JP4742600B2 - Internal defect measurement method and apparatus - Google Patents
Internal defect measurement method and apparatus Download PDFInfo
- Publication number
- JP4742600B2 JP4742600B2 JP2005023890A JP2005023890A JP4742600B2 JP 4742600 B2 JP4742600 B2 JP 4742600B2 JP 2005023890 A JP2005023890 A JP 2005023890A JP 2005023890 A JP2005023890 A JP 2005023890A JP 4742600 B2 JP4742600 B2 JP 4742600B2
- Authority
- JP
- Japan
- Prior art keywords
- defect
- signal
- detection data
- remaining thickness
- diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000007547 defect Effects 0.000 title claims description 106
- 238000000691 measurement method Methods 0.000 title claims description 9
- 238000001514 detection method Methods 0.000 claims description 86
- 238000000034 method Methods 0.000 claims description 43
- 238000012545 processing Methods 0.000 claims description 37
- 230000004907 flux Effects 0.000 claims description 24
- 230000005291 magnetic effect Effects 0.000 claims description 24
- 230000005674 electromagnetic induction Effects 0.000 claims description 16
- 230000005284 excitation Effects 0.000 claims description 13
- 239000003302 ferromagnetic material Substances 0.000 claims description 12
- 238000001914 filtration Methods 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 11
- 238000004364 calculation method Methods 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 238000013480 data collection Methods 0.000 claims description 8
- 230000000630 rising effect Effects 0.000 claims description 5
- 238000011156 evaluation Methods 0.000 claims description 4
- 229910000831 Steel Inorganic materials 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000000523 sample Substances 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000005294 ferromagnetic effect Effects 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 101100444142 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) dut-1 gene Proteins 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Description
本発明は、強磁性体で作られたプレート、ボックスおよびパイプなどの形状を有する構造体の内面の欠陥の大きさと深さを、電磁誘導法によって構造体の外面から測定し、評価する内部欠陥測定方法および装置に関するものである。 The present invention relates to an internal defect that measures and evaluates the size and depth of defects on the inner surface of a structure having a shape such as a plate, a box, and a pipe made of a ferromagnetic material from the outer surface of the structure by an electromagnetic induction method. The present invention relates to a measurement method and apparatus.
強磁性体で作られた構造体の内部の欠陥を、検出・評価しようとすると、直接構造体の内部を測定することが難しい場合や、またできるとしても多大な手間や費用がかかる場合が多い。そこで、構造体の外面からの測定によって、構造体の内部の欠陥を、検出・評価する方法として、超音波探傷法が一般的には用いられており、例えば、特許文献1の開示がある。この技術は、鋼材の内部や表面に存在する欠陥を、超音波探触子を複数個並設してマルチチャネルで超音波探傷を行うものである。 When trying to detect and evaluate defects inside a structure made of a ferromagnetic material, it is often difficult to measure the inside of the structure directly, or even if possible, it takes a lot of labor and cost. . Therefore, an ultrasonic flaw detection method is generally used as a method for detecting and evaluating defects inside the structure by measurement from the outer surface of the structure. For example, Patent Document 1 discloses the technique. In this technique, a plurality of ultrasonic probes are juxtaposed to detect defects existing in or on the surface of a steel material and multi-channel ultrasonic flaw detection is performed.
しかしながら、特許文献1で示すような超音波探傷法には、探触子をあてる面の錆やごみなどの異物、場合によっては塗膜を除去するという下地処理が必要であり、測定にあたって手間がかかるという問題がある。また、測定対象との間に、接触媒質が必要であり、さらに、測定個所がピンポイントになる(特許文献1では、超音波探触子を複数個並設することによって、この欠点に対処している)などの問題点がある。 However, the ultrasonic flaw detection method as shown in Patent Document 1 requires a ground treatment to remove foreign matters such as rust and dust on the surface to which the probe is applied, and in some cases, a coating film, and it takes a lot of trouble in measurement. There is a problem that it takes. In addition, a contact medium is necessary between the object to be measured and the measurement location is pinpointed (in Patent Document 1, this problem is addressed by arranging a plurality of ultrasonic probes in parallel. Etc.).
これに対して、電磁誘導法をもちいた構造体の内部欠陥検出技術が提案されている。例えば、特許文献2の開示がある。この技術は、離して設けた2つの励磁手段により、鋼材内に向きが反対で透過磁束密度の同じ磁束が透過するように励磁し、2つの励磁手段の中間位置で前記鋼材から漏れる磁束密度を漏れ磁束密度検出手段で検出するようにして、鋼材の腐食または亀裂等を検出する方法である。
特許文献2で示される方法は、超音波探傷法のように、探触子をあてる面の錆やごみなどの異物、または塗膜を除去する必要はないものの、鋼材の腐食または亀裂等を検出するのみである。すなわち、構造体の内部欠陥の大きさと深さを定量的に測定・評価できるものでなく、構造物の健全性を評価するためには十分でないという問題がある。 The method disclosed in Patent Document 2 detects corrosion or cracking of steel materials, although it is not necessary to remove foreign matter such as rust and dust on the surface to which the probe is applied, or the coating film, unlike the ultrasonic flaw detection method. Just do it. That is, there is a problem that the size and depth of the internal defect of the structure cannot be measured and evaluated quantitatively and are not sufficient for evaluating the soundness of the structure.
本発明は上記事情に鑑みてなされたもので、構造体の内部欠陥の大きさと深さを定量的かつ高精度に測定・評価できる内部欠陥測定方法および装置を提供することにある。 The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide an internal defect measurement method and apparatus capable of measuring and evaluating the size and depth of internal defects of a structure quantitatively and with high accuracy.
本発明の請求項1に係る発明は、低周波電磁誘導法により強磁性体でつくられた構造体の内部欠陥の測定を行う内部欠陥測定方法において、励磁コイルと磁束検出手段で構成されるセンサを前記構造体の外面を走査させることによって、検出データの収集を行う検出データ収集工程と、収集した検出データに対して、基準となる信号および基準となる信号の位相を90°ずらせた信号をそれぞれ別個に乗算した後、フィルタリング処理を行う位相検波処理工程と、該位相検波処理工程で得られた信号を描かせるベクトル座標のゼロ点を任意の位置に移動させ、さらにその信号軌跡の長楕円の長径および短径方向に座標軸の回転を行う座標変換工程と、座標変換された検出データに基づき欠陥の大きさを求める欠陥径の推定工程と、求めた欠陥径と、長楕円の長径と欠陥径/残肉厚で定義される無次元量との関係に基づき残肉厚の算出を行う残肉厚の算出工程とを有することを特徴とする内部欠陥測定方法である。 According to a first aspect of the present invention, there is provided an internal defect measuring method for measuring an internal defect of a structure made of a ferromagnetic material by a low frequency electromagnetic induction method, wherein the sensor comprises an exciting coil and a magnetic flux detecting means. A detection data collection step for collecting detection data by scanning the outer surface of the structure, and a reference signal and a signal obtained by shifting the phase of the reference signal by 90 ° with respect to the collected detection data. A phase detection processing step for performing filtering processing after multiplying each separately, a zero point of a vector coordinate for drawing a signal obtained in the phase detection processing step is moved to an arbitrary position, and a long ellipse of the signal locus a coordinate conversion step of performing rotation of the major axis and the minor axis direction in the coordinate axes of an estimation process of the defect diameter to calculate the size of the defect based on the detection data coordinate conversion, the defect diameter determined An internal defect measurement method comprising: calculating a remaining thickness based on a relationship between a major axis of the ellipse and a dimensionless amount defined by the defect diameter / remaining thickness ; is there.
また本発明の請求項2に係る発明は、低周波電磁誘導法により強磁性体でつくられた構造体の内部欠陥の測定を行う内部欠陥測定方法において、励磁コイルと磁束検出手段で構成されるセンサを前記構造体の外面を走査させることによって、検出データの収集を行う検出データ収集工程と、収集した検出データに対して、基準となる信号および基準となる信号の位相を90°ずらせた信号をそれぞれ別個に乗算した後、フィルタリング処理を行う位相検波処理工程と、該位相検波処理工程で得られた信号を描かせるベクトル座標のゼロ点を任意の位置に移動させ、さらにその信号軌跡の長楕円の長径および短径方向に座標軸の回転を行う座標変換工程と、座標変換した信号の急峻な立ち上がり部分を検出することにより減肉ありと判定する減肉部の検出工程と、検出された減肉部における検出データに基づき欠陥の大きさを求める欠陥径の推定工程と、求めた欠陥径と、長楕円の長径と欠陥径/残肉厚で定義される無次元量との関係に基づき残肉厚の算出を行う残肉厚の算出工程とを有することを特徴とする内部欠陥測定方法である。 According to a second aspect of the present invention, there is provided an internal defect measuring method for measuring internal defects of a structure made of a ferromagnetic material by a low frequency electromagnetic induction method, comprising an exciting coil and a magnetic flux detecting means. A detection data collection step for collecting detection data by causing the sensor to scan the outer surface of the structure, and a signal obtained by shifting the phase of the reference signal and the reference signal by 90 ° with respect to the collected detection data Are separately multiplied, and then a phase detection processing step for performing filtering processing, a zero point of a vector coordinate for drawing a signal obtained in the phase detection processing step is moved to an arbitrary position, and the length of the signal locus is further increased. A coordinate conversion process that rotates the coordinate axes in the major axis and minor axis directions of the ellipse, and a thinning part that determines that there is a thinning by detecting a steep rising portion of the coordinate-converted signal Detection step, a defect diameter estimation step for determining the size of the defect based on the detected data in the thinned portion , the obtained defect diameter , the long diameter of the ellipse and the defect diameter / remaining thickness. A method for measuring an internal defect, comprising: a remaining thickness calculation step for calculating a remaining thickness based on a relationship with a dimensionless amount .
また本発明の請求項3に係る発明は、請求項1または請求項2に記載の内部欠陥測定方法において、前記欠陥径の推定工程は、前記センサの各チャンネルの検出データまたは該検出データ間の減衰の割合から欠陥の大きさを求めることを特徴とする内部欠陥測定方法である。 According to a third aspect of the present invention, in the internal defect measuring method according to the first or second aspect, the defect diameter estimating step includes detecting data of each channel of the sensor or between the detected data . An internal defect measurement method characterized in that the size of a defect is obtained from the rate of attenuation .
また本発明の請求項4に係る発明は、強磁性体でつくられた構造体の内部欠陥の測定を行う低周波電磁誘導法を用いた内部欠陥測定装置において、励磁コイルと磁束検出手段で構成されるセンサと、該センサを前記構造体の外面を走査させることによって、検出データの収集を行う検出データ収集手段と、収集した検出データに対して、位相検波処理およびフィルタリング処理を行う位相検波処理手段と、該位相検波処理手段で得られた信号を描かせるベクトル座標のゼロ点を任意の位置に移動させ、さらにその信号軌跡の長楕円の長径および短径方向に座標軸の回転を行う座標変換手段と、座標変換された検出データに基づき欠陥の大きさを求める欠陥径の推定手段と、求めた欠陥径と、長楕円の長径と欠陥径/残肉厚で定義される無次元量との関係に基づき残肉厚の算出を行う残肉厚の算出手段とを有する信号処理装置と、を備えることを特徴とする欠陥の大きさと深さ評価装置である。 According to a fourth aspect of the present invention, there is provided an internal defect measuring device using a low frequency electromagnetic induction method for measuring internal defects of a structure made of a ferromagnetic material, comprising an exciting coil and a magnetic flux detecting means. A detection data collecting means for collecting detection data by causing the sensor to scan the outer surface of the structure, and a phase detection processing for performing phase detection processing and filtering processing on the collected detection data And coordinate transformation for rotating the coordinate axis in the major axis and minor axis direction of the major ellipse of the signal trajectory by moving the zero point of the vector coordinate for drawing the signal obtained by the phase detection processing unit to an arbitrary position means and the estimating means of the defect diameter to calculate the size of the defect based on the detection data coordinate conversion, the defect diameter determined, dimensionless defined by the major axis and the defect size / remaining thickness of the oblong A signal processing device having a calculation unit of the remaining wall thickness to calculate the remaining wall thickness based on the relationship between the size and depth evaluation apparatus of the defect, characterized in that it comprises a.
さらに本発明の請求項5に係る発明は、強磁性体でつくられた構造体の内部欠陥の測定を行う低周波電磁誘導法を用いた内部欠陥測定装置において、励磁コイルと磁束検出手段で構成されるセンサと、該センサを前記構造体の外面を走査させることによって、検出データの収集を行う検出データ収集手段と、収集した検出データに対して、位相検波処理およびフィルタリング処理を行う位相検波処理手段と、該位相検波処理手段で得られた信号を描かせるベクトル座標のゼロ点を任意の位置に移動させ、さらにその信号軌跡の長楕円の長径および短径方向に座標軸の回転を行う座標変換手段と、座標変換した信号の急峻な立ち上がり部分を検出することにより減肉ありと判定する減肉部の検出手段と、検出された減肉部における検出データに基づき欠陥の大きさを求める欠陥径の推定手段と、求めた欠陥径と、長楕円の長径と欠陥径/残肉厚で定義される無次元量との関係に基づき残肉厚の算出を行う残肉厚の算出手段とを有する信号処理装置と、を備えることを特徴とする内部欠陥測定装置である。 Furthermore, the invention according to claim 5 of the present invention is an internal defect measuring apparatus using a low frequency electromagnetic induction method for measuring internal defects of a structure made of a ferromagnetic material, and includes an exciting coil and magnetic flux detecting means. A detection data collecting means for collecting detection data by causing the sensor to scan the outer surface of the structure, and a phase detection processing for performing phase detection processing and filtering processing on the collected detection data And coordinate transformation for rotating the coordinate axis in the major axis and minor axis direction of the major ellipse of the signal trajectory by moving the zero point of the vector coordinate for drawing the signal obtained by the phase detection processing unit to an arbitrary position Means for detecting a thinning portion by detecting a steep rising portion of the coordinate-converted signal, and detecting data in the detected thinning portion. Performing an estimation unit of the defect diameter to calculate the size of the defect Hazuki, obtained and defect size, the calculation of the remaining wall thickness based on the relationship between dimensionless quantity defined by the major axis and the defect size / remaining thickness of the oblong An internal defect measuring device comprising: a signal processing device having a remaining thickness calculating means.
本発明によれば、強磁性体で作られた構造体の外部から、探触子をあてる面の錆やごみなどの異物、または塗膜を除去することなく、構造体の内部欠陥の大きさと深さを定量的かつ高精度に測定・評価することが可能となった。 According to the present invention, from the outside of a structure made of a ferromagnetic material, the size of internal defects of the structure can be reduced without removing foreign matter such as rust and dust on the surface to which the probe is applied, or the coating film. Depth can be measured and evaluated quantitatively and with high accuracy.
本発明で用いる低周波電磁誘導法について、先ず説明を行う。図2は、装置構成の一例を示す図であり、一般的な電磁誘導法とほぼ同様の構成である。図中、1は被測定物、2は励磁コイル、3は磁束検出手段、4は強磁性体コアおよび5は欠陥部をそれぞれ示している。
励磁コイル2を巻き付けたコの字型の強磁性体コア4を、図にように被測定物1に対向させて、励磁コイル2に励磁信号を印加して強磁性体コア4内に磁束を発生させて、欠陥部5に発生する漏洩磁束を磁束検出手段3で検出するものである。この磁束検出手段3には、コイルや感磁素子などを用いるようにするとよい。一般的な電磁誘導法と低周波電磁誘導法の最も大きな違いは、励磁信号の周波数である。一般的な電磁誘導法では、数百k〜数MHzの高周波の励磁信号により、磁束を表層部に集中させるのに対して、低周波電磁誘導法では、励磁信号の周波数を数百Hz以下程度の低周波にすることにより、磁束の分布を測定対象の板厚方向に広げ、厚さ方向の感度を向上させるようにしている。 図4は、本発明で用いる位相検波処理を説明する図である。磁束検出手段からの検出信号に対して、基準となる信号(励磁信号を用いる場合が多い)を乗算した後、ノイズ除去など通常行われるフィルタリング処理(例えば、ローパスフィルタリング)を行う。それによって得られた信号をY信号とよぶ。同様に、基準となる信号の位相を90°遅らせた上で乗算して得られる信号をX信号とよぶ。図5は、これらを縦軸Y、横軸Xとするベクトル座標上にプロットした図である。
First, the low frequency electromagnetic induction method used in the present invention will be described. FIG. 2 is a diagram showing an example of the device configuration, which is almost the same as a general electromagnetic induction method. In the figure, 1 is an object to be measured, 2 is an exciting coil, 3 is a magnetic flux detecting means, 4 is a ferromagnetic core, and 5 is a defective portion.
The U-shaped ferromagnetic core 4 around which the exciting coil 2 is wound is opposed to the DUT 1 as shown in the figure, and an excitation signal is applied to the exciting coil 2 so that a magnetic flux is generated in the ferromagnetic core 4. The magnetic flux detection means 3 detects the leakage magnetic flux generated and generated in the defective portion 5. The magnetic flux detection means 3 may be a coil or a magnetosensitive element. The biggest difference between the general electromagnetic induction method and the low frequency electromagnetic induction method is the frequency of the excitation signal. In the general electromagnetic induction method, the magnetic flux is concentrated on the surface layer by a high frequency excitation signal of several hundred k to several MHz, whereas in the low frequency electromagnetic induction method, the frequency of the excitation signal is about several hundred Hz or less. By making the frequency low, the distribution of magnetic flux is expanded in the thickness direction of the measurement object, and the sensitivity in the thickness direction is improved. FIG. 4 is a diagram for explaining the phase detection processing used in the present invention. After the detection signal from the magnetic flux detection means is multiplied by a reference signal (excitation signal is often used), a filtering process (for example, low-pass filtering) usually performed such as noise removal is performed. The signal obtained thereby is called a Y signal. Similarly, a signal obtained by multiplying the phase of the reference signal by 90 ° is called an X signal. FIG. 5 is a diagram in which these are plotted on vector coordinates with the vertical axis Y and the horizontal axis X.
発明者らは、さまざまな平底円孔状の疑似欠陥を用いた実験を繰返した結果、以下のような知見を得た(図5参照)。
(1)欠陥部位での検出信号のベクトル座標中の信号軌跡は、長楕円形となる。
(2)この長楕円の傾き角度は、対象とする板の板厚の違いによって変化するものの、対象が同じ(板厚が同じ)であればほぼ一定であり、欠陥の有無で変化しない。
(3)減肉部(欠陥)の大小(深さ&径)により長楕円の長さが変化する。
As a result of repeating experiments using various flat-bottom hole-like pseudo defects, the inventors have obtained the following knowledge (see FIG. 5).
(1) The signal trajectory in the vector coordinates of the detection signal at the defect site is an ellipse.
(2) Although the inclination angle of the ellipse changes depending on the thickness of the target plate, it is almost constant if the target is the same (the same thickness), and does not change depending on whether there is a defect.
(3) The length of the ellipse changes depending on the size (depth & diameter) of the thinned portion (defect).
上記知見に基づいた本発明における腐食減肉部の検出および残肉厚を算出する処理手順を、以下および図1に示す。この方法によれば、ランダムな信号軌跡を描くようなノイズや長楕円に近い軌跡を描いたとしても、欠陥と関係ない方向にふれる外乱(センサと被測定物とのリフトオフ変化など)の影響を排除することができる。 A processing procedure for detecting the corrosion thinning portion and calculating the remaining thickness in the present invention based on the above knowledge is shown below and in FIG. According to this method, even when a random signal trajectory is drawn, or when a trajectory close to an ellipse is drawn, the influence of disturbances (such as lift-off changes between the sensor and the object to be measured) affected in a direction unrelated to the defect is affected. Can be eliminated.
(1)検出データの収集(S10)
図2に示すセンサを、強磁性体でつくられた構造体の外面を走査させることによって、磁束検出手段3にて検出データの収集を行う。データ毎以下の一連の処理を行っても良いし、検出データを一旦記憶媒体に記憶しておいてから以下の一連の処理を行うようにしても良い。
(1) Collection of detection data (S10)
The sensor shown in FIG. 2 collects detection data in the magnetic flux detection means 3 by scanning the outer surface of the structure made of a ferromagnetic material. The following series of processes may be performed for each data, or the detection data may be temporarily stored in a storage medium and then the following series of processes may be performed.
(2)位相検波処理(S20)
図4に示すおよび前述した位相検波処理を行う。磁束検出手段からの検出信号に対して、基準となる信号(励磁信号を用いる場合が多い)を乗算した後、適切なフィルタリング処理(例えば、ローパスフィルタリング)を行う。それによって得られた信号をY信号とよぶ。同様に、基準となる信号の位相を90°遅らせた上で乗算して得られる信号をX信号とよぶ。
(2) Phase detection processing (S20)
The phase detection process shown in FIG. 4 and described above is performed. After the detection signal from the magnetic flux detection means is multiplied by a reference signal (excitation signal is often used), an appropriate filtering process (for example, low-pass filtering) is performed. The signal obtained thereby is called a Y signal. Similarly, a signal obtained by multiplying the phase of the reference signal by 90 ° is called an X signal.
(3)座標変換(S30)
上記ベクトル座標のゼロ点を任意の位置に移動させ(図5は、ゼロ点を移動したベクトル座標上に、信号軌跡をプロットしたものを示す)、さらに板厚により長楕円形の角度がほぼ一定であることを利用して、長楕円形の長径および短径方向に、先に求めたベクトル座標の座標変換すなわち座標軸の回転を行う。ゼロ点移動および回転したY軸およびX軸を、それぞれY’軸およびX’軸とする。
(3) Coordinate transformation (S30)
The zero point of the vector coordinate is moved to an arbitrary position (FIG. 5 shows a signal locus plotted on the vector coordinate where the zero point is moved), and the angle of the ellipse is almost constant depending on the plate thickness. By utilizing this, coordinate transformation of the previously obtained vector coordinates, that is, rotation of the coordinate axes, is performed in the major axis and minor axis directions of the ellipse. The Y-axis and the X-axis that have been moved and rotated by the zero point are defined as a Y′-axis and an X′-axis, respectively.
(4)減肉部の検出(S40)
減肉部位では、ベクトル座標において長楕円の信号軌跡をえがき、長楕円の角度は被測定材の元厚によって一定であることに着目し、以下の(1)式の条件を満たす部位を腐食減肉ありと判定する。これは、図5の右に示すΔY'の急峻な立ち上がり部分を検出するものであり、定数は対象材および検出しようとする欠陥等により予め設定されるべきものである。
|ΔY'/ΔX'| ≧ 定数 ・・・・・・・・・・(1)
(5)欠陥径の推定(S50)
もっとも欠陥の中心に近く、ピーク値の大きい検出コイルを0チャンネル(ch)、それに隣接するコイルから1ch、2ch、・・・とよぶことにしたとき、それぞれのコイルに検出されるピーク値は0chから順に減衰していくことになる。それをグラフ上にプロットすると、図7のようになる。図7では、縦軸をピーク値の比(各コイルのピーク値/0chのコイルのピーク値で表し、0chのコイルのピーク値を1とする)であらわしており、横軸は各コイルのch数を示している。これをみると、各ch間の減衰の割合(グラフ上での傾き)が欠陥の径によって異なっていることが分かる。したがって、各ch間の減衰の仕方(傾き)から欠陥径の推定を行う。
(4) Detection of thinned portion (S40)
At the thinned portion, the signal locus of the ellipse is drawn in the vector coordinates, and attention is paid to the fact that the angle of the ellipse is constant according to the original thickness of the material to be measured. Judge that there is meat. This detects a steep rising portion of ΔY ′ shown on the right in FIG. 5, and the constant should be set in advance according to the target material, the defect to be detected, and the like.
| ΔY '/ ΔX' | ≧ Constant (1)
(5) Estimation of defect diameter (S50)
When the detection coil that is closest to the center of the defect and has a large peak value is called 0 channel (ch), and the adjacent coil is called 1ch, 2ch, ..., the peak value detected by each coil is 0ch. It will decay in order. When it is plotted on the graph, it becomes as shown in FIG. In FIG. 7, the vertical axis represents the ratio of peak values (the peak value of each coil / the peak value of the 0ch coil, where the peak value of the 0ch coil is 1), and the horizontal axis represents the ch of each coil. Shows the number. From this, it can be seen that the rate of attenuation (gradient on the graph) between each channel differs depending on the defect diameter. Therefore, the defect diameter is estimated from the attenuation method (slope) between the channels.
以上は、磁束検出手段を多チャンネル設けた場合に、各ch間の信号の減衰量の傾きから欠陥の大きさを求める方法を説明したが、センサの走査方向の時分割信号にも同様の処理を行うことにより、欠陥の大きさ推定の精度を向上させることができる。 The method for obtaining the defect size from the slope of the attenuation of the signal between the channels when the magnetic flux detecting means is provided with multiple channels has been described above, but the same processing is applied to the time-division signal in the sensor scanning direction. As a result, the accuracy of defect size estimation can be improved.
(6)残肉厚の算出(S60)
欠陥径の推定が終われば、次に残肉厚の算出を行う。図6は、長楕円長さ(Y'のピーク値)と無次元量(欠陥径/残肉厚)との関係を示した図である。欠陥径(10〜30mm)をパラメータにして、縦軸に「長楕円長さ(Y'のピーク値)」、横軸に「欠陥径/残肉厚」をとり、測定結果をプロットした結果の一例であるが、一次近似直線に高い相関を示していることが分かる。例えば、「長楕円長さ(Y'のピーク値)」をAとすれば、一次近似直線から「欠陥径/残肉厚」Bが得られる。そして、先に求めた「欠陥径」Cから、求める「残肉厚」は、「C/B」と算出できる。
(6) Calculation of remaining thickness (S60)
After the defect diameter is estimated, the remaining thickness is calculated. FIG. 6 is a diagram showing the relationship between the length of the ellipse (peak value of Y ′) and the dimensionless amount (defect diameter / remaining thickness). Using the defect diameter (10 to 30 mm) as a parameter, the vertical axis indicates “long ellipse length (Y ′ peak value)”, the horizontal axis indicates “defect diameter / remaining thickness”, and the measurement results are plotted. As an example, it can be seen that the first-order approximation straight line shows a high correlation. For example, when “long ellipse length (peak value of Y ′)” is A, “defect diameter / remaining wall thickness” B is obtained from the linear approximation line. Then, from the “defect diameter” C obtained previously, the “remaining thickness” obtained can be calculated as “C / B”.
図3に示す実機センサおよび解析装置を製作し、その性能評価をした結果の一部を以下に示す。センサ本体は、励磁装置(磁化器)と検出コイルおよびエンコーダーで構成している。検出コイルは測定の能率を向上させるため、16ヶのコイルを一定ピッチで並べている。また、センサ〜被測定物間のリフトオフを一定に保持するため、軸受を内蔵した転動輪を装備させ、さらに個別に高さ調整のできるスクリュー式調整機構を設けた。データ収集・解析装置には、汎用ノート型PCとAD変換器を用い、データ収集〜自動解析機能をプログラム化して搭載している。 A part of the results of manufacturing and evaluating the actual sensor and analysis device shown in FIG. 3 are shown below. The sensor body includes an excitation device (magnetizer), a detection coil, and an encoder. The detection coil has 16 coils arranged at a constant pitch to improve the measurement efficiency. Moreover, in order to keep the lift-off between the sensor and the object to be measured constant, a rolling wheel with a built-in bearing is provided, and a screw type adjustment mechanism that can individually adjust the height is provided. The data collection / analysis device uses a general-purpose notebook PC and an AD converter, and is equipped with a data collection to automatic analysis function programmed.
開発したセンサの性能評価のため、板厚6〜19mmの鋼板に対して、直径10〜30mmで残肉厚2〜(元厚-2)mmの深さの平底円孔を設けた試験片を作成して、センサの性能評価を行った。図8は、性能評価をした内容および結果の一部を示す図である。図の上部は、性能評価をした対象を模式的に表す図であり、図の下部は、その演算結果を示している。板厚12mmの鋼板に、(欠陥径20mm、残肉厚4mm)、(欠陥径30mm、残肉厚10mm)、(欠陥径30mm、残肉厚8mm)、(欠陥径30mm、残肉厚6mm)、および(欠陥径30mm、残肉厚4mm)の平底円孔を設けて、センサで順次センシングしたものである。欠陥径および残肉厚のセンシング結果は、それぞれ(欠陥径20.0mm、残肉厚4.01mm)、(欠陥径28.6mm、残肉厚10.23mm)、(欠陥径31.0mm、残肉厚8.66mm)、(欠陥径32.7mm、残肉厚6.87mm)、および(欠陥径29.7mm、残肉厚3.88mm)であり、良いセンシング性能を示していることが分かる。 In order to evaluate the performance of the developed sensor, a test piece with a flat bottom circular hole with a diameter of 10 to 30 mm and a remaining thickness of 2 to (original thickness-2) mm was applied to a steel plate with a thickness of 6 to 19 mm. Created and evaluated the performance of the sensor. FIG. 8 is a diagram showing part of the contents and results of performance evaluation. The upper part of the figure schematically shows the object whose performance has been evaluated, and the lower part of the figure shows the calculation result. To a steel plate with a thickness of 12mm, (Defect diameter 20mm, Remaining thickness 4mm), (Defect diameter 30mm, Remaining thickness 10mm), (Defect diameter 30mm, Remaining thickness 8mm), (Defect diameter 30mm, Remaining thickness 6mm) , And (with a defect diameter of 30 mm and a remaining thickness of 4 mm), a flat bottom circular hole is provided, which is sequentially sensed by a sensor. Sensing results of defect diameter and remaining thickness are (defect diameter 20.0mm, remaining thickness 4.01mm), (defect diameter 28.6mm, remaining thickness 10.23mm), (defect diameter 31.0mm, remaining thickness 8.66mm) , (Defect diameter 32.7 mm, remaining thickness 6.87 mm) and (defect diameter 29.7 mm, remaining thickness 3.88 mm).
さらに、図9は実際の残肉厚と算出した残肉厚との対比を示した図である。総合した検出誤差としては、残肉厚±20%であり、自動欠陥検出が確実に可能な範囲は、板厚16mm以下、直径10mm以上×板厚の30%深さ以上のものであった。この範囲の減肉は、PCに搭載したプログラムにより自動で瞬時に残肉厚と直径を算出し、PC画面上に表示される。その他の部位も、測定・解析者の判断によりPC画面上の任意の位置をクリックすれば、同様に残肉厚と直径を算出・表示させることができる。
なお、本発明は、励磁信号を直流(0Hz)にする場合には、位相検波と座標軸の回転はしないものの、欠陥径・大きさ・残肉厚の推定・算出工程は全く同じであり、適用可能である。
Further, FIG. 9 is a diagram showing a comparison between the actual remaining thickness and the calculated remaining thickness. The total detection error was a residual thickness of ± 20%, and the range in which automatic defect detection could be reliably performed was a plate thickness of 16 mm or less, a diameter of 10 mm or more x a plate thickness of 30% or more. In this range of thinning, the remaining thickness and diameter are automatically and instantaneously calculated by a program installed on the PC and displayed on the PC screen. The remaining thickness and diameter can be calculated and displayed in the same manner by clicking any position on the PC screen at the discretion of the measurement / analyzer.
In the present invention, when the excitation signal is set to DC (0 Hz), the phase detection and the coordinate axis are not rotated, but the defect diameter / size / remaining thickness estimation / calculation process is exactly the same, Is possible.
1 被測定物
2 励磁コイル
3 磁束検出手段
4 強磁性体コア
5 欠陥部
DESCRIPTION OF SYMBOLS 1 Measured object 2 Excitation coil 3 Magnetic flux detection means 4 Ferromagnetic core 5 Defective part
Claims (5)
励磁コイルと磁束検出手段で構成されるセンサを前記構造体の外面を走査させることによって、検出データの収集を行う検出データ収集工程と、
収集した検出データに対して、基準となる信号および基準となる信号の位相を90°ずらせた信号をそれぞれ別個に乗算した後、フィルタリング処理を行う位相検波処理工程と、
該位相検波処理工程で得られた信号を描かせるベクトル座標のゼロ点を任意の位置に移動させ、さらにその信号軌跡の長楕円の長径および短径方向に座標軸の回転を行う座標変換工程と、
座標変換された検出データに基づき欠陥の大きさを求める欠陥径の推定工程と、
求めた欠陥径と、長楕円の長径と欠陥径/残肉厚で定義される無次元量との関係に基づき残肉厚の算出を行う残肉厚の算出工程とを有することを特徴とする内部欠陥測定方法。 In the internal defect measurement method to measure internal defects of structures made of ferromagnetic materials by low frequency electromagnetic induction method,
A detection data collection step of collecting detection data by scanning the outer surface of the structure with a sensor constituted by an excitation coil and magnetic flux detection means;
A phase detection processing step for performing filtering processing after separately multiplying the collected detection data by a signal that is shifted by 90 ° from the phase of the reference signal and the reference signal, and
A coordinate conversion step of moving the zero point of the vector coordinates for drawing the signal obtained in the phase detection processing step to an arbitrary position, and further rotating the coordinate axis in the major axis and minor axis directions of the major ellipse of the signal locus;
A defect diameter estimation step for obtaining a defect size based on the coordinate-converted detection data;
And a remaining thickness calculation step of calculating a remaining thickness based on a relationship between the obtained defect diameter and a dimensionless dimension defined by the major axis of the ellipse and the defect diameter / remaining thickness. Internal defect measurement method.
励磁コイルと磁束検出手段で構成されるセンサを前記構造体の外面を走査させることによって、検出データの収集を行う検出データ収集工程と、
収集した検出データに対して、基準となる信号および基準となる信号の位相を90°ずらせた信号をそれぞれ別個に乗算した後、フィルタリング処理を行う位相検波処理工程と、
該位相検波処理工程で得られた信号を描かせるベクトル座標のゼロ点を任意の位置に移動させ、さらにその信号軌跡の長楕円の長径および短径方向に座標軸の回転を行う座標変換工程と、
座標変換した信号の急峻な立ち上がり部分を検出することにより減肉ありと判定する減肉部の検出工程と、
検出された減肉部における検出データに基づき欠陥の大きさを求める欠陥径の推定工程と、
求めた欠陥径と、長楕円の長径と欠陥径/残肉厚で定義される無次元量との関係に基づき残肉厚の算出を行う残肉厚の算出工程とを有することを特徴とする内部欠陥測定方法。 In the internal defect measurement method to measure internal defects of structures made of ferromagnetic materials by low frequency electromagnetic induction method,
A detection data collection step of collecting detection data by scanning the outer surface of the structure with a sensor constituted by an excitation coil and magnetic flux detection means;
A phase detection processing step for performing filtering processing after separately multiplying the collected detection data by a signal that is shifted by 90 ° from the phase of the reference signal and the reference signal, and
A coordinate conversion step of moving the zero point of the vector coordinates for drawing the signal obtained in the phase detection processing step to an arbitrary position, and further rotating the coordinate axis in the major axis and minor axis directions of the major ellipse of the signal locus;
A process of detecting a thinning portion that determines that there is thinning by detecting a steep rising portion of the coordinate-converted signal;
A defect diameter estimating step for obtaining the size of the defect based on the detected data in the thinned portion detected;
And a remaining thickness calculation step of calculating a remaining thickness based on a relationship between the obtained defect diameter and a dimensionless dimension defined by the major axis of the ellipse and the defect diameter / remaining thickness. Internal defect measurement method.
前記欠陥径の推定工程は、前記センサの各チャンネルの検出データまたは該検出データ間の減衰の割合から欠陥の大きさを求めることを特徴とする内部欠陥測定方法。 In the internal defect measuring method according to claim 1 or 2,
In the defect diameter estimating step, a defect size is obtained from detection data of each channel of the sensor or a rate of attenuation between the detection data .
励磁コイルと磁束検出手段で構成されるセンサと、
該センサを前記構造体の外面を走査させることによって、検出データの収集を行う検出データ収集手段と、収集した検出データに対して、位相検波処理およびフィルタリング処理を行う位相検波処理手段と、
該位相検波処理手段で得られた信号を描かせるベクトル座標のゼロ点を任意の位置に移動させ、さらにその信号軌跡の長楕円の長径および短径方向に座標軸の回転を行う座標変換手段と、
座標変換された検出データに基づき欠陥の大きさを求める欠陥径の推定手段と、
求めた欠陥径と、長楕円の長径と欠陥径/残肉厚で定義される無次元量との関係に基づき残肉厚の算出を行う残肉厚の算出手段とを有する信号処理装置と、
を備えることを特徴とする欠陥の大きさと深さ評価装置。 In the internal defect measuring device using the low frequency electromagnetic induction method to measure the internal defect of the structure made of ferromagnetic material,
A sensor composed of an excitation coil and magnetic flux detection means;
Detection data collection means for collecting detection data by causing the sensor to scan the outer surface of the structure, and phase detection processing means for performing phase detection processing and filtering processing on the collected detection data;
A coordinate conversion means for moving the zero point of the vector coordinates for drawing the signal obtained by the phase detection processing means to an arbitrary position, and further rotating the coordinate axis in the major axis and minor axis directions of the major ellipse of the signal locus;
A defect diameter estimating means for obtaining a defect size based on the coordinate-converted detection data;
A signal processing device having a calculated defect diameter and a remaining thickness calculation means for calculating a remaining thickness based on a relationship between a long diameter of an ellipse and a dimensionless amount defined by the defect diameter / remaining thickness ;
Defect size and depth evaluation apparatus characterized by comprising:
励磁コイルと磁束検出手段で構成されるセンサと、
該センサを前記構造体の外面を走査させることによって、検出データの収集を行う検出データ収集手段と、収集した検出データに対して、位相検波処理およびフィルタリング処理を行う位相検波処理手段と、
該位相検波処理手段で得られた信号を描かせるベクトル座標のゼロ点を任意の位置に移動させ、さらにその信号軌跡の長楕円の長径および短径方向に座標軸の回転を行う座標変換手段と、
座標変換した信号の急峻な立ち上がり部分を検出することにより減肉ありと判定する減肉部の検出手段と、
検出された減肉部における検出データに基づき欠陥の大きさを求める欠陥径の推定手段と、求めた欠陥径と、長楕円の長径と欠陥径/残肉厚で定義される無次元量との関係に基づき残肉厚の算出を行う残肉厚の算出手段とを有する信号処理装置と、
を備えることを特徴とする内部欠陥測定装置。 In the internal defect measuring device using the low frequency electromagnetic induction method to measure the internal defect of the structure made of ferromagnetic material,
A sensor composed of an excitation coil and magnetic flux detection means;
Detection data collection means for collecting detection data by causing the sensor to scan the outer surface of the structure, and phase detection processing means for performing phase detection processing and filtering processing on the collected detection data;
A coordinate conversion means for moving the zero point of the vector coordinates for drawing the signal obtained by the phase detection processing means to an arbitrary position, and further rotating the coordinate axis in the major axis and minor axis directions of the major ellipse of the signal locus;
A means for detecting a thinning portion that determines that there is thinning by detecting a steep rising portion of the coordinate-converted signal;
Defect diameter estimation means for determining the size of the defect based on the detected data in the thinned portion detected, the obtained defect diameter, and the dimensionless dimension defined by the major axis of the ellipse and the defect diameter / remaining thickness A signal processing device having a calculation unit for calculating the remaining thickness based on the relationship ;
An internal defect measuring device comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005023890A JP4742600B2 (en) | 2005-01-31 | 2005-01-31 | Internal defect measurement method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005023890A JP4742600B2 (en) | 2005-01-31 | 2005-01-31 | Internal defect measurement method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006208312A JP2006208312A (en) | 2006-08-10 |
JP4742600B2 true JP4742600B2 (en) | 2011-08-10 |
Family
ID=36965322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005023890A Active JP4742600B2 (en) | 2005-01-31 | 2005-01-31 | Internal defect measurement method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4742600B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105203013A (en) * | 2015-10-30 | 2015-12-30 | 大连三环复合材料技术开发有限公司 | Nondestructive detecting system and method for surface layer thickness of elastic metal-plastic tile |
CN107102056A (en) * | 2017-03-22 | 2017-08-29 | 清华大学 | The flexible construction method of the unit of defect and magnetic leakage signal |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4650167B2 (en) * | 2005-08-29 | 2011-03-16 | Jfeエンジニアリング株式会社 | Defect detection method and defect detection apparatus |
JP4802081B2 (en) * | 2006-10-31 | 2011-10-26 | 公益財団法人鉄道総合技術研究所 | Thickness measuring device and thickness measuring program |
JP5169626B2 (en) * | 2008-08-27 | 2013-03-27 | Jfeスチール株式会社 | Internal defect measurement method |
JP5558231B2 (en) * | 2010-07-01 | 2014-07-23 | 大同特殊鋼株式会社 | Eddy current flaw detection method |
CN106770627B (en) * | 2016-12-16 | 2019-12-13 | 北京华航无线电测量研究所 | Axial magnetic flux leakage signal length quantization method |
CN114354740B (en) * | 2022-03-09 | 2022-05-31 | 成都熊谷油气科技有限公司 | Pipeline detection system |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001289824A (en) * | 2000-04-06 | 2001-10-19 | Osaka Gas Co Ltd | Method for diagnosing corrosion of steel tube |
JP2002022709A (en) * | 2000-07-13 | 2002-01-23 | Sumitomo Electric Ind Ltd | Eddy current flaw detector |
JP2002350406A (en) * | 2001-05-28 | 2002-12-04 | Kawasaki Steel Corp | Eddy current test equipment |
JP2003075409A (en) * | 2001-09-07 | 2003-03-12 | Mitsubishi Heavy Ind Ltd | Signal processor |
JP2004257912A (en) * | 2003-02-27 | 2004-09-16 | Hitachi Ltd | Method and device for inspecting wall thickness reduction |
JP2004354218A (en) * | 2003-05-29 | 2004-12-16 | Olympus Corp | Digital eddy current defect detection test device |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5793251A (en) * | 1980-12-02 | 1982-06-10 | Hara Denshi Sokki Kk | Device for detecting flaw by eddy current |
JPS5949543A (en) * | 1982-09-14 | 1984-03-22 | Eidai Co Ltd | Manufacture of screen plate |
JPS62121347A (en) * | 1985-11-21 | 1987-06-02 | Touden Kogyo Kk | Defect inspecting method for thin pipe |
JPH0776764B2 (en) * | 1986-08-27 | 1995-08-16 | 日立電線株式会社 | Eddy current flaw detector |
JPH0534319A (en) * | 1991-07-29 | 1993-02-09 | Yoshihiro Murakami | Detection head for flaw detection of eddy current |
JPH05264512A (en) * | 1992-03-18 | 1993-10-12 | Osaka Gas Co Ltd | Method and device for inspecting piping |
JPH05312787A (en) * | 1992-05-13 | 1993-11-22 | Ishikawajima Inspection & Instrumentation Co | Method for determination for eddy current examination of piping |
JP3283324B2 (en) * | 1993-03-30 | 2002-05-20 | 大阪瓦斯株式会社 | Tube inspection method and apparatus |
JPH0875706A (en) * | 1994-09-06 | 1996-03-22 | Mitsubishi Heavy Ind Ltd | Body inspection apparatus |
-
2005
- 2005-01-31 JP JP2005023890A patent/JP4742600B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001289824A (en) * | 2000-04-06 | 2001-10-19 | Osaka Gas Co Ltd | Method for diagnosing corrosion of steel tube |
JP2002022709A (en) * | 2000-07-13 | 2002-01-23 | Sumitomo Electric Ind Ltd | Eddy current flaw detector |
JP2002350406A (en) * | 2001-05-28 | 2002-12-04 | Kawasaki Steel Corp | Eddy current test equipment |
JP2003075409A (en) * | 2001-09-07 | 2003-03-12 | Mitsubishi Heavy Ind Ltd | Signal processor |
JP2004257912A (en) * | 2003-02-27 | 2004-09-16 | Hitachi Ltd | Method and device for inspecting wall thickness reduction |
JP2004354218A (en) * | 2003-05-29 | 2004-12-16 | Olympus Corp | Digital eddy current defect detection test device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105203013A (en) * | 2015-10-30 | 2015-12-30 | 大连三环复合材料技术开发有限公司 | Nondestructive detecting system and method for surface layer thickness of elastic metal-plastic tile |
CN107102056A (en) * | 2017-03-22 | 2017-08-29 | 清华大学 | The flexible construction method of the unit of defect and magnetic leakage signal |
Also Published As
Publication number | Publication date |
---|---|
JP2006208312A (en) | 2006-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4742600B2 (en) | Internal defect measurement method and apparatus | |
RU2644026C1 (en) | Method and device for testing using scattering flows | |
JP4829883B2 (en) | Method and apparatus for non-destructive inspection of tubes | |
US7206706B2 (en) | Inspection method and system using multifrequency phase analysis | |
EP3058360B1 (en) | Pipeline condition detecting apparatus and method | |
US6734670B2 (en) | Determining a surface profile of an object | |
US8027796B2 (en) | S/N ratio measuring method in eddy current testing on internal surface of pipe or tube | |
Chen et al. | Inversion method in pulsed eddy current testing for wall thickness of ferromagnetic pipes | |
JP5383597B2 (en) | Eddy current inspection apparatus and inspection method | |
KR20190106305A (en) | Contrast test specimens for measuring defects in tube expansion using eddy current test and method for measuring defects using the same | |
Nguyen et al. | Improved signal interpretation for cast iron thickness assessment based on pulsed eddy current sensing | |
Ulapane et al. | Pulsed eddy current sensing for condition assessment of reinforced concrete | |
JP5169626B2 (en) | Internal defect measurement method | |
US10788456B2 (en) | Eddy current inspection device for nondestructive testing | |
JP2017096678A (en) | Eddy current flaw detection probe for detecting thinned state of ground contact portion of object to be inspected and method for detecting reduction in thickness using eddy current flaw detection probe | |
US10775347B2 (en) | Material inspection using eddy currents | |
JP2016161562A (en) | Eddy current inspection device and eddy current inspection method | |
JP2005164516A (en) | Method for detecting defect | |
JP2003043015A (en) | Method of estimating depth of defect | |
CN112946065A (en) | Pulse eddy current detection method and device based on late signal slope | |
JP2021001814A (en) | Nondestructive inspection method and nondestructive inspection device | |
JP4118487B2 (en) | Steel pipe corrosion diagnosis method | |
Hashimoto et al. | Numerical analysis of eddy current testing for tubes using uniform eddy current distribution | |
WO2015194428A1 (en) | Non-destructive inspection device and non-destructive inspection method | |
EP4446692A1 (en) | Eddy current multi-parameter measurement device and corresponding measurement method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060921 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110201 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110310 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110412 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110425 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140520 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4742600 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |