the traveling device 7. The RFEC flaw detection apparatus 2 includes an ultrasonic thickness gauge 8 and includes an inspection apparatus 10 mounted on an equipment storage rack 9 and a signal processing personal computer 11 as a data recording apparatus.
[0013]
The water immersion ultrasonic probe 6 is disposed in the vicinity of the reception coil 4 of the RFEC method. The tip of the water immersion ultrasonic probe 6 is surrounded by a guide. The guide is attached by a spring so as to be in close contact with the pipe wall of the steel pipe pile 1. A gap is provided between the tip of the water immersion ultrasonic probe 6 and the tube wall by the guide. The signal from the water immersion ultrasonic probe 6 is transmitted to the ultrasonic thickness gauge 8 on the ground via the high frequency cable 12. The CRT monitor 13 of the ultrasonic thickness gauge 8 displays an echo as a reflection with respect to a pulse signal incident on the pipe wall from the inner peripheral surface side of the steel pipe pile 1 from the water immersion ultrasonic probe 8. The echo is a reflection from the outer peripheral surface of the steel pipe pile 1, and the ultrasonic wave reciprocates the distance corresponding to the wall thickness of the steel pipe pile 1 in the time from the incidence of the pulse signal until the echo returns. . Therefore, if the speed of sound in the steel pipe pile 1 is known, the thickness can be obtained from the time when the echo returns. The speed of sound in the steel pipe pile 1 is almost the same regardless of the manufacturer and production lot, unlike the electromagnetic characteristics. With an ultrasonic flaw detector, as long as an echo is obtained satisfactorily, the time can be converted into a thickness and digitally displayed. By looking at the shape and height of the echo displayed on the CRT monitor 13, information on the inner and outer peripheral surfaces of the steel pipe pile 1 can be obtained.
[0014]
The inspection probe 5 for RFEC flaw detection includes an exciting coil 3 and a receiving coil 4. A plurality of receiving coils 4 are arranged at regular intervals in the circumferential direction. The signal received by each receiving coil 4 is amplified by an amplifier, and after A / D conversion from an analog signal to a digital signal, is sent to the RFEC flaw detection apparatus of the inspection apparatus 10 through the high-frequency cable 12. The RFEC flaw detection apparatus is realized by, for example, the signal processing personal computer 11 and performs processing such as RFEC analysis, calibration of an RFEC analysis graph, and output of analysis data in accordance with a program as a data recording apparatus. The analysis data is displayed on the screen of the display monitor 14 as shown in the figure, for example.
[0015]
FIG. 2 shows the relationship between the measured thinning rate of various 300A steel pipes and the Lissajous plane phase angle obtained from the signal of the thinned part measured by the RFEC method. In addition, the actual thickness reduction rate means the ratio (%) converted into the original thickness by measuring the thickness reduction of a steel pipe as a test specimen with an ultrasonic thickness gauge or the like. As will be described later, the Lissajous plane phase angle is a Lissajous drawing in which the X-axis is AcosΦ and the Y-axis is AsinΦ when the signal amplitude of the electromotive force in the RFEC receiver coil is A and the phase of the electromotive force is Φ. The angle between the waveform and the X axis is θ, and this θ is called the Lissajous plane phase angle.
[0016]
FIG. 2 shows the relationship between the thickness reduction rate and the Lissajous plane phase angle when measured by the RFEC method for four types of test tubes depending on the difference in thickness, shape, and material. The test tubes are STK400 φ318.8mm × t7.0mm, ordered by a certain manufacturer and purchased with a measured thickness of 7.1mm, and other manufacturers' tubes An actual measurement value of 6.5 mm and an SGP φ318.8 mm × t 6.9 mm were formed by performing processing corresponding to partial thickness reduction and total thickness reduction. The partial thickness reduction was made into a size of 100 mm × 50 mm for each pipe, and the whole circumference thickness reduction was formed by cutting the whole circumference with a width of 80 mm into a pipe having a measured thickness of 7.1 mm with STK400. In addition, SGP is the carbon steel pipe for piping prescribed | regulated to JISG3452. Table 1 below shows the processed shape of the thinning defect and the measured thinning rate.
[0017]
[Table 1]
Figure 0004118487
[0018]
