JP2017096678A - Eddy current flaw detection probe for detecting thinned state of ground contact portion of object to be inspected and method for detecting reduction in thickness using eddy current flaw detection probe - Google Patents

Eddy current flaw detection probe for detecting thinned state of ground contact portion of object to be inspected and method for detecting reduction in thickness using eddy current flaw detection probe Download PDF

Info

Publication number
JP2017096678A
JP2017096678A JP2015226695A JP2015226695A JP2017096678A JP 2017096678 A JP2017096678 A JP 2017096678A JP 2015226695 A JP2015226695 A JP 2015226695A JP 2015226695 A JP2015226695 A JP 2015226695A JP 2017096678 A JP2017096678 A JP 2017096678A
Authority
JP
Japan
Prior art keywords
eddy current
flaw detection
ground
current flaw
detection probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015226695A
Other languages
Japanese (ja)
Other versions
JP6529896B2 (en
Inventor
郁郎 橋本
Ikuo Hashimoto
郁郎 橋本
啓司 上田
Keiji Ueda
啓司 上田
暁 野口
Satoru Noguchi
暁 野口
井上 憲一
Kenichi Inoue
憲一 井上
英俊 綱木
Hidetoshi Tsunaki
英俊 綱木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Research Institute Inc
Original Assignee
Kobelco Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Research Institute Inc filed Critical Kobelco Research Institute Inc
Priority to JP2015226695A priority Critical patent/JP6529896B2/en
Publication of JP2017096678A publication Critical patent/JP2017096678A/en
Application granted granted Critical
Publication of JP6529896B2 publication Critical patent/JP6529896B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To determine a thinned condition of a ground contact portion of the structure whose one part is embedded in a foundation part without performing troublesome work such as an excavation and the like of the ground.SOLUTION: An eddy current flaw detection probe 1 for detecting a thinned condition of a ground contact portion of an object to be inspected W detects the thinned condition of the ground contact portion adjacent to a surface of the ground in the ground for the object W to be inspected which is in a solid and/or a hallow columnar state and formed by a ferromagnetic substance metallic material with a base end part embedded in the ground and detecting a thinned state of the ground contact portion adjacent to the surface of the ground. A cross-section seen from a side is formed in a curved or bent shape, and one end side in a longitudinal direction is formed with an A surface 4 opposite to the surface of a healthy part 3 separated from the surface of the ground from among the objects W to be inspected, and the other end side in the longitudinal direction is formed with a magnetic core 2 formed with a B surface 5 opposite to the surface of the ground, and an excitation coil 6 windingly attached in the midst of the longitudinal direction of the magnetic core 2, and a detection coil 7 windingly attached to the peripheral edge of the end part for the other end part of the magnetic core 2.SELECTED DRAWING: Figure 1

Description

本発明は、照明柱や鉄塔等のように、地盤等の基礎部分に一部が埋められた状態で設けられた強磁性体の被検査物に対して、当該基礎部分に埋められた部分のうち、被検査物の地際部分の減肉状態を検知するための渦流探傷技術に関するものである。   The present invention relates to an object to be inspected of a ferromagnetic material provided in a state in which a part of a foundation such as a ground is buried, such as a lighting column or a steel tower, and the part buried in the foundation Of these, the present invention relates to an eddy current flaw detection technique for detecting a thinning state of a ground portion of an inspection object.

道路などに設けられる構造物の中には、例えば鋼管からなる照明柱や標識柱、信号柱、ガードレールの支柱、あるいは断面L字状のいわゆるアングル材で構成された鉄塔のような部材が、数多く存在する。このような構造物は、地盤等の基礎部分に構造物の一部が埋設されており(以降、このような構造物を一部埋設構造物という)、埋め込まれた部分のうち、基礎部分の表面に近い地際部分に海塩粒子や結露水等の腐食因子が集中したり、地上と地中の間に電位差が生じたりしてマクロ腐食現象が進行し、地際部分に大きな減肉が発生することがある。また、このようなマクロ腐食現象は、基礎地盤上に立設されるものだけでなく、例えばコンクリート壁に一部が埋め込まれて残りの部分が水平に突出する鋼管等においても発生する。   Among structures provided on roads and the like, there are many members such as steel columns made of steel pillars such as lighting columns, sign columns, signal columns, guard rail columns, or so-called angle members having an L-shaped cross section. Exists. In such a structure, a part of the structure is embedded in the foundation part such as the ground (hereinafter, such a structure is referred to as a partly embedded structure). Corrosion factors such as sea salt particles and condensed water are concentrated near the surface, or a macroscopic corrosion phenomenon progresses due to potential difference between the ground and the ground, resulting in significant thinning of the surface. Sometimes. Moreover, such a macro corrosion phenomenon occurs not only on the foundation ground but also in, for example, a steel pipe that is partially embedded in a concrete wall and the remaining portion projects horizontally.

このような減肉を伴う地際部分の腐食は、構造物全体の強度を低下させる要因となり得る。その一方で、このような地際部分の腐食は特に地盤の表面(以降、地面だけでなくコンクリート基礎などを含めて地盤という)から深さ50mm程度の範囲内で顕著に進行するため、構造物を外観から目視するのみでは減肉状態を検知することはできない。
このような地際部分の腐食による減肉を検査する方法としては、従来から、次の(A)〜(C)に示すような技術が知られている。
(A)地際部分が埋められた地盤を掘削などの手段で除去して地際部分を露出させ、露出した地際部分を目視で観察したり、ノギスなどを用いて肉厚測定したりする。
(B)超音波探傷法を利用する。具体的には、構造物のうち外部に露出している部分に超音波探傷子を装着し、この探傷子から地盤内に向かつてSH波を発信し、その反射波から欠陥の有無を判定する(例えば、特許文献1参照)。
(C)パルス禍電流探傷法を適用する。具体的には、被検査物において減肉等の欠陥が想定される部分の表面に励磁コイル及び検出部(例えば、受信コイル)を含む測定プローブを、所定の傾斜角度で被検査物に対して傾斜するように設置する。
The corrosion of the subsurface part accompanying such a thinning can be a factor of reducing the strength of the entire structure. On the other hand, this kind of corrosion at the ground part is particularly prominent within a range of about 50mm from the surface of the ground (hereinafter referred to as the ground including not only the ground but also the concrete foundation). It is not possible to detect the thinning state only by visually checking the appearance.
As a method for inspecting the thinning due to the corrosion of the ground portion, techniques as shown in the following (A) to (C) are conventionally known.
(A) The ground where the ground part is buried is removed by means of excavation or the like to expose the ground part, and the exposed ground part is observed visually, or the thickness is measured using calipers or the like. .
(B) An ultrasonic flaw detection method is used. Specifically, an ultrasonic flaw detector is attached to a portion of the structure exposed to the outside, an SH wave is transmitted from the flaw detector to the ground, and the presence or absence of a defect is determined from the reflected wave. (For example, refer to Patent Document 1).
(C) Apply the pulse current detection method. Specifically, a measuring probe including an excitation coil and a detection unit (for example, a receiving coil) on the surface of a portion where a defect such as thinning in the inspection object is assumed is applied to the inspection object at a predetermined inclination angle. Install so as to incline.

具体的には、(C)の方法は、以下のようにして行われる。
すなわち、柱状の被検査物と地盤の表面との交点に励磁コイルの中心軸が向くように、測定プローブを配置し、励磁コイルに直流のパルス電流を流す。このように励磁コイルに直流のパルス電流が流されると励磁コイルで磁界が発生し、励磁コイルでの磁界の急激な変化が、測定プローブの一方端に対面する被検査物の表面に渦電流を生じさせる。この励磁コイルで発生した磁束線は、被検査物の表面皮下を通過し、地際部分から被検査物を抜けて地中を通り、測定プローブの他方端に吸い込まれる経路をとる。
Specifically, the method (C) is performed as follows.
That is, the measurement probe is arranged so that the central axis of the exciting coil faces the intersection between the columnar object to be inspected and the surface of the ground, and a DC pulse current is passed through the exciting coil. In this way, when a direct current pulse current flows through the exciting coil, a magnetic field is generated in the exciting coil, and a sudden change in the magnetic field in the exciting coil causes an eddy current to be generated on the surface of the object to be inspected facing one end of the measurement probe. Cause it to occur. The magnetic flux lines generated by this exciting coil pass through the surface of the object under test, pass through the object from the ground, pass through the ground, and take a path that is sucked into the other end of the measurement probe.

一方、被検査物の表面に発生した渦電流は、減衰しながら徐々に被検査物の内部に浸透していき、被検査物の埋設部分まで侵入後、地際部分よりさらに深い部分から地中に抜けて、測定プローブの他方端に吸い込まれる。
つまり、パルス電流が遮断された後、励磁コイルでの磁界の急激な変化により被検査物の内部に磁束線が発生するが、この磁束線は時間の経過と共に被検査物の内部で消失していく。この消失の過程は磁束線の経路が徐々に外側に向かって広がるように変化するものとなっており、消失の過程で磁束線の経路が被検査物の地際部分の腐食箇所を貫くように
なると、渦電流が急激に減衰するようになる。それゆえ、渦電流の時間変化を検出部で検出し、渦電流が形成されてから渦電流が急激に減衰するまでの時間、すなわち渦電流の残存時聞を求め、求められた渦電流の残存時聞から被検査物の肉厚を推定すれば、腐食箇所での減肉状態を検知することが可能となる。
On the other hand, the eddy current generated on the surface of the object to be inspected gradually penetrates the inside of the object to be inspected while attenuating. And is sucked into the other end of the measurement probe.
In other words, after the pulse current is cut off, a magnetic flux line is generated inside the inspection object due to a sudden change of the magnetic field in the exciting coil, but this magnetic flux line disappears inside the inspection object over time. Go. This disappearance process changes so that the path of the magnetic flux lines gradually spreads outward, so that the path of the magnetic flux lines penetrates the corroded portion of the ground part of the inspection object during the disappearance process. As a result, the eddy current decays rapidly. Therefore, the time change of the eddy current is detected by the detection unit, the time from when the eddy current is formed until the eddy current decays rapidly, that is, the remaining time of the eddy current is obtained, and the remaining eddy current is obtained. If the thickness of the object to be inspected is estimated from the time, it is possible to detect a thinning state at the corrosion location.

特開2013−160683号公報JP 2013-160683 A

上述した従来法(A)〜(C)の方法には、次のような問題がある。
(A)の方法は、地盤の掘削等及び検査後の埋戻しのために大掛かりな作業を要する。また、(A)の方法では、掘削後にノギス等を用いて円管等の肉厚を測定する必要があるが、このような作業も面倒なものとなる。
(B)の方法は、被検査物の表面が塗膜等で覆われている場合に適用することができない。換言すれば、(B)の方法を適用するには事前に塗膜等を除去する作業が必要であり、構造物をそのままの状態に保ちながら簡便に検査することは困難である。
The conventional methods (A) to (C) described above have the following problems.
The method (A) requires large-scale work for excavation of the ground and backfill after inspection. In the method (A), it is necessary to measure the thickness of a circular pipe or the like using a vernier caliper or the like after excavation, but such an operation is also troublesome.
The method (B) cannot be applied when the surface of the object to be inspected is covered with a coating film or the like. In other words, in order to apply the method (B), it is necessary to remove the coating film or the like in advance, and it is difficult to simply inspect while keeping the structure as it is.

(C)の方法は、以下に示すようなさまざまな問題を備えている。
・腐食具合の検出感度が低い。
被検査物および地際部分の腐食箇所が測定プローブから遠く離れているため、被検査物および腐食箇所を通過する磁気回路の磁気抵抗も大きく、結果として検出コイルを誘起する磁束線が少なくなってしまう。そのため、信号強度が低く、減肉状態の検出感度も低くくなる。
・測定プローブを被検査物の周囲に旋回させて腐食の分布を調査しようとした場合、測定の精度が悪いものとなる。
The method (C) has various problems as shown below.
・ Low detection sensitivity for corrosion.
Since the corrosion location of the object to be inspected and the ground part is far away from the measurement probe, the magnetic resistance of the magnetic circuit passing through the object to be inspected and the corrosion location is large, resulting in fewer magnetic flux lines inducing the detection coil. End up. For this reason, the signal intensity is low, and the detection sensitivity of the thinned state is also low.
• If you attempt to investigate the corrosion distribution by turning the measurement probe around the object to be inspected, the measurement accuracy will be poor.

測定プローブを被検出物の周囲を旋回させて、腐食程度の周方向分布を調べる際に、周回機構の不完全さから、プローブコアと、それに対向する被検査物の健全表面との距離が不規則に変化する。このような距離の変化があると、磁気抵抗も変化し、地際部分の腐食箇所を貫通する磁束線の強度も変化するため、ひいては減肉状態の検出感度にもばらつきが生じてしまう。それゆえ、測定プローブを被検出物の周囲に旋回させて腐食の分布の検出を行うと、場所によって信号強度がばらつくために、減肉状態の検出を精度良く行うことができない。
・地盤の表面から腐食箇所までの深さに合わせて、測定プローブの感度を調整する方法が確立されておらず、腐食箇所の深さによっては減肉状態を精度良く検出することができなかった。
・地盤の表面からの深さ方向に沿った減肉の分布情報を得ることができない。
・従来のパルス渦流探傷法では、検出コイル信号の減衰曲線の傾きの急増箇所の時刻を測定していたため、信号ノイズの影響を直接受けて、定量性(再現性)が悪かった。
When examining the circumferential distribution of the degree of corrosion by rotating the measurement probe around the object to be detected, the distance between the probe core and the healthy surface of the object to be inspected is inconsistent due to the incomplete rotation mechanism. Change to rules. When such a change in distance occurs, the magnetic resistance also changes, and the strength of the magnetic flux lines penetrating through the corroded portion of the ground portion also changes, resulting in variations in the detection sensitivity of the thinned state. Therefore, if the distribution of corrosion is detected by turning the measurement probe around the object to be detected, the signal intensity varies depending on the location, so that the thinning state cannot be accurately detected.
・ The method of adjusting the sensitivity of the measurement probe according to the depth from the surface of the ground to the corroded area has not been established, and the thinning state could not be detected accurately depending on the depth of the corroded area. .
・ Distribution information of thinning along the depth direction from the surface of the ground cannot be obtained.
-In the conventional pulsed eddy current flaw detection method, the time at the point where the slope of the attenuation curve of the detection coil signal suddenly increases was measured, so that it was directly affected by signal noise, and the quantitativeness (reproducibility) was poor.

すなわち、従来法(A)〜(C)の方法のいずれかを採用したとしても、被検査物の地際部分の減肉状態を確実に検知することが困難であった。
本発明は、上述の問題に鑑みてなされたものであり、地盤の掘削等の面倒な作業を行うことなく、地盤に一部が埋められた被検査物の地際部分の減肉状態を検知することが可能である渦流探傷プローブ及び渦流探傷プローブを用いた腐食評価方法を提供することを目的とする。
That is, even if any of the conventional methods (A) to (C) is adopted, it is difficult to reliably detect the thinning state of the ground portion of the inspection object.
The present invention has been made in view of the above-described problems, and detects the thinning state of the ground portion of the inspection object partially buried in the ground without performing troublesome work such as excavation of the ground. An object of the present invention is to provide an eddy current flaw detection probe and a corrosion evaluation method using the eddy current flaw detection probe.

上記課題を解決するため、本発明の被検査物の地際部分の減肉状態を検知するための渦流探傷プローブは以下の技術的手段を講じている。
即ち、本発明の被検査物の地際部分の減肉状態を検知するための渦流探傷プローブは、中実又は中空の柱状であって強磁性体金属材で形成され且つ基端部が地盤に埋設された被検査物に対し、地盤内であって前記地盤の表面に隣接する地際部分の減肉状態を検知するための渦流探傷プローブであって、側面視で湾曲または屈曲した形状に形成されると共に、長手方向の一端側に、前記被検査物のうち地盤の表面から離れた健全部分の表面に対面するA面が形成され、長手方向の他端側に、前記地盤の表面に対面するB面が形成された磁性体コアと、前記磁性体コアの長手方向の中途に巻回状に取り付けられた励磁コイルと、前記磁性体コアの他端部に対して、当該端部の周縁に巻回状に取り付けられた検出コイルと、を有することを特徴とする。
In order to solve the above-mentioned problems, the eddy current flaw detection probe for detecting the thinning state of the ground portion of the inspection object according to the present invention employs the following technical means.
That is, the eddy current flaw detection probe for detecting the thinning state of the ground portion of the object to be inspected according to the present invention is a solid or hollow columnar shape, formed of a ferromagnetic metal material, and a base end portion on the ground. An eddy current flaw detection probe for detecting a thinning state of a buried portion in the ground and adjacent to the ground surface with respect to an embedded inspection object, and is formed in a curved or bent shape in a side view In addition, an A surface facing the surface of the healthy part of the object to be inspected away from the ground surface is formed on one end side in the longitudinal direction, and facing the surface of the ground on the other end side in the longitudinal direction. A magnetic core having a B surface formed thereon, an excitation coil attached in a winding shape in the longitudinal direction of the magnetic core, and a peripheral edge of the end relative to the other end of the magnetic core And a detection coil attached in a wound shape. .

好ましくは、前記健全部分の複数箇所を断続的または連続的に測定するのに用いられる渦流探傷プローブであって、前記渦流探傷プローブが、前記被検査物の健全表面に対面する前記磁性体コアのA面の中央側に磁気測定素子、または前記磁性体コアのA面の周縁部に巻回された補正コイル、を具備するとよい。
好ましくは、厚みがTに形成される被検査物に発生していて、前記地盤の表面から深さDに位置する腐食部分に対して、前記検出コイルが検出する信号のS/N比を大きくすべく、式(1)の関係を満足するとよい。
Preferably, the eddy current flaw detection probe is used for intermittently or continuously measuring a plurality of portions of the healthy portion, and the eddy current flaw detection probe is formed on the magnetic core facing the sound surface of the inspection object. A magnetic measuring element or a correction coil wound around the peripheral edge of the A surface of the magnetic core may be provided on the center side of the A surface.
Preferably, the S / N ratio of the signal detected by the detection coil is increased with respect to the corroded portion that occurs in the inspection object having a thickness of T and is located at a depth D from the surface of the ground. Therefore, it is preferable to satisfy the relationship of the formula (1).

好ましくは、前記健全表面に対面するA面と、前記地盤の表面に対面するB面と、前記A面より上方に位置すると共に前記地盤の表面に平行とされたC面とを、有する略T字型の磁性体コアと、前記磁性体コアのA面側に巻回された励磁コイルと、前記磁性体コアのB面側に巻回された第1の検出コイルと、前記磁性体コアのC面側に巻回された第2の検出コイルと、を有するとよい。   Preferably, the surface T facing the healthy surface, the surface B facing the surface of the ground, and the surface C positioned above the surface A and parallel to the surface of the ground are substantially T A letter-shaped magnetic core, an excitation coil wound on the A-side of the magnetic core, a first detection coil wound on the B-side of the magnetic core, and the magnetic core It is good to have the 2nd detection coil wound by the C surface side.

好ましくは、前記磁性体コアとして、断面が略L字型のものが用いられ、前記B面側に配備された検出コイルの外側に、前記励磁コイルが巻回状に配備されているとよい。
好ましくは、前記磁性体コアには、A面とB面との交差部から内部に向けて、平行四辺形状の断面を有する切り欠き部が形成され、前記切り欠き部に、前記励磁コイル、検出コイル、及び補正コイルが巻回されており、以下の式(2)を満足するとよい。
Preferably, the magnetic core has a substantially L-shaped cross section, and the excitation coil is provided in a wound shape outside the detection coil provided on the B surface side.
Preferably, the magnetic core is formed with a notch having a parallelogram-shaped cross section from the intersection of the A surface and the B surface to the inside, and the excitation coil and the detection are provided in the notch. The coil and the correction coil are wound, and it is preferable that the following expression (2) is satisfied.

一方、本発明の渦流探傷プローブを用いた減肉検知方法は、上述した渦流探傷プローブを用いて地際部分の減肉状態を検知するに際しては、前記複数箇所の測定位置毎における、前記A面を貫通する磁束線の磁束密度、または前記補正コイルに発生する最大の起電力をモニタリングし、前記磁束密度または前記最大の起電力の変動の相対比の4乗根を求め、前記求められた4乗根の値で、前記測定位置で検出コイルから出力される信号を除することで、前記渦流探傷プローブと被検査物との間隙のバラツキによる感度誤差を補正しておくことを特徴とする。     On the other hand, in the thinning detection method using the eddy current flaw detection probe according to the present invention, when detecting the thinning state of the ground portion using the eddy current flaw detection probe described above, the A surface at each of the plurality of measurement positions. The magnetic flux density of the magnetic flux lines passing through or the maximum electromotive force generated in the correction coil is monitored, and the fourth root of the relative ratio of the fluctuation of the magnetic flux density or the maximum electromotive force is obtained. A sensitivity error due to variation in the gap between the eddy current flaw detection probe and the object to be inspected is corrected by dividing the signal output from the detection coil at the measurement position by the value of the root.

好ましくは、互いに異なる深さdで前記S/N比が大きくなるように設計された複数の渦流探傷プローブを用い、前記被検査物の表面の測定箇所に、前記複数の渦流探傷プローブのそれぞれを対面させて探傷検出信号を断続的または連続的に測定し、それぞれの渦流探傷プローブで測定された同一の測定位置における探傷検出信号を総合して、被検査物の地際部分の減肉状態を検知するとよい。   Preferably, a plurality of eddy current flaw probes designed to increase the S / N ratio at different depths d are used, and each of the plurality of eddy current flaw probes is provided at a measurement location on the surface of the inspection object. The flaw detection signals are measured intermittently or continuously by facing each other, and the flaw detection signals at the same measurement position measured by each eddy current flaw detection probe are combined to determine the thinning state of the ground part of the inspection object. It is good to detect.

好ましくは、前記S/N比が大きくなる深さdがそれぞれ[d1,d2,d3・・・]となる複数の渦流探傷プローブを用い、前記同一の測定位置での複数の探傷検出信号[ΔV1,ΔV2,
ΔV3・・・]を測定し、前記測定された複数の探傷検出信号[ΔV1,ΔV2, ΔV3・・・]を用いて、当該深さ[d1,d2,d3・・・]の腐食量(減肉量)[e1,e2,e3・・・]を、前記複数の渦流探傷プローブの応答行列[C]の逆行列[C]-1を重みとした[ΔV1,ΔV2, ΔV3・・・]の線形結合の式で表現し、前記線形結合の式を用いて、被検査物の地際部分の減肉状態を検知するとよい。
Preferably, a plurality of eddy current flaw detection probes each having a depth d [D 1 , d 2 , d 3 ...] At which the S / N ratio increases are detected, and a plurality of flaw detection detections at the same measurement position are performed. Signal [ΔV 1 , ΔV 2 ,
ΔV 3 ... Is measured, and the depths [d 1 , d 2 , d 3 ... Are measured using the measured plurality of flaw detection signals [ΔV 1 , ΔV 2 , ΔV 3 . The weight of the corrosion amount (thinning amount) [e 1 , e 2 , e 3 ...] Of the multiple eddy current flaw detection probes [C] −1 of the response matrix [C] [Delta] V 1, [Delta] V 2, represented by formula linear combination of [Delta] V 3 · · ·], using the equation of the linear combination, it is preferable to detect the thickness decrease states of Chisai portion of the object.

好ましくは、上述した渦流探傷プローブを用いて測定された探傷検出信号に対して、前記探傷検出信号から求めた減衰定数λを用いて、被検査物の地際部分の減肉状態を推定するとよい。
好ましくは、上述した渦流探傷プローブを用い、前記健全部分について測定を行った場合の参照信号と、前記地際部分について測定を行った場合の信号とを比較して、被検査物の地際部分の減肉状態を検知するに際しては、同一の渦流探傷プローブを地盤の表面から上方の健全部分にリフトオフさせることで前記参照信号を得るとよい。
Preferably, for the flaw detection signal measured using the above-described eddy current flaw detection probe, the thinning state of the ground portion of the inspection object may be estimated using the attenuation constant λ obtained from the flaw detection signal. .
Preferably, the above-described eddy current flaw detection probe is used to compare the reference signal when measurement is performed on the healthy portion with the signal when measurement is performed on the ground portion, and the ground portion of the inspection object When detecting the thinning state, the reference signal may be obtained by lifting off the same eddy current flaw detection probe from the surface of the ground to the upper healthy portion.

好ましくは、上述した同一の渦流探傷プローブを2つ用意し、一方の渦流探傷プローブを、地盤の表面から離れた健全部分に対する参照信号をとるために地盤の表面から離して設置し、他方の渦流探傷プローブを、地際部分に対する信号をとるために地盤の表面に隣接させて設置し、前記参照信号と地際部分に対する信号との差分信号を用いて、被検査物の地際部分の減肉状態を検知するとよい。   Preferably, two of the same eddy current flaw detection probes described above are prepared, and one eddy current flaw detection probe is placed away from the surface of the ground in order to obtain a reference signal for a healthy portion away from the surface of the ground, and the other eddy current flaw detection probe A flaw detection probe is installed adjacent to the surface of the ground in order to obtain a signal for the ground part, and the difference between the reference signal and the signal for the ground part is used to reduce the thickness of the ground part of the inspection object. It is good to detect the state.

好ましくは、上述した減肉検知方法において、任意時刻における減衰定数を求めるために必要な、測定減衰曲線から測定ノイズが平滑除去された値およびその時刻における微分値を求めるに際して、適合型移動平均法を用いるとよい。   Preferably, in the above-described thinning detection method, an adaptive moving average method is used to obtain a value obtained by smoothing measurement noise from a measurement attenuation curve and a differential value at that time, which are necessary for obtaining an attenuation constant at an arbitrary time. Should be used.

本発明の被検査物の地際部分の減肉状態を検知するための渦流探傷プローブ及び渦流探傷プローブによる減肉検知方法によれば、地盤の掘削等の面倒な作業を行うことなく、基礎部分に一部が埋められた構造物の地際部分の減肉状況を判定することができる。   According to the eddy current flaw detection probe and the thinning detection method using the eddy current flaw detection probe for detecting the thinning state of the ground portion of the object to be inspected according to the present invention, the basic portion can be obtained without performing troublesome work such as excavation of the ground. It is possible to determine the thickness reduction situation of the ground part of the structure partially filled in.

本発明の渦流探傷プローブの基本構成を示す断面図である。It is sectional drawing which shows the basic composition of the eddy current test probe of this invention. 第1実施形態及び第2実施形態の渦流探傷プローブの断面内に発生する磁束線分布と、地際直下の腐食部を通る磁束線との関係を示した図である。It is the figure which showed the relationship between the magnetic flux line distribution which generate | occur | produces in the cross section of the eddy current test probe of 1st Embodiment and 2nd Embodiment, and the magnetic flux line which passes along the corroded part just under the ground. 第1実施形態及び第2実施形態の渦流探傷プローブと、従来の渦流探傷プローブとで検出感度を比較した図である。It is the figure which compared detection sensitivity with the eddy current test probe of 1st Embodiment and 2nd Embodiment, and the conventional eddy current test probe. 第2実施形態の渦流探傷プローブを用いた場合のパルス励磁磁束線分布の時間挙動を断面状態で示した図である。It is the figure which showed the time behavior of the pulse excitation magnetic flux line distribution at the time of using the eddy current flaw detection probe of 2nd Embodiment in the cross-sectional state. 第3実施形態の渦流探傷プローブを、円管状の被検査物の周りに旋回させて、深さ方向の腐食度合いを推定する方法を模式的に示した図である。It is the figure which showed typically the method of turning the eddy current flaw detection probe of 3rd Embodiment around the circular to-be-inspected object, and estimating the corrosion degree of a depth direction. 渦流探傷プローブと被検査物との間隙距離に対する感度の特性とその補正方法を模式的に示した図である。It is the figure which showed typically the characteristic of the sensitivity with respect to the gap distance of an eddy current test probe, and a to-be-inspected object, and its correction method. 本発明の渦流探傷プローブ(磁性体コア)の幾何形状と腐食部の相対位置を規定する各パラメータを示した図である。It is the figure which showed each parameter which prescribes | regulates the geometrical shape of the eddy current test probe (magnetic body core) of this invention, and the relative position of a corrosion part. 腐食部減肉の感度に対する各パラメータ依存性を表現する近似回帰式と、精度検証を示した図である。It is the figure which showed the approximate regression formula expressing each parameter dependence with respect to the sensitivity of a corrosion part thinning, and accuracy verification. 最適化設計条件の具体例(1)を示した図である。It is the figure which showed the specific example (1) of the optimization design conditions. 最適化設計条件の具体例(2)を示した図である。It is the figure which showed the specific example (2) of the optimization design conditions. 腐食深さに適した渦流探傷プローブの幾何形状の態様を示した図である。It is the figure which showed the aspect of the geometric shape of the eddy current test probe suitable for corrosion depth. 異なる深さに感度を持つ3つの渦流探傷プローブを、被検査物の周りを同時に旋回させつつ検査を行う方法を示した図である。It is the figure which showed the method of test | inspecting three eddy current flaw detection probes which have a sensitivity in a different depth, turning around the to-be-inspected object simultaneously. 異なる深さに感度を持つ3つの渦流探傷プローブの磁束線挙動と、感度最大深さの状況との関係を示した図である。It is the figure which showed the relationship between the magnetic flux line behavior of the three eddy current flaw detection probes which have a sensitivity in a different depth, and the condition of a sensitivity maximum depth. 本発明の渦流探傷プローブを用いて被検査物を測定した信号特性をリニアで示す図である。It is a figure which shows linearly the signal characteristic which measured the to-be-inspected object using the eddy current test probe of this invention. 本発明の渦流探傷プローブを用いて被検査物を測定した信号特性を対数で示す図である。It is a figure which shows the signal characteristic which measured the to-be-inspected object using the eddy current flaw detection probe of this invention in logarithm. 本発明の渦流探傷プローブを用いて被検査物を測定した信号特性の減衰定数の変化を示す図である。It is a figure which shows the change of the attenuation constant of the signal characteristic which measured the to-be-inspected object using the eddy current flaw detection probe of this invention. 本発明の渦流探傷プローブを用いて被検査物を測定した腐食減肉量と減衰時間の相関関係を示す図である。It is a figure which shows the correlation of the corrosion thinning amount which measured the to-be-inspected object using the eddy current flaw detection probe of this invention, and decay time. 本発明の渦流探傷プローブを用いて被検査物を測定した減衰曲線での時間差を示す図である。It is a figure which shows the time difference in the attenuation | damping curve which measured the to-be-inspected object using the eddy current flaw detection probe of this invention. 本発明の渦流探傷プローブを用いて被検査物を測定した推定腐食量の方法比較を示す図である。It is a figure which shows the method comparison of the estimated corrosion amount which measured the to-be-inspected object using the eddy current test probe of this invention. 地表面上方にリフトオフさせることで、健全部に対する参照信号測定を得る方法を示す図である。It is a figure which shows the method of obtaining the reference signal measurement with respect to a healthy part by making it lift off above the ground surface. 参照部信号用と埋設部信号用を一体化させた渦流探傷プローブの実施例を示す図である。It is a figure which shows the Example of the eddy current test probe which made the reference part signal use and the buried part signal use integrated. 図13Aの渦流探傷プローブの適用時に、地際付近が被覆材で保護されている状況を想定する図である。FIG. 13B is a diagram that assumes a situation where the vicinity of the ground is protected by a covering material when the eddy current flaw detection probe of FIG. 13A is applied. 腐食減肉部がない場合の検出信号を示す図である。It is a figure which shows a detection signal when there is no corrosion thinning part. 地面から距離25mmの地中部に深さ1mmの腐食減肉がある場合の検出信号を示す図である。It is a figure which shows a detection signal in case there exists corrosion thinning of depth 1mm in the underground part 25mm from the ground. 地面から距離25mmの地中部に深さ1mmの腐食減肉がある場合(渦流探傷プローブ〜被検査物の間隔:0.2mmの場合)の検出信号を示す図である。It is a figure which shows a detection signal when there exists corrosion thinning of 1mm in depth in the underground part 25mm from the ground (when the space | interval of an eddy current test probe-to-be-inspected object: 0.2mm). 逆L字断面をもつ磁性体コアに対する励磁、検出、補正コイルの組付け方法を示す図である。It is a figure which shows the assembly | attachment method of the excitation, detection, and correction coil with respect to the magnetic body core which has a reverse L-shaped cross section. 稠密設計(体積当たりパフォーマンスの高い)磁性コア形状と各コイル実装の方法を示す図である。It is a figure which shows the method of a densely designed (high performance per volume) magnetic core shape and each coil mounting.

以下、本発明の第1実施形態の渦流探傷プローブ1を、図面に基づき詳しく説明する。
図1に示すように、第1実施形態の渦流探傷プローブ1は、材料中に存在する欠陥を検知する渦電流試験に用いられるプローブである。この渦電流試験は、コイルなどを有する渦流探傷プローブ1を用いて行われて、渦流探傷プローブ1はコイルなどで磁場を形成可能な構成となっている。つまり、渦流探傷プローブ1のコイルに電流(パルス電流)を流して磁場を励起したり、流れていた電流を遮断したりすると、磁場の急激な変化により材料中で渦電流が誘起される。例えば、渦流探傷プローブ1のコイルに流れていた電流を遮断する場合を考えた場合、コイルにより励起されていた磁束線が徐々に消失すると共に、この渦電流も消失するが、材料中に腐食箇所11の減肉のような欠陥があると、欠陥を磁束線が通る際に渦電流の減衰が加速される。渦電流試験では、この渦電流の時間変化の性質を利用して、渦電流が形成されてから減衰が加速するまでの時間を計測することで欠陥の程度、言い換えれば欠陥の減肉の大きさを検査するものとなっている。
Hereinafter, an eddy current flaw detection probe 1 according to a first embodiment of the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, the eddy current flaw detection probe 1 according to the first embodiment is a probe used for an eddy current test for detecting defects existing in a material. This eddy current test is performed using the eddy current flaw detection probe 1 having a coil or the like, and the eddy current flaw detection probe 1 has a configuration capable of forming a magnetic field with the coil or the like. That is, when a current (pulse current) is passed through the coil of the eddy current flaw detection probe 1 to excite the magnetic field or to interrupt the current that has flowed, an eddy current is induced in the material due to a sudden change in the magnetic field. For example, when the case where the current flowing in the coil of the eddy current flaw detection probe 1 is interrupted is considered, the magnetic flux line excited by the coil gradually disappears and this eddy current also disappears. If there is a defect such as 11 thinning, the decay of the eddy current is accelerated as the magnetic flux lines pass through the defect. In the eddy current test, the degree of defect, in other words, the size of defect thinning, is measured by measuring the time from the formation of eddy current to the acceleration of decay using the property of time variation of eddy current. It is intended to inspect.

具体的には本発明の渦流探傷プローブ1で検査される被検査物Wは、中実又は中空の柱状に形成された強磁性体金属材であり、その一部が地盤に埋設されたものとなっている。なお、本発明の柱状とされた被検査物Wは、その一部が埋設されていれば、上下方向に沿って配備されるものでも、水平方向に沿って配備されるものでも良い。以降の実施形態では、被検査物Wは上下方向に沿って配備されており、下端側の一部が地盤に埋設されているものを例に挙げて、本発明の渦流探傷プローブ1を説明する。   Specifically, the inspection object W to be inspected by the eddy current flaw detection probe 1 of the present invention is a ferromagnetic metal material formed in a solid or hollow column shape, and a part thereof is embedded in the ground. It has become. In addition, as long as the to-be-tested object W made into the column shape of this invention is embedded partially, it may be deployed along an up-down direction, or may be deployed along a horizontal direction. In the following embodiments, the eddy current flaw detection probe 1 of the present invention will be described by taking an example in which the inspection object W is arranged along the vertical direction and a part of the lower end side is embedded in the ground. .

このような被検査物Wでは、地盤に埋設された部分、特に埋設された部分の中でも地盤表面に近い部分に腐食が発生しやすくなる。それゆえ、本発明の渦流探傷プローブ1は、被検査物Wにおける地盤に埋設された部分であって、特に地盤表面に近い部分(以降、地際部分という)に対して、腐食による減肉状態を検知するために主に用いられる。つまり、第1実施形態の渦流探傷プローブ1は、このような被検査物Wの地際部分に発生する腐食を正確に評価できるものとなっている。   In such an inspected object W, corrosion tends to occur in a portion embedded in the ground, particularly in a portion close to the ground surface among the embedded portions. Therefore, the eddy current flaw detection probe 1 according to the present invention is a portion embedded in the ground of the inspection object W, particularly a portion close to the ground surface (hereinafter referred to as a ground portion), which is a reduced thickness due to corrosion. It is mainly used to detect That is, the eddy current flaw detection probe 1 according to the first embodiment can accurately evaluate the corrosion generated at the ground portion of the inspection object W.

また、渦流探傷プローブ1は、上方から見ると円弧状(扇状)で且つ側方から見ると長手方向の中途が湾曲または屈曲した磁性体コア2を有している。この磁性体コア2は、比透磁率が1000以上であって、かつ渦電流の発生が非常に少ない材質で形成されている。このような磁性体コア2としては、好ましくはフェライトや絶縁被覆された純鉄粉の成形体が用いられる。   The eddy current flaw detection probe 1 has a magnetic core 2 that is arcuate (fan-shaped) when viewed from above and whose middle in the longitudinal direction is curved or bent when viewed from the side. The magnetic core 2 is made of a material having a relative magnetic permeability of 1000 or more and generating very little eddy current. As such a magnetic core 2, a molded body of pure iron powder coated with ferrite or insulation is preferably used.

磁性体コア2の一方側の端部は、被検査物Wのうち、地上に露出した部分の表面(以降、地下に埋設された腐食の可能性がある被検査物Wの部分に対して、この地上に露出していて腐食の可能性が低い部分を「健全部分3」といい、健全部分3に設けられた表面を「健全表面3a」という)に対面するように設けられており、この一方側の端面をA面4という。このA面4から健全表面3aまでの距離(隙間)は、磁性体コア2のA面4における上下方向に沿った長さ(開口幅)に対して、十分狭く(望ましくは、開口幅の5%より小さく)設定されている。   One end of the magnetic core 2 is the surface of the inspection object W exposed to the surface (hereinafter referred to as the portion of the inspection object W embedded in the basement and possibly corroded, The part exposed to the ground and having a low possibility of corrosion is called “healthy part 3”, and the surface provided on the healthy part 3 is called “healthy surface 3a”). One end face is referred to as A-plane 4. The distance (gap) from the A surface 4 to the healthy surface 3a is sufficiently narrow (preferably, the opening width of 5) with respect to the length (opening width) along the vertical direction of the A surface 4 of the magnetic core 2. Less than%).

また、磁性体コア2の他方側の端部は、地盤の表面に対面するB面5とされている。こ
のB面5は、被検査物Wが敷設されている地盤の表面に対面している。B面5から地盤の表面までの距離は、地盤の表面に接触したものから、地盤の表面からある程度離れたものまで、殆ど制約無く採用することができる。
磁性体コア2の長手方向の中途、言い換えれば磁性体コア2の胴部には、胴部の周囲を巻回するように励磁コイル6が設けられている。また、磁性体コア2のB面側の端部には、この端部の周縁に巻回された検出コイル7が設けられている。
The other end of the magnetic core 2 is a B surface 5 that faces the surface of the ground. The B surface 5 faces the surface of the ground on which the inspection object W is laid. The distance from the B surface 5 to the surface of the ground can be employed with almost no restriction, from the one in contact with the surface of the ground to the one away from the surface of the ground to some extent.
An exciting coil 6 is provided in the middle of the magnetic core 2 in the longitudinal direction, in other words, on the body of the magnetic core 2 so as to wind around the body. Further, a detection coil 7 wound around the periphery of the end portion is provided at the end portion on the B surface side of the magnetic core 2.

上述した第1実施形態の渦流探傷プローブ1では、励磁コイル6に電流を流して磁界を発生させることにより、次のような手順で地際部分の減肉状態が検知される。
図2に示すように、磁性体コア2のA面4は、被検査物Wの地上に露出した健全部分3の表面と対面可能とされている。この状態において、磁性体コア2の長手方向の中途に設けられた励磁コイル6に直流のパルス電流を流したり、流れていたパルス電流を遮断したりすると、磁界の急激な変化が励磁コイル6に発生し、磁界の急激な変化により(磁性体コア2のA面4に対向する)被検査物Wの表面に渦電流が生じる。このとき、磁性体コア2から出た磁束線は、被検査物Wの表面皮下を通過し、地盤表面より下方の地際部分の近傍から地中に抜けて、磁性体コア2のB面5に吸い込まれる経路に沿って形成される。つまり、励磁コイル6で発生した磁束線は断面を見た場合に環状となるような経路を取ることになる。
In the eddy current flaw detection probe 1 according to the first embodiment described above, a thinned state of the ground portion is detected in the following procedure by causing a current to flow through the exciting coil 6 to generate a magnetic field.
As shown in FIG. 2, the A surface 4 of the magnetic core 2 can face the surface of the healthy part 3 exposed to the ground of the object W to be inspected. In this state, if a direct current pulse current is passed through the exciting coil 6 provided in the middle of the magnetic material core 2 in the longitudinal direction, or if the flowing pulse current is interrupted, a sudden change in the magnetic field is caused in the exciting coil 6. An eddy current is generated on the surface of the object W to be inspected (opposite the A surface 4 of the magnetic core 2) due to a sudden change in the magnetic field. At this time, the magnetic flux lines emitted from the magnetic core 2 pass under the surface of the inspection object W, pass through the vicinity of the ground portion below the ground surface, and penetrate into the ground, so that the B surface 5 of the magnetic core 2 It is formed along the path to be sucked in. That is, the magnetic flux lines generated by the exciting coil 6 take a path that is circular when the cross section is viewed.

例えば、励磁コイル6に流れていたパルス電流を遮断すると、上述した磁束線も被検査物Wの表面に形成された渦電流も時間が経過するにつれて、徐々に消失する。この磁束線の消失の仕方は、図4の下側に示すようなものであり、環状の磁束線が中央から外側に向かって広がるように消えていく。
このとき、地盤表面より下方の被検査物Wの腐食部分を、磁束線が貫く経路をとった時に、渦電流の減衰(消失)が急激に加速する。それゆえ、渦電流が形成されてから、渦電流が急激に減少するまでの時間を計測することにより、減肉の程度(厚み)を推定することができる。
For example, when the pulse current flowing through the exciting coil 6 is interrupted, the above-described magnetic flux lines and the eddy current formed on the surface of the inspection object W gradually disappear as time passes. The manner of disappearance of the magnetic flux lines is as shown in the lower side of FIG. 4 and disappears so that the annular magnetic flux lines spread from the center toward the outside.
At this time, the decay (disappearance) of the eddy current accelerates rapidly when taking a path through which the magnetic flux lines penetrate the corroded portion of the inspection object W below the ground surface. Therefore, the degree of thickness reduction (thickness) can be estimated by measuring the time from when the eddy current is formed to when the eddy current rapidly decreases.

上述した第1実施形態の渦流探傷プローブ1では、上述したように磁性体コア2のA面4と、被検査物Wの健全部分3の表面とが対面状態とされており、非常に近い距離までA面4を被検査物Wに近接可能とされている。それゆえ、励磁コイル6により励磁された磁束線が、被検査物Wへ低い磁気抵抗で容易に貫通するようになる。
その結果、渦流探傷プローブ1と被検査物Wとがより強く磁気結合することになり、地盤表面の下方の深い位置に存在する腐食部(地際部分の腐食部)を通過して、磁性体コア2のB面5に戻る磁束線の本数も増え、検出コイル7に信号電圧が強い強度で誘起される。
In the eddy current flaw detection probe 1 of the first embodiment described above, the A surface 4 of the magnetic core 2 and the surface of the healthy portion 3 of the inspection object W are in a face-to-face state as described above, and a very close distance. The A surface 4 can be brought close to the inspection object W. Therefore, the magnetic flux lines excited by the exciting coil 6 can easily penetrate the inspection object W with a low magnetic resistance.
As a result, the eddy current flaw detection probe 1 and the object W to be inspected are more strongly magnetically coupled and pass through a corroded portion (a corroded portion of the subsurface portion) that exists at a deep position below the ground surface. The number of magnetic flux lines returning to the B surface 5 of the core 2 also increases, and a signal voltage is induced in the detection coil 7 with a strong intensity.

この第1実施形態の渦流探傷プローブ1が有する効果を、従来技術との対比において、より詳しく説明する。
図3は、2次元静磁場解析による磁束線図を、従来技術に係るプローブを用いた場合と、第1実施形態の渦流探傷プローブ1を用いた場合とを比較して示した図である。左側に示す磁束線図は従来技術に係るプローブを地盤の表面に対して45°の角度で設置したものであり、右側に示す磁束線図は本発明の第1実施形態に係る渦流探傷プローブ1を用いたものである。基礎地盤の表面の下方に位置する被検査物Wには、図中に四角形で示される「腐食箇所11」があり、この「腐食箇所11」は基礎地盤の表面から平均深さDに位置している。この「腐食箇所11」を通過する磁束線の本数をn本とし、励磁コイル6で生成される磁束線の本数をN本とすると、腐食程度の検出感度は「n/N」として評価することができる。実際に鋼板の比透磁率を2000、磁性体コア2の被透磁率を3800と、空中のそれに対して十分大きい(即ち、それらが強磁性体の)場合には、従来例に比して第1実施形態の渦流探傷プローブ1は、従来の3倍以上の検出感度を備えていること
がわかる。
The effects of the eddy current testing probe 1 of the first embodiment will be described in more detail in comparison with the prior art.
FIG. 3 is a diagram showing a magnetic flux diagram obtained by two-dimensional static magnetic field analysis in comparison with a case where the probe according to the prior art is used and a case where the eddy current flaw detection probe 1 of the first embodiment is used. The magnetic flux diagram shown on the left is a probe according to the prior art installed at an angle of 45 ° with respect to the surface of the ground, and the magnetic flux diagram shown on the right is the eddy current flaw detection probe 1 according to the first embodiment of the present invention. Is used. The inspection object W located below the surface of the foundation ground has a “corrosion spot 11” indicated by a square in the figure, and this “corrosion spot 11” is located at an average depth D from the surface of the foundation ground. ing. When the number of magnetic flux lines passing through the “corrosion spot 11” is n and the number of magnetic flux lines generated by the exciting coil 6 is N, the detection sensitivity of the degree of corrosion should be evaluated as “n / N”. Can do. Actually, when the relative permeability of the steel plate is 2000 and the permeability of the magnetic core 2 is 3800, which is sufficiently larger than that in the air (that is, they are ferromagnetic), the second is higher than the conventional example. It can be seen that the eddy current flaw detection probe 1 according to one embodiment has a detection sensitivity three times or more that of the prior art.

このことから、第1実施形態の渦流探傷プローブ1は、地際部分の腐食箇所11を高い感度で検出できることがわかる。
[第2実施形態]
次に、第2実施形態の渦流探傷プローブ1について、説明する。
図2に示すように、第2実施形態の渦流探傷プローブ1は、健全部分3の複数箇所を断続的または連続的に測定するのに用いられるものであって、被検査物Wの健全表面3aに対面する磁性体コア2のA面4の中央側に磁気測定素子8、または磁性体コア2のA面4の周縁部に巻回された補正コイル9、を具備するものとなっている。
From this, it can be seen that the eddy current flaw detection probe 1 according to the first embodiment can detect the corroded portion 11 at the ground portion with high sensitivity.
[Second Embodiment]
Next, the eddy current flaw detection probe 1 according to the second embodiment will be described.
As shown in FIG. 2, the eddy current flaw detection probe 1 according to the second embodiment is used for intermittently or continuously measuring a plurality of locations of the healthy portion 3, and the healthy surface 3 a of the object W to be inspected. The magnetic measuring element 8 or the correction coil 9 wound around the peripheral portion of the A surface 4 of the magnetic core 2 is provided on the center side of the A surface 4 of the magnetic core 2 facing the surface.

つまり、第2実施形態の渦流探傷プローブ1は、健全部分3の複数箇所に逐次、渦流探傷プローブ1を近づけて対面させ、健全部分3の探傷検出信号を検出コイル7で断続的に測定するか、図5に示すような、断面が円形状の被検査物Wに対して、湾曲した表面に沿って被検査物Wの軸を中心に渦流探傷プローブ1を旋回することで、健全部分3の探傷検出信号を検出コイル7で連続的に測定する構成となっている。   In other words, the eddy current flaw detection probe 1 according to the second embodiment sequentially approaches the eddy current flaw detection probe 1 to a plurality of locations of the healthy portion 3 and faces each other and intermittently measures the flaw detection detection signal of the healthy portion 3 by the detection coil 7. 5, the eddy current flaw detection probe 1 is swung around the axis of the inspection object W along the curved surface with respect to the inspection object W having a circular cross section as shown in FIG. The flaw detection signal is continuously measured by the detection coil 7.

このように探傷検出信号を断続的または連続的に測定する場合、磁性体コア2のA面4と、被検査物Wの表面(健全表面3a)との間隔の変動による探傷検出信号の検出感度をどのように調整するかが重要になる。特に、図5に示すように、渦流探傷プローブ1を被検査物Wの軸心の周囲を旋回させて、腐食程度の周方向分布を調べる際には、旋回機構の不完全さから、磁性体コア2のA面4と、それに対向する被検査物Wの健全表面3aとの間隙は、不規則に変化することは避けられず、それに伴う磁気抵抗の変化は、貫通磁束線の強度を変化させて、引いては感度に影響を与える。そのため、周方位の場所によって探傷検出信号の強度がばらつくために、腐食状態を精度良く検知し比較することが困難になる。   In this way, when the flaw detection signal is measured intermittently or continuously, the detection sensitivity of the flaw detection signal due to a change in the distance between the A surface 4 of the magnetic core 2 and the surface of the inspection object W (healthy surface 3a). It becomes important how to adjust. In particular, as shown in FIG. 5, when the eddy current flaw detection probe 1 is swung around the axis of the inspection object W and the circumferential distribution of the degree of corrosion is examined, the magnetic substance is taken into account because of the imperfection of the swiveling mechanism. The gap between the A surface 4 of the core 2 and the healthy surface 3a of the object W to be inspected is inevitably changed, and the accompanying change in magnetoresistance changes the strength of the penetrating magnetic flux lines. And pulling will affect the sensitivity. For this reason, since the intensity of the flaw detection signal varies depending on the location of the circumferential direction, it is difficult to accurately detect and compare the corrosion state.

そこで、第2実施形態の渦流探傷プローブ1では、被検査物Wの健全表面3aに対面する磁性体コア2のA面4の中央側に磁気測定素子8(磁場測定素子)を設けるか、または磁性体コア2のA面4の周縁部に補正コイル9を巻回状に設けている。
このような磁気測定素子8または補正コイル9でモニタリングされる磁場(モニタリング磁場)を用いて検出コイル7の信号の補正を行えば、複数箇所の腐食量を精度良く測定することができる。
Therefore, in the eddy current flaw detection probe 1 of the second embodiment, the magnetism measuring element 8 (magnetic field measuring element) is provided on the center side of the A surface 4 of the magnetic core 2 facing the sound surface 3a of the inspection object W, or A correction coil 9 is provided in a winding shape on the peripheral edge of the A surface 4 of the magnetic core 2.
If the signal of the detection coil 7 is corrected using a magnetic field (monitoring magnetic field) monitored by such a magnetic measuring element 8 or the correction coil 9, the amount of corrosion at a plurality of locations can be measured with high accuracy.

なお、この第2実施形態の渦流探傷プローブ1を用いた検出感度の補正については、次の第3実施形態で詳しく説明する。
[第3実施形態]
次に、第3実施形態の渦流探傷プローブ1について、図に基づき説明する
第3実施形態の渦流探傷プローブ1は、第2実施形態の渦流探傷プローブ1を用いて地際部分の減肉状態を検知するに際しては、複数箇所の測定位置毎における、A面4を貫通する磁束線の磁束密度を磁気測定素子で、または補正コイル9に発生する最大の起電力をモニタリングし、磁束密度または最大の起電力の変動の相対比の4乗根を求め、求められた4乗根の値で、測定位置で検出コイル7から出力される信号を除することで、渦流探傷プローブ1と被検査物Wとの間隙のバラツキによる感度誤差を補正しておくものである。
The correction of the detection sensitivity using the eddy current flaw detection probe 1 of the second embodiment will be described in detail in the next third embodiment.
[Third Embodiment]
Next, the eddy current flaw detection probe 1 according to the third embodiment will be described with reference to the drawings. The eddy current flaw detection probe 1 according to the third embodiment uses the eddy current flaw detection probe 1 according to the second embodiment to reduce the thickness of the ground portion. At the time of detection, the magnetic flux density of the magnetic flux lines penetrating the A surface 4 at each of the plurality of measurement positions is monitored by the magnetic measuring element or the maximum electromotive force generated in the correction coil 9 to monitor the magnetic flux density or the maximum The fourth root of the relative ratio of the electromotive force variation is obtained, and the signal output from the detection coil 7 at the measurement position is divided by the obtained fourth root value, whereby the eddy current testing probe 1 and the object W to be inspected. The sensitivity error due to the variation in the gap is corrected.

つまり、パルス磁界の被検査物Wへの侵入具合を、磁束線の貫通箇所(磁性体コア2のA曲面)における磁気測定素子8または補正コイル9でモニタリングすれば、検出コイル7の信号Vを以下の式(3)で補正することができる。   That is, if the degree of penetration of the pulse magnetic field into the inspection object W is monitored by the magnetic measuring element 8 or the correction coil 9 at the portion where the magnetic flux lines penetrate (A curved surface of the magnetic core 2), the signal V of the detection coil 7 can be obtained. It can correct | amend with the following formula | equation (3).

εは、プローブのコアA面を対象物に、可能な限り近づけた距離を表している。
図1に示すモデルを2次元静磁場解析を用いて、間隙距離xを変化させながら、図2に示した地際部分の検出感度η(x)を求めたものを図6の左側のグラフに、またモニタリング磁場Bn(x)または補正コイル9信号Vn(x)を用いた種々の補正方法を試した結果を図6の右側のグラフに示す。ここで規格化の基準にした(最小)間隙εとして、現実的に不可避と想定される管壁の塗装などを想定したε=0.2mmと仮定した。
ε represents a distance that brings the core A surface of the probe as close as possible to the object.
The model shown in FIG. 1 is obtained by using the two-dimensional static magnetic field analysis to obtain the detection sensitivity η (x) of the subsurface portion shown in FIG. 2 while changing the gap distance x in the graph on the left side of FIG. In addition, the results of testing various correction methods using the monitoring magnetic field Bn (x) or the correction coil 9 signal Vn (x) are shown in the graph on the right side of FIG. Here, the (minimum) gap ε used as a standard for standardization was assumed to be ε = 0.2 mm, which assumed pipe wall coating that was actually assumed to be inevitable.

図6の左側のグラフに示すように、間隙距離x(規格化された間隔x/w)を変化させると、相対的な検出感度(地際部分の検出感度η(x)を、最小間隙εでの検出感度η(0.2)で除したもの)も「1.0」からずれ、検出感度が間隙によって大きく変動することがわかる。
そこで、図6の右側のグラフに示すように、さまざまな補正式を用いて補正を試みたところ、相対磁束密度の4乗根で検出コイル7の探傷検出信号を除した場合においては、x/w≦0.5(w=10、x≦5mm以下)の補正可能範囲で、良い精度で補正可能なことが判った。
As shown in the graph on the left side of FIG. 6, when the gap distance x (standardized distance x / w) is changed, the relative detection sensitivity (detection sensitivity η (x) of the ground portion is reduced to the minimum gap ε ( Which is divided by the detection sensitivity η (0.2) in FIG. 4) also deviates from “1.0”, and it can be seen that the detection sensitivity varies greatly depending on the gap.
Therefore, as shown in the graph on the right side of FIG. 6, correction was attempted using various correction equations. When the flaw detection signal of the detection coil 7 was divided by the fourth root of the relative magnetic flux density, x / It was found that correction can be made with good accuracy within the correctable range of w ≦ 0.5 (w = 10, x ≦ 5mm or less).

このことから、図5に示すように渦流探傷プローブ1を被検査物Wの軸心の周囲を旋回させるような場合であっても、上述した第3実施形態の渦流探傷プローブ1を用いれば、磁性体コア2のA面4と健全表面3aとの間隔の変動に伴う探傷検出信号の強度ばらつきを抑えて、複数箇所の腐食量を精度良く測定することができる。
[第4実施形態]
次に、第4実施形態の渦流探傷プローブ1について、図に基づき説明する。
Therefore, even if the eddy current flaw detection probe 1 is swung around the axis of the inspection object W as shown in FIG. 5, if the eddy current flaw detection probe 1 of the third embodiment described above is used, It is possible to accurately measure the amount of corrosion at a plurality of locations while suppressing variation in the intensity of the flaw detection signal associated with the change in the distance between the A surface 4 of the magnetic core 2 and the sound surface 3a.
[Fourth Embodiment]
Next, the eddy current flaw detection probe 1 according to the fourth embodiment will be described with reference to the drawings.

第4実施形態の渦流探傷プローブ1の幾何形状は、厚みがTに形成される被検査物Wに発生していて、地盤の表面から深さDに位置する腐食部分に対して、検出コイル7が検出する信号のS/N比を大きくすべく、式(1)の関係を満足するものとなっている。   The geometric shape of the eddy current flaw detection probe 1 according to the fourth embodiment is generated in the inspection object W formed with a thickness T, and the detection coil 7 is applied to a corroded portion located at a depth D from the surface of the ground. In order to increase the S / N ratio of the signal detected by, the relationship of Expression (1) is satisfied.

上述した式(1)は、厚みがTに形成される被検査物Wであって、地盤表面より深さDだけ下方に位置する地際部分の腐食箇所11に対して、検出感度が最大となるような渦流探傷プローブ1の磁性体コア2の幾何形状を規定するものとなっている。
つまり、図7に示されるような2次元静磁場解析の断面モデル、つまりw(柱状の被検査物Wの長手方向に沿ったA面4の長さ)、w(被検査物Wから離間する方向に沿ったB面5の長さ)、h(B面5を地盤に接触させた状態での、地盤からA面4の下端までの距離)、s(A面4を被検査物Wに接触させた状態での、被検査物Wの表面からB面5
の端部までの距離)、D(地盤表面から腐食箇所11までの深さ)、T(被検査物Wから離間する方向に沿った被検査物Wの長さ)などの幾何寸法で規定される断面モデルに対して、地盤表面から深さDの検出感度ηを求める。この検出感度ηは、検出コイル7を貫通する磁束Φs(≒Bs・w2)で、深さDの腐食部分を貫通する磁束線Φe(≒Be・D)を除したものとして示すことができる。
The above-described equation (1) is the inspection object W formed with the thickness T, and the detection sensitivity is maximum for the corroded portion 11 at the subsurface portion located below the ground surface by the depth D. The geometrical shape of the magnetic core 2 of the eddy current flaw detection probe 1 is defined.
That is, the cross-sectional model of the two-dimensional static magnetic field analysis as shown in FIG. 7, that is, w 1 (the length of the A surface 4 along the longitudinal direction of the columnar inspection object W), w 2 (from the inspection object W). Length of the B surface 5 along the separating direction), h (distance from the ground to the lower end of the A surface 4 in a state where the B surface 5 is in contact with the ground), s (A surface 4 is the object to be inspected) B surface 5 from the surface of the object W to be inspected while being in contact with W
) (Distance from the end of the test object), D (depth from the ground surface to the corrosion spot 11), T (length of the test object W along the direction away from the test object W), etc. The detection sensitivity η of the depth D from the ground surface is obtained for the cross-sectional model. This detection sensitivity η can be expressed as the magnetic flux Φs (≈Bs · w 2 ) penetrating the detection coil 7 divided by the magnetic flux line Φe (≈Be · D) penetrating the corroded portion of the depth D. .

上述した渦流探傷プローブ1の幾何寸法(w1, w2, h, s)および被検査物Wの寸法である腐食(代表)深さD、被検査物W厚さTを種々変えた多くのモデルケースに対して2次元静磁場解析を行い、それらの検出感度ηに対する、これらの寸法の関係を記述する近似関数Ηを回帰分析で求めると、次の式(4)のようになった。 Many of the above-described eddy current flaw detection probe 1 have various geometric dimensions (w 1 , w 2 , h, s), corrosion (representative) depth D, and inspection object W thickness T, which are dimensions of the inspection object W. When a two-dimensional static magnetic field analysis is performed on the model case and an approximate function 記述 す る describing the relationship of these dimensions with respect to the detection sensitivity η is obtained by regression analysis, the following equation (4) is obtained.

上述した磁場解析で得られた感度と、近似関数の予測値の相関を図8Aに示す。近似関数は良く検出感度を予測し、その上限値がほぼ1.5付近にあることから、後述する式(4’)の式で渦流探傷プローブ1の幾何形状を規定することができる。   FIG. 8A shows the correlation between the sensitivity obtained by the magnetic field analysis described above and the predicted value of the approximate function. Since the approximate function predicts the detection sensitivity well and the upper limit value is approximately in the vicinity of 1.5, the geometric shape of the eddy current flaw detection probe 1 can be defined by the equation (4 ') described later.

式(4’)の関数を構成する因子(渦流探傷プローブ1及び被検査物Wの幾何寸法)から、最適コア形状について、下記の(1)〜(5)の定性的な設計指針が列挙できる。
(1)「検出すべき腐食箇所11の深さD」と、「A面4を被検査物Wに接触させた状態での、被検査物Wの表面からB面5の端部までの距離s」との比
D:s〜1:4.0
(2)「A面4を被検査物Wに接触させた状態での、被検査物Wの表面からB面5の端部までの距離s」と、「B面5を地盤に接触させた状態での、地盤からA面4の下端までの距離」との比
s:h〜1:5
(3)「A面4を被検査物Wに接触させた状態での、被検査物Wの表面からB面5の端部までの距離s」と、「被検査物Wから離間する方向に沿ったB面5の長さw」との比
s:w〜7:7.3
(4)「被検査物Wから離間する方向に沿った被検査物Wの長さT」と「柱状の被検査物Wの長手方向に沿ったA面4の長さw」との比
T:w〜1:5.2
(5)「A面4の断面積w 」と「B面5の断面積w 」の比
:w 〜10:7
上述した(1)〜(5)の設計指針を総合的に満足するような形状に渦流探傷プローブ1の幾何形状を規定することで、厚みがTに形成される被検査物Wに発生する腐食部分であって、地盤の表面から深さDに位置するものに対して、検出コイル7が検出する信号のS/N比を大きくすることができ、渦流探傷プローブ1の感度が最も良くなるように最適化設計することができる。
From the factors constituting the function of the equation (4 ′) (geometric dimensions of the eddy current flaw detection probe 1 and the inspection object W), the following qualitative design guidelines (1) to (5) can be listed for the optimum core shape. .
(1) “Depth D of corrosion spot 11 to be detected” and “Distance from the surface of the inspection object W to the end of the B surface 5 in a state where the A surface 4 is in contact with the inspection object W” ratio to "s"
D: s-1: 4.0
(2) “Distance s from the surface of the inspection object W to the end of the B surface 5 in a state where the A surface 4 is in contact with the inspection object W” and “the B surface 5 is in contact with the ground. With the distance from the ground to the lower end of the A surface 4 in the state "
s: h to 1: 5
(3) “Distance s from the surface of the inspection object W to the end of the B surface 5 in a state where the A surface 4 is in contact with the inspection object W” and “in a direction away from the inspection object W” The ratio with the length w 2 of the B surface 5 along
s: w 2 ~7: 7.3
(4) Ratio of “the length T of the inspection object W along the direction away from the inspection object W” and “the length w 1 of the A surface 4 along the longitudinal direction of the columnar inspection object W”
T: w 1 ˜1: 5.2
(5) Ratio of “cross-sectional area w 1 2 of A surface 4” and “cross-sectional area w 2 2 of B surface 5”
w 1 2 : w 2 2 to 10: 7
By defining the geometric shape of the eddy current flaw detection probe 1 in a shape that totally satisfies the design guidelines (1) to (5) described above, the corrosion that occurs in the inspection object W formed with a thickness T. The S / N ratio of the signal detected by the detection coil 7 can be increased with respect to a portion located at a depth D from the surface of the ground so that the sensitivity of the eddy current flaw detection probe 1 is best. Can be optimized design.

例えば、図8B及び図8Cは、上述した式(4’)の関係を満足するものであり、(1)〜(5)の設計指標をいずれも満たすものとなっている。つまり、図8Bは図8Aの四角印の水準に相当するものであり、図8Cは図8Aの丸印の水準に相当するものである。
これら図8B及び図8Cの渦流探傷プローブ1では、A面4から被検査物Wの内部に入り込んだ磁束線の多くが腐食部分を通っており、腐食状態を高い感度で検知できていることがわかる。
For example, FIG. 8B and FIG. 8C satisfy the relationship of the above-described formula (4 ′), and satisfy all the design indices of (1) to (5). That is, FIG. 8B corresponds to the level of the square mark in FIG. 8A, and FIG. 8C corresponds to the level of the circle mark in FIG. 8A.
In these eddy current flaw detection probes 1 of FIG. 8B and FIG. 8C, most of the magnetic flux lines that have entered the inside of the inspection object W from the A surface 4 pass through the corroded portion, and the corrosive state can be detected with high sensitivity. Recognize.

次に、第4実施形態の渦流探傷プローブ1を用いた減肉検知方法について、図に基づき説明する。
上述した式(1)を満足する渦流探傷プローブ1は、地盤表面から深さがDとなる位置で、S/N比、つまり検出感度が大きくなるように設計されている。このような渦流探傷プローブ1を、検出感度が大きくなる深さDを変えて複数用意する。
Next, a thinning detection method using the eddy current flaw detection probe 1 according to the fourth embodiment will be described with reference to the drawings.
The eddy current flaw detection probe 1 that satisfies the above-described equation (1) is designed so that the S / N ratio, that is, the detection sensitivity is increased at a position where the depth is D from the ground surface. A plurality of such eddy current flaw detection probes 1 are prepared by changing the depth D at which the detection sensitivity increases.

例えば、図9の左側に示す渦流探傷プローブ1では、w(柱状の被検査物Wの長手方向に沿ったA面4の長さ)=5.5mm、w(被検査物Wから離間する方向に沿ったB面5の長さ)=6.7mm、h(B面5を地盤に接触させた状態での、地盤からA面4の下端までの距離)=5.1mm、s(A面4を被検査物Wに接触させた状態での、被検査物Wの表面からB面5の端部までの距離)=20.8mm、D(地盤表面から腐食箇所11までの深さ)=35mm、T(被検査物Wから離間する方向に沿った被検査物Wの長さ)=5mmとされており、上述した(1)〜(5)の設計指標を全て満足している。 For example, in the eddy current flaw detection probe 1 shown on the left side of FIG. 9, w 1 (length of the A surface 4 along the longitudinal direction of the columnar inspection object W) = 5.5 mm, w 2 (separated from the inspection object W) Length of the B surface 5 along the direction to be) = 6.7 mm, h (distance from the ground to the lower end of the A surface 4 when the B surface 5 is in contact with the ground) = 5.1 mm, s ( The distance from the surface of the inspection object W to the end of the B surface 5 in the state where the A surface 4 is in contact with the inspection object W = 20.8 mm, D (depth from the ground surface to the corrosion point 11) ) = 35 mm, T (the length of the inspection object W along the direction away from the inspection object W) = 5 mm, which satisfies all the design indices (1) to (5) described above. .

また、図9の中央側に示す渦流探傷プローブ1でも、図9の右側に示す渦流探傷プローブ1でも、図9の左側に示す渦流探傷プローブ1の場合と同様に、上述した(1)〜(5)の設計指標を全て満足している。
このような検出感度が大きくなる深さdが異なる複数の渦流探傷プローブ1を用いれば、腐食箇所11の深さ方向の分布情報を得て、超音波診断など更なる検査や掘り返し確認の要否判断(スクリーニング)が可能となる。ただし、たった3個〜高々数個の信号から、腐食深さ分布を精度良く求めることは非現実的であるが、手間とコストがかかる超音波診断や掘り返しなどを行うかどうかの要否判断(スクリーニングの要否判断)が可能となるので、恩恵は大きい。
9 and the eddy current flaw detection probe 1 shown on the right side of FIG. 9 are the same as those of the eddy current flaw detection probe 1 shown on the left side of FIG. Satisfies all 5) design indexes.
If a plurality of eddy current flaw detection probes 1 having different depths d at which the detection sensitivity is increased are used, distribution information in the depth direction of the corroded portion 11 is obtained, and whether further inspection such as ultrasonic diagnosis or confirmation of dug-up confirmation is necessary. Judgment (screening) becomes possible. However, it is unrealistic to accurately determine the corrosion depth distribution from only three to several signals, but it is necessary to determine whether or not to perform ultrasonic diagnosis and dug-up that require labor and cost ( The necessity of screening) is possible, so the benefits are great.

ところで、上述した深さdが異なる複数の渦流探傷プローブ1を用いた減肉検知方法を実際に行う場合には、S/N比が大きくなる(検出感度が最大となる)深さdがそれぞれ[d1,d2,d3]となる複数の渦流探傷プローブ1を用い、同一の測定位置での複数の探傷検出信号[ΔV1,ΔV2,ΔV3]を測定する。
具体的には、図10Aに示すように、断面円形状とされた被検査物Wに対して、周方向に等間隔をあけて上述した3つの渦流探傷プローブ1を配置する。そして、3つの渦流探傷プローブ1を同時に旋回させて、それぞれの渦流探傷プローブ1で探傷検出信号を連続的に測定する。このようにすれば複数の探傷検出信号[ΔV1,ΔV2,ΔV3]を連続的に検出することができる。
By the way, when the thinning detection method using the plurality of eddy current flaw detection probes 1 having different depths d described above is actually performed, the depth d becomes large (the detection sensitivity is maximized). A plurality of flaw detection signals [ΔV 1 , ΔV 2 , ΔV 3 ] at the same measurement position are measured using a plurality of eddy current flaw detection probes 1 that are [d 1 , d 2 , d 3 ].
Specifically, as shown in FIG. 10A, the above-described three eddy current flaw detection probes 1 are arranged at equal intervals in the circumferential direction with respect to the inspection object W having a circular cross section. Then, the three eddy current flaw detection probes 1 are simultaneously rotated, and flaw detection signals are continuously measured by the respective eddy current flaw detection probes 1. In this way, a plurality of flaw detection detection signals [ΔV 1 , ΔV 2 , ΔV 3 ] can be detected continuously.

また、平板状の被検査物Wに対して、同一の測定値に上述した3つの渦流探傷プローブ1を交互に近接・対面させて、複数の探傷検出信号[ΔV1,ΔV2,ΔV3]を断続的に検出する。
このようにして測定された複数の探傷検出信号[ΔV1,ΔV2,ΔV3]を用いて、上述した深さ[d1,d2,d3]近傍の腐食量(減肉量)[e1,e2,e3]を、各プローブの応答行列[C]の逆行列[C]-1を重みとした[ΔV1,ΔV2,ΔV3]の線形結合の行列式(2)のように算出し、地際部分での深さ方向の減肉量を評価する。
Further, a plurality of flaw detection detection signals [ΔV 1 , ΔV 2 , ΔV 3 ] are obtained by alternately bringing the above-described three eddy current flaw detection probes 1 close to each other and facing the same measurement value with respect to the flat inspection object W. Is detected intermittently.
Using the plurality of flaw detection detection signals [ΔV 1 , ΔV 2 , ΔV 3 ] measured in this manner, the amount of corrosion (thickness reduction) in the vicinity of the depth [d 1 , d 2 , d 3 ] described above [ e 1 , e 2 , e 3 ] is a determinant (2) of a linear combination of [ΔV 1 , ΔV 2 , ΔV 3 ] with the inverse matrix [C] −1 of the response matrix [C] of each probe as a weight. And calculate the amount of thinning in the depth direction at the ground.

具体的には、図10Bに示すように、各渦流探傷プローブ1の感度中心[d1,d2,d3]をもとに、深さ方向を深さd1/2〜(d1+d2)/2の区画、深さ(d1+d2)/2〜(d2+d3)/2の区画、深さ(d2+d3)/2〜(d2+d3)/2+ d3までの3区画に分割し、それぞれの区画の腐食量(減肉量)を[e1,e2,e3]とする。
その減肉量に対する、3つの渦流探傷プローブ1の探傷検出信号の変化(腐食の有無の差)を[ΔV1, ΔV2, ΔV3]とすると、[ΔV1, ΔV2, ΔV3]を以下の式(5)のような線形結合の行列式として近似的に表現することができる。
Specifically, as shown in FIG. 10B, based on the sensitivity center [d 1 , d 2 , d 3 ] of each eddy current flaw detection probe 1, the depth direction is defined as depths d 1/2 to (d 1 + d 2 ) / 2 compartment, depth (d 1 + d 2 ) / 2 to (d 2 + d 3 ) / 2 compartment, depth (d 2 + d 3 ) / 2 to (d 2 + d 3 ) / 2 + d 3 and divide into 3 sections, and the amount of corrosion (thickness reduction) of each section is [e 1 , e 2 , e 3 ].
Assuming that changes in the flaw detection signals of the three eddy current flaw detection probes 1 with respect to the thickness reduction (difference of corrosion) are [ΔV 1 , ΔV 2 , ΔV 3 ], [ΔV 1 , ΔV 2 , ΔV 3 ] is It can be approximately expressed as a determinant of linear combination like the following formula (5).

なお、応答係数[Cij]は、上述した場合と同様に磁場解析で求めてもよいし、腐食(減肉)を模擬して、3つの区画を研削で単位深さ凹ませた3つの試験材を、3つの渦流探傷プローブ1を用いて、3つの被検査物Wあるいは測定箇所について9条件の実測測定から求めてもよい。このようにして得た3行3列の行列[Cij]の逆行列[C]-1を数学的に求め、それを上述した式(2)の右側の式に用いれば、同一測定位置についての深さ方向に分けられた3区画の減肉状態を[e1,e2,e3]として推定することが可能である。 The response coefficient [C ij ] may be obtained by magnetic field analysis in the same manner as described above, or three tests in which three sections are recessed by grinding to simulate corrosion (thinning). The material may be obtained from the actual measurement under nine conditions for the three inspection objects W or measurement locations using the three eddy current flaw detection probes 1. If the inverse matrix [C] −1 of the 3 × 3 matrix [C ij ] obtained in this way is obtained mathematically and used in the equation on the right side of the above equation (2), the same measurement position can be obtained. It is possible to estimate the thinning state of the three sections divided in the depth direction as [e 1 , e 2 , e 3 ].

上述した渦流探傷プローブ1を用いた減肉検知方法によれば、被検査物Wの地際部分の腐食状態を高い精度で検知することが可能となる。
ところで、上述した減肉検知方法では、渦電流が形成されてから、渦電流が急激に減少するまでの時間を計測することで、具体的には検出コイル7信号の減衰曲線の傾きの急変箇所の時刻を測定して、地際部分の減肉量、つまり地際部分の減肉状態を検知していた。しかし、このような減衰曲線の傾きの急変箇所を計測する方法では、センサの距離変化などの影響を直接受け、定量性(再現性)が悪く、渦電流が急激に減少しているかどうかの判断は、実際には困難な場合も多い。
According to the thinning detection method using the eddy current flaw detection probe 1 described above, it becomes possible to detect the corrosion state of the ground portion of the inspection object W with high accuracy.
By the way, in the thinning detection method described above, by measuring the time from when the eddy current is formed to when the eddy current rapidly decreases, specifically, a sudden change portion of the slope of the attenuation curve of the detection coil 7 signal. Was measured to detect the amount of thinning of the ground part, that is, the state of thinning of the ground part. However, in this method of measuring the sudden change point of the slope of the attenuation curve, it is directly affected by the sensor distance change, etc., and the quantitative (reproducibility) is poor, and it is judged whether the eddy current is decreasing rapidly. Is often difficult in practice.

例えば、図11は、磁性体コア2のA面4から被検査物Wの内部に浸透(拡散)した磁束線が地際部分の腐食箇所11を貫通し始めると、検出コイル7で検出される磁界が急速に減衰(散逸)する現象の実験結果を実際に示したものである。
図11Aは生信号のリニアスケール、図11Bは対数スケール、図11Cはそれによって求めた減衰定数λ(t)の時刻推移を、腐食なしの場合(破線)と比較して表示したものである。図11Aのリニアスケールを見ると、「減肉なし」〜「2mm減肉」までの全ての結果が重なっており、渦電流が急激に減少しているかどうかの判断が困難である。また、図11Bに示す対数スケールでも、図11Aよりはましであるものの、渦電流が急激に減少しているかどうかの判断は依然として困難なままである。
For example, in FIG. 11, when the magnetic flux lines that have penetrated (diffused) from the A surface 4 of the magnetic core 2 into the inspection object W begin to penetrate the corroded portion 11 at the ground, the detection coil 7 detects the magnetic flux line. The experimental results of the phenomenon that the magnetic field rapidly decays (dissipates) are shown.
11A shows the linear scale of the raw signal, FIG. 11B shows the logarithmic scale, and FIG. 11C shows the time transition of the attenuation constant λ (t) obtained thereby compared with the case without corrosion (broken line). Looking at the linear scale in FIG. 11A, all the results from “no thinning” to “2 mm thinning” overlap, and it is difficult to determine whether or not the eddy current is drastically reduced. In addition, even on the logarithmic scale shown in FIG. 11B, although it is better than FIG. 11A, it still remains difficult to determine whether the eddy current is rapidly decreasing.

図11Cは、渦電流の減衰定数λ(t)の時刻推移を、減肉量で比較して表示したものである。図11Cで用いられる減衰定数は、一般的な減衰曲線をI(t)=Io・exp(−λt))とした場合に、任意時刻の場合にλ(t)≡(dI/dt)/I(t)で定義される。図11Cで示すような減衰定数を用いれば、減肉量に合わせて減衰定数にはっきりとした差が見られるようになり、渦電流が急激に減少しているかどうかの判断を行うことが可能となる。   FIG. 11C shows the time transition of the eddy current attenuation constant λ (t) in comparison with the amount of thinning. The attenuation constant used in FIG. 11C is λ (t) ≡ (dI / dt) / I at an arbitrary time when the general attenuation curve is I (t) = Io · exp (−λt)). It is defined by (t). If the attenuation constant as shown in FIG. 11C is used, a clear difference can be seen in the attenuation constant according to the thinning amount, and it is possible to determine whether or not the eddy current is rapidly decreasing. Become.

つまり、本発明の渦流探傷プローブ1を用いた減肉検知方法では、渦流探傷プローブ1を用いて測定された探傷検出信号に対して、探傷検出信号から求めた減衰定数λを用いて、被検査物Wの地際部分の減肉状態を推定するようにしてもよい。
具体的には、測定で得られた減衰曲線の任意の時刻区間において、多項式回帰して減衰定数を算出し、その急変箇所を求めることができる。このようにして得られた減衰定数は、実際の腐食減肉量とは少し差があるが、あらかじめモデル試験を行って、実際の腐食減肉量との相関をとっておくことにより、得られた校正曲線を用いることで、サンプルの減肉量を正確に推定できる。
That is, in the thinning detection method using the eddy current flaw detection probe 1 according to the present invention, the attenuation constant λ obtained from the flaw detection signal is used for the flaw detection signal measured using the eddy current flaw detection probe 1. You may make it estimate the thinning state of the ground part of the thing W. FIG.
Specifically, in an arbitrary time section of the attenuation curve obtained by measurement, the attenuation constant is calculated by polynomial regression, and the sudden change point can be obtained. Although the attenuation constant obtained in this way is slightly different from the actual corrosion thinning amount, it can be obtained by conducting a model test in advance and correlating with the actual corrosion thinning amount. By using the calibration curve, it is possible to accurately estimate the thinning amount of the sample.

例えば、図11Dに示すように、時刻(t=0.8msec)において、腐食有りの減衰定数(検査しようとする腐食箇所11の減衰定数)と腐食無し(参照信号)の減衰定数との差が、実際の腐食量に対してどのような相関を示すのかを示したものが、図11Dである。この図11Dのような校正曲線をあらかじめ取得しておけば、多項式回帰により算出された減衰定数kの値を校正曲線を用いて校正しておくことで、実際の減肉量を正確に推定することができる。   For example, as shown in FIG. 11D, at time (t = 0.8 msec), the difference between the decay constant with corrosion (the decay constant of the corrosion spot 11 to be inspected) and the decay constant without corrosion (reference signal) is FIG. 11D shows what kind of correlation the actual corrosion amount is. If the calibration curve as shown in FIG. 11D is acquired in advance, the actual thinning amount is accurately estimated by calibrating the value of the attenuation constant k calculated by polynomial regression using the calibration curve. be able to.

なお、同じ被検査物Wを測定していても、渦流探傷プローブ1と被検査物Wとの距離が変化すると図11Eのように信号が大きく変化する。例えば、被検査物Wの表面における減肉なしの場所について探傷検出信号のデータを取り、得られた探傷検出信号を参照信号(レファレンス)とする。そして、検査しようとする腐食箇所11で測定される探傷検出信号のデータと参照信号との差を求める。   Even if the same inspection object W is measured, the signal changes greatly as shown in FIG. 11E when the distance between the eddy current flaw detection probe 1 and the inspection object W changes. For example, flaw detection detection signal data is taken for a place where there is no thinning on the surface of the inspection object W, and the obtained flaw detection signal is used as a reference signal (reference). Then, the difference between the data of the flaw detection detection signal measured at the corrosion location 11 to be inspected and the reference signal is obtained.

これは、減衰定数(率)λを用いない方式の場合、出力が3Vとなる時間の差を求めることとなる(図でセンサ距離0の場合、Δt0)。この方式で得られる減肉量と、減衰定数(率)λを求める方式で得られる減肉量とのセンサ距離による値の変化を図11Fに示す。この方式と比べ、減衰率λを求める方式は、センサ距離の変化の影響を受けにくく、精度よく減肉量の推定を行うことができることがわかる。 In the case of a method that does not use the attenuation constant (rate) λ, this means obtaining the time difference at which the output is 3 V (Δt 0 when the sensor distance is 0 in the figure). FIG. 11F shows a change in value depending on the sensor distance between the thinning amount obtained by this method and the thinning amount obtained by the method of obtaining the attenuation constant (rate) λ. Compared to this method, it can be seen that the method for obtaining the attenuation rate λ is less affected by changes in the sensor distance and can estimate the thinning amount with high accuracy.

上述したように、減衰曲線の絶対値の閾値クロス点から求める時定数ではなく、評価値として減衰定数λを用いることにより、被検査物Wと渦流探傷プローブ1間の距離変化による影響を少なくすることができるため、高精度で信頼性の高い、腐食度合の定量化が可能である。
ところで、上述した参照信号は、次のような2つの方法で得るのが好ましい。
As described above, by using the attenuation constant λ as the evaluation value instead of the time constant obtained from the threshold cross point of the absolute value of the attenuation curve, the influence due to the distance change between the inspection object W and the eddy current flaw detection probe 1 is reduced. Therefore, it is possible to quantify the degree of corrosion with high accuracy and reliability.
By the way, the reference signal described above is preferably obtained by the following two methods.

一つ目の方法は、図12に示すように、健全部分3について測定を行った場合の参照信号と、地際部分について測定を行った場合の探傷検出信号とを比較して、被検査物Wの地際部分の減肉状態を検知するに際しては、同一の渦流探傷プローブを地盤の表面から上方の健全部分3にリフトオフさせることで参照信号を得るというものである。
また、二つ目の方法は、同一の渦流探傷プローブを2つ用意し、一方の渦流探傷プローブを、地盤の表面から離れた健全部分3に対する参照信号をとるために地盤の表面から離して設置し、他方の渦流探傷プローブを、地際部分に対する信号をとるために地盤の表面に隣接させて設置し、参照信号と地際部分に対する信号との差分信号を用いて、被検査物Wの地際部分の減肉状態を検知するというものである。
As shown in FIG. 12, the first method is to compare the reference signal when measurement is performed on the healthy part 3 with the flaw detection signal when measurement is performed on the ground part. When detecting the thinned state of the ground portion of W, the reference signal is obtained by lifting off the same eddy current flaw detection probe from the surface of the ground to the healthy portion 3 above.
In the second method, two identical eddy current flaw detection probes are prepared, and one eddy current flaw detection probe is installed away from the ground surface in order to obtain a reference signal for the healthy part 3 away from the ground surface. The other eddy current flaw detection probe is installed adjacent to the surface of the ground in order to obtain a signal for the ground part, and the ground signal of the object W to be inspected is obtained using a difference signal between the reference signal and the signal for the ground part. This is to detect a thinning state at the edge.

これらの方法を用いれば、参照信号と探傷検出信号との差分信号を用いて、減肉量を正確に推定することができる。
また、上述した減肉検知方法において、任意時刻における減衰定数を求めるために必要な、測定減衰曲線から測定ノイズが平滑除去された値およびその時刻における微分値を求めるに際して、適合型移動平均法を用いてもよい。
If these methods are used, the amount of thinning can be accurately estimated using the difference signal between the reference signal and the flaw detection signal.
In addition, in the above-described thinning detection method, the adaptive moving average method is used to obtain the value obtained by smoothing and removing the measurement noise from the measurement attenuation curve and the differential value at that time, which are necessary for obtaining the attenuation constant at an arbitrary time. It may be used.

具体的には、この適合型移動平均法の一つであるSavitzky-Golay法は、本質的には等間隔離散データの最小二乗法であり、回帰精度はそれと同等である上に、重み付き移動平均計算という簡単な計算アルゴリズムから、単純な移動平均と比べ時間分解能の低下や元信号の歪を抑えることができるとともに、処理時間が短いという優位点がある。
つまり、Savitzky-Golay法を用いれば、信号減衰は式(6)のように示すことができる。
Specifically, the Savitzky-Golay method, which is one of the adaptive moving average methods, is essentially a least-squares method of equally spaced discrete data, and the regression accuracy is equivalent to that, and weighted moving Compared to a simple moving average, a simple calculation algorithm called an average calculation has the advantage that a reduction in time resolution and distortion of the original signal can be suppressed and the processing time is short.
That is, if the Savitzky-Golay method is used, signal attenuation can be expressed as shown in Equation (6).

Savitzky-Golay係数として、表1に示されるデータ数“5”の列の係数を使うと、式(6)を式(7)のように示すことができる。   When the coefficient of the column with the number of data “5” shown in Table 1 is used as the Savitzky-Golay coefficient, Expression (6) can be expressed as Expression (7).

より
λ(t)≡−(dI/dt)/I(t)
として減衰定数を時間の連続関数として求めることができる。
Λ (t) ≡- (dI / dt) / I (t)
The attenuation constant can be obtained as a continuous function of time.

なお、これら表1の係数は下記の公式から求めることができる。
つまり、移動平均の重み係数(回帰曲線:2-3次多項式)については、式(8)に示す数式を用いて、また一次微分の重み係数(回帰曲線:3-4次多項式)については、式(9)に示す数式を用いている。
The coefficients in Table 1 can be obtained from the following formula.
In other words, for the weighting factor of the moving average (regression curve: 2-3 order polynomial), using the formula shown in Equation (8), and for the weight coefficient of the first derivative (regression curve: 3-4 order polynomial), The mathematical formula shown in Formula (9) is used.

また、式(8)及び式(9)については、「A.Savitzky,M.J.E.Golay"Smoothing and Differention of Data bye Simplified Least Squares Procedures,"Analytical Chemistry, vol.36,no.8,pp1627-1639,1964」に記載されており、公式として知られるものである。
[第5実施形態]
次に、第5実施形態の渦流探傷プローブ1について、図に基づき説明する。
Moreover, about Formula (8) and Formula (9), "A.Savitzky, MJEGolay" Smoothing and Differention of Data bye Simplified Least Squares Procedures, "Analytical Chemistry, vol.36, no.8, pp1627-1639,1964" And is known as official.
[Fifth Embodiment]
Next, the eddy current flaw detection probe 1 according to the fifth embodiment will be described with reference to the drawings.

第5実施形態の渦流探傷プローブ1は、管状の強磁性体金属材の被検査物Wに対して、当該被検査物Wのうち、地盤基礎に埋設された地際部分の減肉状態を検知するための渦流探傷プローブであって、被検査物Wの地上に露出する表面に近接されると共に表面に平行とされたA面4と、地盤基礎の表面に近接されると共に地盤基礎の表面に平行とされたB面5と、A面4より上方に位置すると共に地盤基礎の表面に平行とされたC面10とを、3つの端部に備えたT字型の磁性体コア2と、磁性体コア2のA面4近傍に巻回された励磁コイル6と、磁性体コア2のB面5近傍に巻回された検出コイル71と、磁性体コア2のC面10近傍に巻回された検出コイル72と、を有するものである。   The eddy current flaw detection probe 1 according to the fifth embodiment detects a thinning state of a ground portion embedded in the ground foundation of the inspection object W with respect to the inspection object W of a tubular ferromagnetic metal material. An eddy current flaw detection probe that is close to the surface exposed to the ground of the inspection object W and parallel to the surface, and close to the surface of the ground foundation and on the surface of the ground foundation A T-shaped magnetic core 2 provided at three ends with a B surface 5 made parallel and a C surface 10 positioned above the A surface 4 and made parallel to the surface of the ground foundation; An excitation coil 6 wound around the A surface 4 of the magnetic core 2, a detection coil 71 wound around the B surface 5 of the magnetic core 2, and a winding near the C surface 10 of the magnetic core 2. The detection coil 72 is provided.

図13Aに示す渦流探傷プローブ1では、励磁コイル6で発生した磁束は被検査物Wが均一な状態であれば、B面5側の検出コイル71(以降、第1検出コイル71という)とC面10側の検出コイル72(以降、第2検出コイル72という)に同じように影響するため、励磁コイル6の電流(I)を変化させても2つの検出コイル71、72に発生する
磁束変化に起因する電圧(誘導起電力)は同じ(V1=V2)になり、コイル間の電圧は発生しない。
In the eddy current flaw detection probe 1 shown in FIG. 13A, the magnetic flux generated by the exciting coil 6 has a detection coil 71 (hereinafter referred to as the first detection coil 71) on the B surface 5 side and C if the inspection object W is in a uniform state. The magnetic flux changes generated in the two detection coils 71 and 72 even if the current (I) of the excitation coil 6 is changed because the detection coil 72 on the surface 10 side (hereinafter referred to as the second detection coil 72) is similarly affected. The voltage (inductive electromotive force) resulting from is the same (V1 = V2), and no voltage is generated between the coils.

ところが、地際部分に腐食減肉(強磁性体の消失部)があると第1検出コイル71と第2検出コイル72の起電力に差が発生する(V1≠V2)。この差を利用して腐食減肉の検知が感度良く測定が可能となる。一部が埋設された金属材は地際部分のみで腐食減肉が生じ、地上部の腐食減肉は軽微であることが多く、本渦流探傷プローブ1による腐食減肉検知が有効である。   However, if there is corrosion thinning (the disappearance part of the ferromagnetic material) at the ground part, a difference occurs in the electromotive force between the first detection coil 71 and the second detection coil 72 (V1 ≠ V2). Using this difference, corrosion thinning can be detected with high sensitivity. In the metal material partially embedded, corrosion thinning occurs only at the ground part, and the corrosion thinning on the ground part is often slight, and the detection of corrosion thinning by the eddy current flaw detection probe 1 is effective.

上述した第5実施形態の渦流探傷プローブ1を用いれば、磁性体コア2のA面4と被検査物Wの健全表面3aとを、できるだけ近接させることにより、渦流探傷プローブ1と被検査物Wがより強く磁気結合して、励磁コイル6電流により励磁される磁束線が、磁気抵抗低く、被検査物Wを容易に貫通する。そのため、地盤表面下の深い所に存在する腐食箇所11を通過して磁性体コア2のB面5に戻る磁束線の本数も増えて、検出コイル7に誘起される信号電圧の強度も大きく確保される。本プローブ構造であれば、励磁コイル6と第1検出コイル7、第2検出コイル7が近接しないため、構造上の干渉がなく、それぞれ独立に適した特性のコイルを製作できる。   If the eddy current flaw detection probe 1 according to the fifth embodiment described above is used, the eddy current flaw detection probe 1 and the inspection object W are arranged by bringing the A surface 4 of the magnetic core 2 and the sound surface 3a of the inspection object W as close as possible. Are more strongly magnetically coupled, and the magnetic flux line excited by the exciting coil 6 current has a low magnetic resistance and easily penetrates the inspection object W. For this reason, the number of magnetic flux lines passing through the corroded portion 11 existing deep in the ground surface and returning to the B surface 5 of the magnetic core 2 increases, and the strength of the signal voltage induced in the detection coil 7 is also ensured. Is done. With this probe structure, the exciting coil 6, the first detection coil 7, and the second detection coil 7 are not close to each other, so that there is no structural interference and coils having suitable characteristics can be manufactured independently.

また、第1検出コイル7と第2検出コイル7の差動(V2−V1)を検出信号とすることができるため、1回の測定で腐食減肉を定量的に検知することができる。
さらに、前述のように腐食減肉がない場合の出力はV2−V1=0であり、減肉が小さい場合もゲインを大きくして高感度で測定できる。
地表面に近接させて設置した渦流探傷プローブ1の、上方の健全部分3に対する参照信号と 上述した第5実施形態の渦流探傷プローブ1を用いれば、下方の埋設腐食部に対する本信号を同時に測定することで、その差分から埋設部の腐食具合が、感度高く、かつ効率良く推定することができる。さらに、渦流探傷プローブ1の検査対象物に向けたA面4が、腐食防止用の塗装その他被覆材により、近接することができない場合であっても、参照および本信号が同じ条件での差動式を行うことで、A面4の間隙の影響が相殺され、信頼性高い精度良い推定が可能となる。
Moreover, since the differential (V2-V1) between the first detection coil 7 and the second detection coil 7 can be used as a detection signal, corrosion thinning can be quantitatively detected by a single measurement.
Further, as described above, the output when there is no corrosion thinning is V2-V1 = 0, and even when the thinning is small, the gain can be increased and the measurement can be performed with high sensitivity.
Using the reference signal for the upper healthy portion 3 of the eddy current flaw detection probe 1 installed close to the ground surface and the eddy current flaw detection probe 1 of the fifth embodiment described above, this signal for the lower buried corrosion portion is simultaneously measured. Thus, the degree of corrosion of the buried portion can be estimated with high sensitivity and efficiency from the difference. Further, even when the A surface 4 directed toward the inspection object of the eddy current flaw detection probe 1 cannot be brought close to by a corrosion-preventing coating or other coating material, the reference and this signal are differential under the same conditions. By performing the equation, the influence of the gap on the A surface 4 is canceled out, and highly reliable and accurate estimation is possible.

図13Bは被検査物Wの地際付近が被覆材で保護されている場合の変形例である。この場合でも、本実施形態の渦流探傷プローブ1は健全部と腐食減肉部を一体の渦流探傷プローブ1で測定するため、防食目的の被覆材などの有無により渦流探傷プローブ1と被測定物間の距離が変動するような場合であっても、被検査物Wからの距離が第1検出コイル71と第2検出コイル72とで同時に変化するため、図13C〜図13Eに示すように距離の不均一(y1≠y2)を腐食と誤認することがない。但し、A面4が被検査物Wから離れることによって全体の信号電圧が小さくなるため、腐食減肉量の定量値は影響を受ける。定量評価する場合は、予めA面4からの被検査物Wの距離(y1)の影響を把握し、影響を受けない解析方法を適用するのがよい。
[第5実施形態の変形例1]
次に、第5実施形態の渦流探傷プローブ1の変形例1、2について、図に基づき説明する。
FIG. 13B is a modified example in the case where the vicinity of the ground of the inspection object W is protected by a covering material. Even in this case, since the eddy current flaw detection probe 1 of the present embodiment measures the sound part and the corrosion thinning part with the eddy current flaw detection probe 1 integrated, the eddy current flaw detection probe 1 and the object to be measured are detected depending on the presence or absence of a coating material for corrosion protection. Even if the distance varies, the distance from the object to be inspected W changes at the same time between the first detection coil 71 and the second detection coil 72. Therefore, as shown in FIGS. Non-uniformity (y1 ≠ y2) is not mistaken for corrosion. However, since the entire signal voltage is reduced when the A surface 4 is separated from the inspection object W, the quantitative value of the corrosion thinning amount is affected. In the case of quantitative evaluation, it is preferable to grasp the influence of the distance (y1) of the inspection object W from the A plane 4 in advance and apply an analysis method that is not affected.
[Modification 1 of Fifth Embodiment]
Next, modifications 1 and 2 of the eddy current flaw detection probe 1 according to the fifth embodiment will be described with reference to the drawings.

第5実施形態の渦流探傷プローブ1の変形例1は、磁性体コア2として、断面が略L字型のものが用いられ、B面5側に配備された検出コイル7の外側に、励磁コイル6が巻回状に配備されたものとなっている。また、A面4側の磁性体コア2の端部に対して、当該
端部の周縁部に補正コイル9が巻回状に配備されているものである。
第5実施形態の変形例1の渦流探傷プローブ1は、製作、加工、組立が容易である。つまり、セラミックス系のフェライトなどで形成された磁性体コア2は、切削研磨や、鉄粉成形体の金型プレスまたは切削研磨で加工する必要があり、湾曲した曲面などを自由に加工することは概して難しい。しかし、変形例1のように直角平面で囲まれたL字形状に渦流探傷プローブ1を設計すれば、磁性体コア2に対する加工も容易となり、また2つの検出コイル7や補正コイル9も内部が中空で単純矩形のソレノイドで良いため、巻線加工が容易に行え、組立分解もし易くなる。
[第5実施形態の変形例2]
次に、第5実施形態の変形例2の渦流探傷プローブ1について、図に基づき説明する。
In the modification 1 of the eddy current flaw detection probe 1 of the fifth embodiment, a magnetic core 2 having a substantially L-shaped cross section is used, and an excitation coil is provided outside the detection coil 7 disposed on the B surface 5 side. 6 is arranged in a winding shape. Further, the correction coil 9 is provided in a winding shape at the peripheral portion of the end portion of the magnetic core 2 on the A surface 4 side.
The eddy current flaw detection probe 1 according to the first modification of the fifth embodiment is easy to manufacture, process, and assemble. That is, the magnetic core 2 formed of ceramic ferrite or the like needs to be processed by cutting and polishing, die pressing or cutting and polishing of an iron powder molded body, and a curved curved surface or the like cannot be processed freely. Generally difficult. However, if the eddy current flaw detection probe 1 is designed in an L shape surrounded by a right-angled plane as in the first modification, the magnetic core 2 can be easily processed, and the two detection coils 7 and the correction coil 9 are also internally arranged. Since a hollow and simple rectangular solenoid may be used, winding processing can be easily performed and assembly and disassembly can be easily performed.
[Modification 2 of Fifth Embodiment]
Next, an eddy current flaw detection probe 1 according to Modification 2 of the fifth embodiment will be described with reference to the drawings.

第5実施形態の変形例2の渦流探傷プローブ1は、磁性体コア2には、A面4とB面5との交差部から内部に向けて、平行四辺形状の断面を有する切り欠き部が形成され、切り欠き部に、励磁コイル6、検出コイル7、及び補正コイル9が巻回されており、以下の式(2)を満足するものである。   In the eddy current flaw detection probe 1 of Modification 2 of the fifth embodiment, the magnetic core 2 has a notch portion having a parallelogram-shaped cross section from the intersection of the A surface 4 and the B surface 5 to the inside. The excitation coil 6, the detection coil 7, and the correction coil 9 are wound around the notch, and the following expression (2) is satisfied.

すなわち、変形例2の渦流探傷プローブ1は、被検査物Wの土際境界線から磁性体コア2の胴体部に向けて斜め方向に、励磁コイル6、検出コイル7、及び補正コイル9を巻回するための切り欠き部を断面が平行四辺形状となるように形成することによって、被検査物Wとの接触断面幅w1を磁性体コア2の地盤基礎からの高さhより大きくすると共に、地盤基礎に向けた断面幅w2を被検査物Wの表面からB平面の近い端までの距離より大きくしたものである。   That is, the eddy current flaw detection probe 1 according to the modified example 2 has the exciting coil 6, the detection coil 7, and the correction coil 9 wound in an oblique direction from the edge of the inspection object W toward the body portion of the magnetic core 2. By forming the notch for turning so that the cross-section has a parallelogram shape, the contact cross-sectional width w1 with the object W is made larger than the height h of the magnetic core 2 from the ground foundation, The cross-sectional width w2 facing the ground foundation is made larger than the distance from the surface of the inspection object W to the end near the B plane.

このような変形例2の渦流探傷プローブ1を用いれば、磁性体コア2形状のうち、感度に効く、被検査物Wとの接触断面幅:w1 および地盤基礎に向けた断面幅:w2 をできるだけ大きくとることができ、3コイル(励磁、検出、補正)の断面積も最大確保した稠密構造とすることができて、渦流探傷プローブ1の単位体積当たりの比感度を最も大きくすることができる。   If the eddy current flaw detection probe 1 according to the second modification is used, of the magnetic core 2 shape, the cross-sectional width with respect to the object W to be inspected: w1 and the cross-sectional width with respect to the ground foundation: w2 are effective as much as possible. The density can be increased, and a dense structure with the maximum cross-sectional area of three coils (excitation, detection, correction) can be obtained, and the specific sensitivity per unit volume of the eddy current flaw detection probe 1 can be maximized.

なお、今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。特に、今回開示された実施形態において、明示的に開示されていない事項、例えば、運転条件や操業条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な値を採用している。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. In particular, in the embodiment disclosed this time, matters that are not explicitly disclosed, for example, operating conditions and operating conditions, various parameters, dimensions, weights, volumes, and the like of a component deviate from a range that a person skilled in the art normally performs. Instead, values that can be easily assumed by those skilled in the art are employed.

1 渦流探傷プローブ
2 磁性体コア
3 健全部分
3a 健全表面
4 A面
5 B面
6 励磁コイル
7 検出コイル
71 第1検出コイル
72 第2検出コイル
8 磁気測定素子
9 補正コイル
10 C面
W 被検査物
DESCRIPTION OF SYMBOLS 1 Eddy current flaw detection probe 2 Magnetic body core 3 Healthy part 3a Healthy surface 4 A surface 5 B surface 6 Excitation coil 7 Detection coil 71 1st detection coil 72 2nd detection coil 8 Magnetic measuring element 9 Correction coil 10 C surface W Inspected object

Claims (13)

中実又は中空の柱状であって強磁性体金属材で形成され且つ基端部が地盤に埋設された被検査物に対し、地盤内であって前記地盤の表面に隣接する地際部分の減肉状態を検知するための渦流探傷プローブであって、
側面視で湾曲または屈曲した形状に形成されると共に、長手方向の一端側に、前記被検査物のうち地盤の表面から離れた健全部分の表面に対面するA面が形成され、長手方向の他端側に、前記地盤の表面に対面するB面が形成された磁性体コアと、
前記磁性体コアの長手方向の中途に巻回状に取り付けられた励磁コイルと、
前記磁性体コアの他端部に対して、当該端部の周縁に巻回状に取り付けられた検出コイルと、
を有することを特徴とする被検査物の地際部分の減肉状態を検知するための渦流探傷プローブ。
Compared to an object to be inspected that is solid or hollow and is made of a ferromagnetic metal material and whose base end is embedded in the ground, the reduction of the ground portion in the ground and adjacent to the surface of the ground An eddy current flaw detection probe for detecting a flesh condition,
Formed in a curved or bent shape when viewed from the side, an A surface facing the surface of a healthy portion of the object to be inspected away from the ground surface is formed on one end side in the longitudinal direction. On the end side, a magnetic core having a B surface facing the surface of the ground,
An exciting coil attached in a winding shape in the middle of the longitudinal direction of the magnetic core;
For the other end of the magnetic core, a detection coil attached to the periphery of the end in a winding shape,
An eddy current flaw detection probe for detecting a thinning state of a ground portion of an object to be inspected.
前記健全部分の複数箇所を断続的または連続的に測定するのに用いられる渦流探傷プローブであって、
前記渦流探傷プローブが、前記被検査物の健全表面に対面する前記磁性体コアのA面の中央側に磁気測定素子、または前記磁性体コアのA面の周縁部に巻回された補正コイル、を具備することを特徴とする請求項1に記載の被検査物の地際部分の減肉状態を検知するための渦流探傷プローブ。
An eddy current testing probe used to intermittently or continuously measure a plurality of locations of the healthy part,
The eddy current flaw detection probe is a magnetic measuring element on the center side of the A surface of the magnetic core facing the sound surface of the object to be inspected, or a correction coil wound around the peripheral portion of the A surface of the magnetic core, The eddy current flaw detection probe for detecting the thinning state of the ground portion of the inspection object according to claim 1, comprising:
厚みがに形成される被検査物に発生していて、前記地盤の表面から深さに位置する腐食部分に対して、
前記検出コイルが検出する信号のS/N比を大きくすべく、式(1)の関係を満足する
ことを特徴とする請求項1または2に記載の被検査物の地際部分の減肉状態を検知するための渦流探傷プローブ。
Thickness has occurred in the object to be formed, and for the corroded portion located at a depth from the surface of the ground,
The reduced thickness state of the ground portion of the object to be inspected according to claim 1 or 2, wherein the relationship of the expression (1) is satisfied in order to increase the S / N ratio of the signal detected by the detection coil. Eddy current flaw detection probe for detecting
前記健全表面に対面するA面と、前記地盤の表面に対面するB面と、前記A面より上方に位置すると共に前記地盤の表面に平行とされたC面とを、有する略T字型の磁性体コアと、
前記磁性体コアのA面側に巻回された励磁コイルと、
前記磁性体コアのB面側に巻回された第1の検出コイルと、
前記磁性体コアのC面側に巻回された第2の検出コイルと、
を有する
ことを特徴とする請求項1〜3のいずれかに記載の被検査物の地際部分の減肉状態を検知するための渦流探傷プローブ。
A substantially T-shaped surface having an A surface facing the sound surface, a B surface facing the surface of the ground, and a C surface positioned above the A surface and parallel to the surface of the ground. A magnetic core;
An exciting coil wound around the A surface of the magnetic core;
A first detection coil wound around the B-side of the magnetic core;
A second detection coil wound on the C surface side of the magnetic core;
The eddy current flaw detection probe for detecting the thinning state of the ground portion of the inspection object according to any one of claims 1 to 3.
前記磁性体コアとして、断面が略L字型のものが用いられ、
前記B面側に配備された検出コイルの外側に、前記励磁コイルが巻回状に配備されていること
を特徴とする請求項1〜3のいずれかに記載の被検査物の地際部分の減肉状態を検知するための渦流探傷プローブ。
As the magnetic core, one having a substantially L-shaped cross section is used.
The ground portion of the inspection object according to any one of claims 1 to 3, wherein the excitation coil is disposed in a wound shape outside the detection coil disposed on the B surface side. Eddy current flaw detection probe for detecting thinning conditions.
前記磁性体コアには、A面とB面との交差部から内部に向けて、平行四辺形状の断面を有する切り欠き部が形成され、
前記切り欠き部に、前記励磁コイル、検出コイル、及び補正コイルが巻回されており、以下の式(2)を満足することを特徴とする請求項1〜3のいずれかに記載の被検査物の地際部分の減肉状態を検知するための渦流探傷プローブ。
In the magnetic core, a notch portion having a parallelogram-shaped cross section is formed from the intersection of the A surface and the B surface toward the inside,
The to-be-inspected according to any one of claims 1 to 3, wherein the excitation coil, the detection coil, and the correction coil are wound around the notch, and the following equation (2) is satisfied. An eddy current flaw detection probe for detecting the thinning state of the ground part of an object.
請求項1〜6のいずれかに記載された渦流探傷プローブを用いて地際部分の減肉状態を検知するに際しては、
前記複数箇所の測定位置毎における、前記A面を貫通する磁束線の磁束密度、または前記補正コイルに発生する最大の起電力をモニタリングし、
前記磁束密度または前記最大の起電力の変動の相対比の4乗根を求め、
前記求められた4乗根の値で、前記測定位置で検出コイルから出力される信号を除することで、前記渦流探傷プローブと被検査物との間隙のバラツキによる感度誤差を補正しておく
ことを特徴とする渦流探傷プローブを用いた減肉検知方法。
In detecting the thinning state of the ground part using the eddy current flaw detection probe according to any one of claims 1 to 6,
Monitoring the magnetic flux density of the magnetic flux lines penetrating the A-plane at each of the plurality of measurement positions, or the maximum electromotive force generated in the correction coil;
Find the fourth root of the relative ratio of the fluctuation of the magnetic flux density or the maximum electromotive force,
The sensitivity error due to the variation in the gap between the eddy current flaw detection probe and the object to be inspected is corrected by dividing the signal output from the detection coil at the measurement position by the calculated fourth root value. A thinning detection method using an eddy current flaw detection probe.
互いに異なる深さdで前記S/N比が大きくなるように設計された複数の渦流探傷プローブを用い、
前記被検査物の表面の測定箇所に、前記複数の渦流探傷プローブのそれぞれを対面させて探傷検出信号を断続的または連続的に測定し、
それぞれの渦流探傷プローブで測定された同一の測定位置における探傷検出信号を総合して、被検査物の地際部分の減肉状態を検知すること
を特徴とする請求項7に記載の渦流探傷プローブを用いた減肉検知方法。
Using a plurality of eddy current flaw detection probes designed to increase the S / N ratio at different depths d,
Measuring the flaw detection signal intermittently or continuously by facing each of the plurality of eddy current flaw detection probes to the measurement location on the surface of the inspection object,
The eddy current flaw detection probe according to claim 7, wherein a thinning state of the ground portion of the inspection object is detected by combining flaw detection detection signals at the same measurement position measured by each eddy current flaw detection probe. Thinning detection method using
前記S/N比が大きくなる深さdがそれぞれ[d1,d2,d3・・・]となる複数の渦流探傷プローブを用い、前記同一の測定位置での複数の探傷検出信号[ΔV1,ΔV2, ΔV3・・・]を測定し、
前記測定された複数の探傷検出信号[ΔV1,ΔV2, ΔV3・・・]を用いて、当該深さ[d1,d2,d3・・・]の腐食量(減肉量)[e1,e2,e3・・・]を、前記複数の渦流探傷プローブの応答行列[C]の逆行列[C]-1を重みとした[ΔV1,ΔV2, ΔV3・・・]の線形結合の式で表現し、前記線形結合の式を用いて、被検査物Wの地際部分の減肉状態を検知する
ことを特徴とする請求項7に記載の渦流探傷プローブを用いた減肉検知方法。
Using a plurality of eddy current flaw detection probes whose depths d at which the S / N ratio increases become [d 1 , d 2 , d 3 ...], A plurality of flaw detection detection signals [ΔV at the same measurement position are used. 1 , ΔV 2 , ΔV 3 ...]
Using the measured flaw detection signals [ΔV 1 , ΔV 2 , ΔV 3 ...], The amount of corrosion (thickness reduction) at the depth [d 1 , d 2 , d 3 . [E 1 , e 2 , e 3 ...] Are weighted by the inverse matrix [C] −1 of the response matrix [C] of the plurality of eddy current flaw detection probes [ΔV 1 , ΔV 2 , ΔV 3. The eddy current flaw detection probe according to claim 7, wherein the thinning state of the ground portion of the inspection object W is detected using the linear combination formula. The thinning detection method used.
請求項1〜6のいずれか記載の渦流探傷プローブを用いて測定された探傷検出信号に対して、
前記探傷検出信号から求めた減衰定数λを用いて、被検査物の地際部分の減肉状態を推定する
ことを特徴とする渦流探傷プローブを用いた減肉検知方法。
For the flaw detection signal measured using the eddy current flaw detection probe according to claim 1,
A thinning detection method using an eddy current flaw detection probe, characterized in that a thinning state of a ground portion of an inspection object is estimated using an attenuation constant λ obtained from the flaw detection detection signal.
請求項1〜6のいずれか記載の渦流探傷プローブを用い、
前記健全部分について測定を行った場合の参照信号と、前記地際部分について測定を行った場合の信号とを比較して、被検査物の地際部分の減肉状態を検知するに際しては、
同一の渦流探傷プローブを地盤の表面から上方の健全部分にリフトオフさせることで前記参照信号を得る
ことを特徴とする渦流探傷プローブを用いた減肉検知方法。
Using the eddy current flaw detection probe according to any one of claims 1 to 6,
When detecting the thinning state of the ground part of the inspection object by comparing the reference signal when measuring the healthy part and the signal when measuring the ground part,
A thinning detection method using an eddy current flaw detection probe, wherein the reference signal is obtained by lifting off the same eddy current flaw detection probe from a ground surface to an upper healthy portion.
請求項1〜6のいずれかに記載された同一の渦流探傷プローブを2つ用意し、
一方の渦流探傷プローブを、地盤の表面から離れた健全部分に対する参照信号をとるために地盤の表面から離して設置し、
他方の渦流探傷プローブを、地際部分に対する信号をとるために地盤の表面に隣接させて設置し、
前記参照信号と地際部分に対する信号との差分信号を用いて、被検査物の地際部分の減肉状態を検知する
ことを特徴とする渦流探傷プローブを用いた減肉検知方法。
Preparing two identical eddy current flaw detection probes according to any one of claims 1 to 6;
One eddy current flaw detection probe is placed away from the ground surface in order to obtain a reference signal for a healthy part away from the ground surface,
Install the other eddy current flaw detection probe adjacent to the surface of the ground in order to take a signal to the ground part,
A thinning detection method using an eddy current flaw detection probe, wherein a thinning state of a ground portion of an inspection object is detected using a difference signal between the reference signal and a signal for the ground portion.
請求項8〜10のいずれかに記載の減肉検知方法において、
任意時刻における減衰定数を求めるために必要な、測定減衰曲線から測定ノイズが平滑除去された値およびその時刻における微分値を求めるに際して、適合型移動平均法を用いることを特徴とする渦流探傷プローブを用いた減肉検知方法。
In the thinning detection method in any one of Claims 8-10,
An eddy current flaw detection probe characterized by using an adaptive moving average method to obtain a value obtained by smoothing measurement noise from a measurement attenuation curve and a differential value at that time, which are necessary for obtaining an attenuation constant at an arbitrary time. The thinning detection method used.
JP2015226695A 2015-11-19 2015-11-19 Eddy current flaw detection probe for detecting a thinning condition of a ground portion of an inspection object and a method of detecting thickness loss using the eddy current flaw detection probe Active JP6529896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015226695A JP6529896B2 (en) 2015-11-19 2015-11-19 Eddy current flaw detection probe for detecting a thinning condition of a ground portion of an inspection object and a method of detecting thickness loss using the eddy current flaw detection probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015226695A JP6529896B2 (en) 2015-11-19 2015-11-19 Eddy current flaw detection probe for detecting a thinning condition of a ground portion of an inspection object and a method of detecting thickness loss using the eddy current flaw detection probe

Publications (2)

Publication Number Publication Date
JP2017096678A true JP2017096678A (en) 2017-06-01
JP6529896B2 JP6529896B2 (en) 2019-06-12

Family

ID=58817204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015226695A Active JP6529896B2 (en) 2015-11-19 2015-11-19 Eddy current flaw detection probe for detecting a thinning condition of a ground portion of an inspection object and a method of detecting thickness loss using the eddy current flaw detection probe

Country Status (1)

Country Link
JP (1) JP6529896B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110579528A (en) * 2019-08-13 2019-12-17 山东电力工业锅炉压力容器检验中心有限公司 ACFM probe and method for detecting GIS shell D-type weld joint
CN113340984A (en) * 2021-06-11 2021-09-03 南昌航空大学 Focusing probe for eddy current defect detection of metal component and using method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4952688A (en) * 1972-09-19 1974-05-22
JPH10325829A (en) * 1997-05-22 1998-12-08 Daido Steel Co Ltd Eddy current flaw detector
JP2001264299A (en) * 2000-03-16 2001-09-26 Nippon Hihakai Kensa Kk Metal plate flaw detecting probe
JP2009047664A (en) * 2007-08-23 2009-03-05 Toyota Motor Corp Method and apparatus for nondestructive measurement
WO2009044778A1 (en) * 2007-10-02 2009-04-09 Kaisei Engineer Co., Ltd. Welded-portion defect detecting method and device
JP2014194382A (en) * 2013-03-29 2014-10-09 Ttk Corp Residual average thickness estimation method based on estimation of average corrosion depth in ground-level corrosion impairment part

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4952688A (en) * 1972-09-19 1974-05-22
JPH10325829A (en) * 1997-05-22 1998-12-08 Daido Steel Co Ltd Eddy current flaw detector
JP2001264299A (en) * 2000-03-16 2001-09-26 Nippon Hihakai Kensa Kk Metal plate flaw detecting probe
JP2009047664A (en) * 2007-08-23 2009-03-05 Toyota Motor Corp Method and apparatus for nondestructive measurement
WO2009044778A1 (en) * 2007-10-02 2009-04-09 Kaisei Engineer Co., Ltd. Welded-portion defect detecting method and device
JP2014194382A (en) * 2013-03-29 2014-10-09 Ttk Corp Residual average thickness estimation method based on estimation of average corrosion depth in ground-level corrosion impairment part

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110579528A (en) * 2019-08-13 2019-12-17 山东电力工业锅炉压力容器检验中心有限公司 ACFM probe and method for detecting GIS shell D-type weld joint
CN110579528B (en) * 2019-08-13 2023-01-31 山东电力工业锅炉压力容器检验中心有限公司 ACFM probe and method for detecting GIS shell D-type weld joint
CN113340984A (en) * 2021-06-11 2021-09-03 南昌航空大学 Focusing probe for eddy current defect detection of metal component and using method thereof
CN113340984B (en) * 2021-06-11 2023-08-11 南昌航空大学 Focusing probe for eddy current defect detection of metal component and using method thereof

Also Published As

Publication number Publication date
JP6529896B2 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
RU2299399C2 (en) Method for determining object surface profile
EP2064515B1 (en) Inspection of an electrically conductive object using eddy currents
Jomdecha et al. Design of modified electromagnetic main-flux for steel wire rope inspection
US9030196B2 (en) Apparatus and method for eddy current inspection of tubular components
CN103353479B (en) The detection method that a kind of electromagnetic acoustic longitudinal wave guide is compound with Magnetic Flux Leakage Inspecting
JP2008506931A (en) Method and apparatus for non-destructive inspection of tubes
Kandroodi et al. Defect detection and width estimation in natural gas pipelines using MFL signals
Tamhane et al. Feature engineering of time-domain signals based on principal component analysis for rebar corrosion assessment using pulse eddy current
Tsukada et al. Magnetic detection of steel corrosion at a buried position near the ground level using a magnetic resistance sensor
Hayashi et al. Imaging of defect signal of reinforcing steel bar at high lift-off using a magnetic sensor array by unsaturated AC magnetic flux leakage testing
JP4662890B2 (en) Functional diagnosis method for concrete structures
EP3344982B1 (en) A method and system for detecting a material discontinuity in a magnetisable article
JP6529896B2 (en) Eddy current flaw detection probe for detecting a thinning condition of a ground portion of an inspection object and a method of detecting thickness loss using the eddy current flaw detection probe
US20210072187A1 (en) Non-destructive inspection device
JP2007240256A (en) Method and device for evaluating residual wall thickness by eddy current flaw detection
CN107576720B (en) Ferromagnetic slender component shallow layer damage magnetic emission detection method and magnetic emission detection system
RU2610350C1 (en) Eddy current testing method
RU2586261C2 (en) Device for magnetic flaw detector and method of reducing error in determining size of defects of pipeline magnetic flaw detectors
Song et al. Detecting internal defects of a steel plate by using low-frequency magnetic flux leakage method
JP6058436B2 (en) Eddy current flaw detector and eddy current flaw detection method
JP2004294341A (en) Flaw detection method and flaw detection apparatus by pulsed remote field eddy current
JP2021001814A (en) Nondestructive inspection method and nondestructive inspection device
JP6170473B2 (en) Thinning inspection method for part of buried structure
Goldfine et al. MWM®-Array Electromagnetic Techniques for Crack Sizing, Weld Assessment, Wall Loss/Thickness Measurement, and Mechanical Damage Profilometry
JP2019128161A (en) Analysis method, analysis program, and analysis apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190515

R150 Certificate of patent or registration of utility model

Ref document number: 6529896

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150