From FIG. 2 and Table 1, as a whole, it can be said that the measured thinning rate and the Lissajous plane phase angle are approximately proportional to each other even if the thinning shape, thickness, and material are different. From FIG. 2, the following information regarding the slope of the graph is obtained.
1) In the case of the STK400 tube partial thinning test tube, the difference in the plane phase angle of 20 to 25 degrees between the thickness of 7.1 mm indicated by the black square mark and the thickness of 6.5 mm indicated by the black triangle mark. However, the slope is almost the same and constant.
2) The thickness of the STK400 tube is 7.1 mm, and the plane phase angle of about 15 degrees is between the partial thinning test tube indicated by the black square mark and the full circumference thinning test pipe indicated by the black diamond mark. Although there is a difference, the slopes are almost the same.
3) As shown by the black circles, the SGP tube with a wall thickness of 6.9 mm has a thickness of 7.1 mm or black triangles as indicated by the black squares of the same thinned STK400 tube. Even if there is a deviation in the plane phase angle, the inclination is almost the same as that of the test tube for partial thickness reduction with a thickness of 6.5 mm.
[0019]
Since the relationship between the Lissajous plane phase angle and the thinning rate is the same linear relationship even if the material or thickness changes, create a thinning rate-phase angle calibration graph as shown in RFEC Fig. 2. Can do. In actual flaw detection, the thickness is measured by the water immersion ultrasonic probe 6 at one or several points, and the graph is thinned so that the graph of the analysis value by the RFEC method at that position matches the measurement result. If calibration is performed by moving in the direction of the rate, highly accurate analysis data can be obtained even at a position where measurement by the water immersion ultrasonic probe 6 is not performed.
[0020]
The actual flaw detection operation procedure in FIG. 1 is shown below.
1) Insert the inspection probe 5 into the water-sealed steel pipe pile 1 and lower the inspection probe 5 to the deepest part of the flaw detection range. During this time, echoes from the water immersion ultrasonic probe 6 are continuously displayed on the CRT monitor 13 of the ultrasonic thickness gauge 8.
2) The relationship between the distance in the length direction and the thickness of the steel pipe pile 1 is read from the digital display at a plurality of positions where echoes from the water immersion ultrasonic probe 6 are stabilized.
3) From the deepest part of the steel pipe pile 1, flaw detection by the RFEC method is performed while winding the high-frequency cable 12 with the traveling device 7.
4) The position data measured by the ultrasonic thickness meter 8 is input to the inspection apparatus 10, and the analysis data graph is calibrated by the RFEC method.
5) Output the calibrated RFEC data.
[0021]
FIG. 3 shows the definition of the Lissajous plane phase angle used for signal analysis in the RFEC method. FIG. 4 shows information obtained from the signal of the receiving coil by the RFEC method. As shown in FIG. 4A, when flaw detection is performed by the RFEC method in a test tube whose thickness is changed in the length direction, the relationship between the amplitude A and the phase Φ as shown in FIG. 4B is obtained. . Based on the amplitude A and the phase Φ, if A · cos Φ is the horizontal axis X, A · sin Φ is the vertical axis Y and the data is expressed two-dimensionally in the XY plane, a Lissajous waveform as shown in FIG. 3 is obtained. It is done. The Lissajous plane phase angle indicates the inclination of the major axis of the Lissajous waveform from the horizontal axis.
[0022]
5, 6, 7 and 8 show the configuration of the inspection probe 5 of FIG. FIG. 5 shows a side cross section, FIG. 6 shows a front view, and FIGS. 7 and 8 show configurations as viewed from section line VII-VII and section plane VIII-VIII in FIG. The excitation coil 3 is disposed at the tip of the inspection probe 5, and the reception coil 4 is disposed at a distance of at least twice the diameter. The receiving coils 4 are arranged at regular intervals in the circumferential direction so that a plurality of, for example, 12 receiving coils 4 are displaced in the front-rear direction. A water immersion ultrasonic probe 6 is disposed in the vicinity of the receiving coil 4. The inspection probe 5 can be moved in the axial direction in the steel pipe while being held near the central axis in the steel pipe such as the steel pipe pile 1 by the plurality of holding wheels 15.
[0023]
FIG. 9 shows a concept of performing a corrosion diagnosis of the foundation pile 21 of the LNG tank 20 based on the thinning measurement of the steel pipe pile 1 as shown in FIG. As a result of the corrosion diagnosis, if it is determined that the corrosion is progressing, the steel pipe pile 1 embedded for the electric corrosion protection is used to carry out the electric corrosion protection. However, since the foundation pile 21 is embedded in the ground below the LNG tank 20, it is difficult to inspect it by inserting the inspection probe 5 directly. Therefore, the steel pipe pile 1 embedded around the foundation pile 21 for the corrosion protection of the foundation pile 21 is corroded in the same manner as the foundation pile 21 until the corrosion prevention is performed. Based on the above, the corrosion diagnosis of the foundation pile 21 is performed.
[0024]
The present invention is not only capable of diagnosing corrosion while moving vertically in a steel pipe, such as a steel pipe pile 1 as shown in FIGS. 1 and 9, but also a city gas piping network, etc. Of course, it is possible to diagnose corrosion while moving horizontally inside underground pipes or the like that constitute the structure. The absolute thickness can also be measured by using a tire type probe different from the water immersion probe 6. Furthermore, it can also be measured using radiation, X-rays or the like.
[0025]
【The invention's effect】
As described above, according to the present invention, the relative change in the thickness of the steel pipe is measured, the relative thickness is calibrated at the position where the absolute thickness is measured, and the change in the thickness of the steel pipe. It is possible to diagnose the degree of corrosion by accurately obtaining the thickness reduction rate based on the above.
[0026]
Further, according to the present invention, a water immersion ultrasonic probe capable of measuring an absolute thickness on a jig equipped with an exciting coil and a receiving coil for measuring wall thickness by a separate eddy current flaw detection method. A child is incorporated and the absolute value of the thickness of a certain part of the steel pipe is measured. Based on the thickness of the part, the analysis graph created from the signal of the separated eddy current flaw detection method is calibrated, and the corrosion thinning amount of the entire steel pipe is obtained. Since the water immersion ultrasonic probe can only measure in a relatively narrow range, many probes are required to measure the thinning rate of the entire circumference of the steel pipe, and there are obstacles in transmitting and receiving ultrasonic waves. Good measurement cannot be performed. In the separated eddy current flaw detection method, the thinning rate of the entire circumference can be measured by analyzing the signal obtained from the receiving coil arranged on the entire circumference without being affected by the state of the inner circumferential surface of the steel pipe. The measurement data obtained by the separated eddy current flaw detection method is highly accurate as a relative change with respect to the difference in position, so if it can be calibrated absolutely at a certain position, the thinning rate at that position is used as a reference. The amount of corrosion reduction of the entire steel pipe can be obtained at high speed and with high accuracy.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration for performing corrosion diagnosis of an underground steel pipe pile 1 according to an embodiment of the present invention.
FIG. 2 is a graph showing an example of the relationship between the phase angle and the thinning rate obtained by the RFEC method.
FIG. 3 is a diagram showing a definition of a Lissajous plane phase angle obtained by an RFEC method.
FIG. 4 is a cross-sectional view and a graph showing the relationship between the difference in wall thickness of a steel pipe and the amplitude and phase of a signal obtained by the RFEC method.
5 is a side sectional view of the inspection probe 5 of FIG.
6 is a front view of the inspection probe 5 of FIG. 5. FIG.
7 is a cross-sectional view taken along section line VII-VII in FIG. 5;
8 is a cross-sectional view taken along section line VIII-VIII in FIG. 5;
FIG. 9 is a simplified cross-sectional view showing a state in which the diagnosis method of FIG. 1 is applied to a corrosion diagnosis for a foundation pile 21 of an LNG tank.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Steel pipe pile 2 RFEC flaw detector 3 Excitation coil 4 Receiving coil 5 Inspection probe 6 Water immersion method ultrasonic probe 7 Traveling device 8 Ultrasonic thickness gauge 10 Inspection device 11 Signal processing personal computer 12 High frequency cable 13 CRT monitor 14 Display monitor 21 Foundation pile

Claims (2)

鋼管の内部で、肉厚の相対的な変化を連続的に測定可能な離隔渦流探傷手段と、水浸法超音波探触子からのエコーが安定するときに絶対的な肉厚を測定可能な超音波探傷手段とを搭載するヘッドを軸線に沿って移動させ、移動に伴う相対厚さの変化を記録しながら、超音波探傷手段の測定条件を監視し、水浸法超音波探触子からのエコーが安定する位置で測定される絶対的な肉厚で相対厚さの記録値を校正し、超音波探傷手段が絶対厚さを測定しない位置での鋼管の肉厚を求めて、肉厚の減少割合から腐食の程度を診断し、
相対厚さの記録値を校正するときには、リサージュ平面位相角と減肉率との関係を表す直線の傾きを、鋼管の材質および厚さに関わらず同じとし、水浸法超音波探触子による1点または数点の厚さの測定結果と、前記直線の傾きとに基づいて校正することを特徴とする鋼管の腐食診断方法。
In the interior of the steel pipe, the relative change in thickness can be measured and continuously measurable separation eddy-current flaw detection device, the absolute wall thickness echoes that stabilizes Rutoki from the water immersion method ultrasonic probe a head for mounting the ultrasonic test unit is moved along the axis, while recording the change in relative thickness caused by the movement, to monitor the measurement conditions of the ultrasonic flaw detection means, the water immersion method ultrasonic probe Calibrate the recorded value of the relative thickness with the absolute thickness measured at the position where the echo from the sound is stable, and obtain the thickness of the steel pipe at the position where the ultrasonic flaw detector does not measure the absolute thickness. Diagnose the degree of corrosion from the thickness reduction rate ,
When calibrating the recorded value of the relative thickness, the slope of the straight line representing the relationship between the Lissajous plane phase angle and the thinning rate should be the same regardless of the material and thickness of the steel pipe. A method for diagnosing corrosion of a steel pipe , wherein calibration is performed based on the measurement result of one or several thicknesses and the inclination of the straight line .
前記離隔渦流探傷手段は、離隔渦流探傷法を用いて得られるリサージュ平面位相角から鋼管の相対的な肉厚の変化を測定して測定値を出力し、前記超音波探傷手段は、超音波探傷法を用いて得られるエコー信号を出力しする超音波探触子を備え、前記水浸法超音波探触子からのエコーが安定するか否かの判断は、該超音波探触子が受信するエコー信号を観測して行い、該水浸法超音波探触子からのエコーが安定すると判断されるときは、エコー信号の受信に要する時間に基づいて鋼管の絶対的な肉厚を算出することを特徴とする請求項1記載の鋼管の腐食診断方法。The separated eddy current flaw detection means measures a change in the relative thickness of the steel pipe from a Lissajous plane phase angle obtained by using a separate eddy current flaw detection method, and outputs a measurement value. The ultrasonic flaw detection means law includes an ultrasonic probe that outputs an echo signal obtained with the echo stable to determining whether to determine from the water immersion method ultrasonic probe, the ultrasonic probe performed by observing the received echo signals, it is determined that the echo from the water immersion method ultrasonic probe you stable Rutoki is absolute wall thickness of the steel pipe based on the time required for reception of the echo signal The corrosion diagnosis method for a steel pipe according to claim 1, wherein:
JP2000104691A 2000-04-06 2000-04-06 Steel pipe corrosion diagnosis method Expired - Fee Related JP4118487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000104691A JP4118487B2 (en) 2000-04-06 2000-04-06 Steel pipe corrosion diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000104691A JP4118487B2 (en) 2000-04-06 2000-04-06 Steel pipe corrosion diagnosis method

Publications (2)

Publication Number Publication Date
JP2001289824A JP2001289824A (en) 2001-10-19
JP4118487B2 true JP4118487B2 (en) 2008-07-16

Family

ID=18618190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000104691A Expired - Fee Related JP4118487B2 (en) 2000-04-06 2000-04-06 Steel pipe corrosion diagnosis method

Country Status (1)

Country Link
JP (1) JP4118487B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4742600B2 (en) * 2005-01-31 2011-08-10 Jfeスチール株式会社 Internal defect measurement method and apparatus
JP4718857B2 (en) * 2005-02-10 2011-07-06 東京計器株式会社 Rail bottom corrosion detection device and rail bottom corrosion detection method
EP2950038B1 (en) * 2014-05-26 2017-02-15 Services Pétroliers Schlumberger Electromagnetic assessment of multiple conductive tubulars
US20190302058A1 (en) * 2016-08-12 2019-10-03 Halliburton Energy Services, Inc. Remote-field eddy current characterization of pipes

Also Published As

Publication number Publication date
JP2001289824A (en) 2001-10-19

Similar Documents

Publication Publication Date Title
US8536860B2 (en) Method and apparatus for non-destructive testing
CA2729223C (en) Integrated multi-sensor non-destructive testing
US6239593B1 (en) Method and system for detecting and characterizing mechanical damage in pipelines using nonlinear harmonics techniques
US6344741B1 (en) Pulsed eddy current method for detection of corrosion in multilayer structures using the lift-off point of intersection
US7565252B2 (en) Method for automatic differentiation of weld signals from defect signals in long-range guided-wave inspection using phase comparison
RU2299399C2 (en) Method for determining object surface profile
JPH0352908B2 (en)
US5661241A (en) Ultrasonic technique for measuring the thickness of cladding on the inside surface of vessels from the outside diameter surface
US4567747A (en) Self-calibration system for ultrasonic inspection apparatus
US5311128A (en) Eddy current imaging system using spatial derivatives for flow detection
Sadek NDE technologies for the examination of heat exchangers and boiler tubes-principles, advantages and limitations
JPH02120659A (en) Non-destructive dimensions and defect inspection for thin tube weld part
JP4118487B2 (en) Steel pipe corrosion diagnosis method
JP4118488B2 (en) Tube thickness measuring device by the separated vortex method.
JP2007322350A (en) Ultrasonic flaw detector and method
EP0554958B1 (en) Apparatus and method for pipe or tube inspection
JP5127574B2 (en) Inspection method using guide waves
AU2015200693A1 (en) Integrated multi-sensor non-destructive testing
CN103207240B (en) The measuring method of the longitudinal acoustic pressure distribution of a kind of angle probe ultrasonic field
JP5431905B2 (en) Nondestructive inspection method and nondestructive inspection apparatus using guide wave
JP2008111742A (en) Method and apparatus for non-destructive inspection of wheel welded part
CN110220977A (en) Pipeline configuration TOFD based on mode converted wave detects near surface blind region suppressing method
KR101213277B1 (en) Device and method for ultrasonic inspection using profilometry data
JP2003279305A (en) Method and apparatus for measuring wall thickness of steel pipe
US20240044842A1 (en) System and method for inspecting metal parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees