JP6058436B2 - Eddy current flaw detector and eddy current flaw detection method - Google Patents

Eddy current flaw detector and eddy current flaw detection method Download PDF

Info

Publication number
JP6058436B2
JP6058436B2 JP2013052236A JP2013052236A JP6058436B2 JP 6058436 B2 JP6058436 B2 JP 6058436B2 JP 2013052236 A JP2013052236 A JP 2013052236A JP 2013052236 A JP2013052236 A JP 2013052236A JP 6058436 B2 JP6058436 B2 JP 6058436B2
Authority
JP
Japan
Prior art keywords
eddy current
flaw
excitation
detection
inspected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013052236A
Other languages
Japanese (ja)
Other versions
JP2014178200A (en
Inventor
聡一 上野
聡一 上野
小林 徳康
徳康 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013052236A priority Critical patent/JP6058436B2/en
Publication of JP2014178200A publication Critical patent/JP2014178200A/en
Application granted granted Critical
Publication of JP6058436B2 publication Critical patent/JP6058436B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

本発明の実施形態は、渦電流探傷装置および渦電流探傷方法に関する。   Embodiments described herein relate generally to an eddy current flaw detector and an eddy current flaw detection method.

炉内構造物の供用期間中検査では非破壊検査手法が用いられており、代表的なものとして目視検査(Visual Testing:VT)、超音波検査(Ultrasonic Testing:UT)、渦電流探傷検査(Eddy Current Testing:ECT)がある。このうち、VTおよびECTは表面検査、UTは体積検査に用いられる。また、きず指示があった場合は、より詳細なUTによってきずのサイジングが行われる。   Non-destructive inspection methods are used for in-service inspection of furnace internal structures, and representative examples include visual inspection (VT), ultrasonic inspection (UT), and eddy current inspection (Eddy). Current Testing (ECT). Among these, VT and ECT are used for surface inspection, and UT is used for volume inspection. If there is a flaw instruction, the flaw sizing is performed by a more detailed UT.

しかし、炉内構造物には曲率半径の小さな狭隘かつ複雑形状を有する溶接部が多く存在する。このような部位に対しては超音波の入射角制御は難しく、また、その減衰も大きい事から高精度なサイジング(sizing)が困難とされている。その一方で、近年、ECTにパルス波を用いることで被検査体内に生じる渦電流の伝播現象を用いた検査手法であるパルス渦電流探傷法(Pulsed Eddy Current Testing:PECT)が提案されている。   However, many in-furnace structures have narrow and complicated welds with a small radius of curvature. For such a part, it is difficult to control the incident angle of the ultrasonic wave, and since the attenuation is large, high-precision sizing is difficult. On the other hand, in recent years, a pulsed eddy current testing method (PECT), which is an inspection method using a propagation phenomenon of eddy current generated in a body to be inspected by using a pulse wave for ECT, has been proposed.

PECTの原理について説明すると、まず、励磁コイルに矩形の電流を供給する。電流が切断された直後ではパルス波に含まれる周波数成分に従って、被検査体内には三次元的な渦電流分布が形成される。   The principle of PECT will be described. First, a rectangular current is supplied to the exciting coil. Immediately after the current is cut off, a three-dimensional eddy current distribution is formed in the body to be inspected according to the frequency component contained in the pulse wave.

この時、前記渦電流分布を誘導していた磁場の供給が停止するため、その後過渡的な変化を生じる。この過渡的な変化とは周波数成分に応じた減衰と被検査体深さ方向への渦電流の伝播である。   At this time, since the supply of the magnetic field that has induced the eddy current distribution is stopped, a transient change occurs thereafter. This transient change is attenuation according to the frequency component and propagation of eddy current in the depth direction of the inspection object.

また、低周波成分ほど減衰率が小さく表皮深さも深いため、被検査体表層に存在する高周波成分の渦電流が無視できる程度に減衰するまで時間が経過しても低周波成分の渦電流の伝播は続いており、被検査体表層の渦電流の影響を受けることなく深部の情報を検出することができる。   In addition, the lower the frequency component, the lower the attenuation factor and the deeper the skin depth. Therefore, the propagation of the low-frequency component eddy current even if time elapses until the eddy current of the high-frequency component existing on the surface of the test object attenuates to a negligible level. The information on the deep part can be detected without being affected by the eddy current on the surface layer of the object to be inspected.

さらに、非接触でパルス磁場を印加、渦電流信号を検出可能であることから、狭隘な複雑形状部位に対しても、サイジング可能性が期待できる。   Furthermore, since a pulse magnetic field can be applied in a non-contact manner and an eddy current signal can be detected, the possibility of sizing can be expected even for a narrow and complex shaped part.

このような原理を利用して、配管肉厚を測定する技術は、例えば、特開2005−106823号公報(特許文献1)に記載されている。   A technique for measuring the pipe wall thickness using such a principle is described in, for example, Japanese Patent Laid-Open No. 2005-106823 (Patent Document 1).

特開2005−106823号公報JP 2005-106823 A

特許文献1に記載されている技術は、アレイ状に配置したセンサ素子を用いてパルス磁場を印加し、被検査体に生じる渦電流の過渡変化を検出する。また、検出された渦電流信号に対して多項式による近似式を当てはめ、各次数項の係数から被検査体の厚さを推定する技術である。   In the technique described in Patent Document 1, a pulse magnetic field is applied using sensor elements arranged in an array to detect a transient change in eddy current generated in an object to be inspected. In addition, an approximate expression using a polynomial is applied to the detected eddy current signal, and the thickness of the object to be inspected is estimated from the coefficient of each order term.

この公知技術は、PECTの前述した特長と検査対象を含めた回路系で決まる特性を利用している。すなわち、パルス渦電流が誘導される領域全体の特性から厚みを推定する技術である。   This known technique utilizes the characteristics determined by the circuit system including the above-described features of PECT and the inspection object. That is, it is a technique for estimating the thickness from the characteristics of the entire region where the pulse eddy current is induced.

その一方で、従来のPECTは、伝播する渦電流の局所的な時間における信号変化については検出しないため、きずの様に局所的な渦電流分布の変化が時間差を持って生じる対象に対して適用する場合に課題がある。すなわち、きずの深さを測定するためには、きずの両端部で生じる渦電流分布の過渡変化を検出することが必要となる。   On the other hand, since conventional PECT does not detect signal changes in the local time of propagating eddy currents, it can be applied to objects in which changes in local eddy current distribution occur with a time difference like flaws. There are challenges when doing so. That is, in order to measure the depth of the flaw, it is necessary to detect a transient change in the eddy current distribution generated at both ends of the flaw.

また、きずの深部で生じる渦電流分布の過渡変化は、その渦電流強度が十分でないと検出が困難になるため、非破壊検査にPECTを使用する場合、大型構造物等の表面から遠い位置(深い位置)での探傷が必要となる被検査対象に対しても検査精度を維持できるかの点で課題がある。すなわち、深い位置に存在するきずの深部で生じる渦電流強度を適切に検出することが必要となる。   In addition, transient changes in the eddy current distribution that occurs in the deep part of the flaw are difficult to detect unless the eddy current intensity is sufficient. Therefore, when using PECT for nondestructive inspection, a position far from the surface of a large structure or the like ( There is a problem in that the inspection accuracy can be maintained even for an inspection object that requires flaw detection at a deep position. That is, it is necessary to appropriately detect the eddy current intensity generated in the deep part of the flaw existing at a deep position.

本発明は、上述した事情を考慮してなされたものであり、パルス励磁渦電流探傷検査によるきずのサイジング可能な渦電流探傷装置および渦電流探傷方法を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and an object thereof is to provide an eddy current flaw detection apparatus and an eddy current flaw detection method capable of sizing flaws by pulse excitation eddy current flaw inspection.

また、本発明の他の目的は、パルス励磁渦電流探傷検査によるきずのサイジングができ、当該サイジングの際に、深い位置を探傷することが必要となる被検査対象に対しても、検査精度を維持可能な渦電流探傷装置および渦電流探傷方法を提供することにある。   In addition, another object of the present invention is to enable flaw sizing by pulse excitation eddy current flaw inspection, and to inspect the inspection target that requires flaw detection at a deep position during the sizing. An object of the present invention is to provide an eddy current flaw detection apparatus and a eddy current flaw detection method that can be maintained.

本発明の実施形態に係る渦電流探傷装置は、上述した課題を解決するため、被検査体内にパルス磁場を励起し渦電流を形成する励磁コイルを同一平面内に2個以上配置可能に構成される励磁体の前記励磁コイルの各々にパルス状の電流を供給する励磁手段と、前記渦電流の過渡的な分布変化を検出する検出素子を少なくとも1個有する検出体から前記少なくとも1個の検出素子の各々で検出する電圧信号を受信する検出手段と、前記励磁体および前記検出体を把持し、前記励磁体および前記検出体を走査させる把持手段と、前記検出手段で検出された前記電圧信号波形の上包絡線と下包絡線の差分の変化の総和を算出することで得られる2点以上の総和の極大のうち、前記走査の方向に対して連続する2点の極大値の出現位置に基づいて被検査体内に存在するきずの位置を算出する一方、算出する位置に存在する前記被検査体内のきずの深さを、前記検出手段で検出される電圧信号の周波数スペクトルにおける中心周波数の時間変化に基づいて算出する演算抽出手段と、前記励磁コイルの各々に供給されるパルスの電流によって形成される渦電流が、前記被検査体内で時間差をもって重畳するように前記励磁手段を制御する制御手段と、を具備することを特徴とする。 In order to solve the above-described problem, an eddy current flaw detector according to an embodiment of the present invention is configured such that two or more exciting coils that excite a pulsed magnetic field to form an eddy current can be arranged in the same plane in a subject. The at least one detection element from an excitation means for supplying a pulsed current to each of the excitation coils of the excitation body and at least one detection element for detecting a transient distribution change of the eddy current Detection means for receiving a voltage signal detected by each of the above, a gripping means for gripping the excitation body and the detection body, and scanning the excitation body and the detection body, and a voltage signal detected by the detection means . Among the maximums of the sum of two or more points obtained by calculating the sum of changes in the difference between the upper envelope and the lower envelope of the waveform, it appears at the position where the maximum value of two points continuous in the scanning direction appears. Based on While calculating the position of the flaw existing in the inspection object, the depth of the flaw in the inspection object existing at the position to be calculated is based on the temporal change of the center frequency in the frequency spectrum of the voltage signal detected by the detection means. And a calculation means for controlling the excitation means such that an eddy current formed by a pulse current supplied to each of the excitation coils is superimposed with a time difference in the subject. It is characterized by comprising.

本発明の実施形態に係る渦電流探傷方法は、上述した課題を解決するため、被検査体内にパルス磁場を励起し渦電流を形成する励磁コイルを同一平面内に2個以上配置可能に構成される励磁体の前記励磁コイルの各々にパルス状の電流を供給する励磁手段と、前記渦電流の過渡的な分布変化を検出する検出素子を少なくとも1個有する検出体から前記少なくとも1個の検出素子の各々で検出する電圧信号を受信する検出手段と、前記検出手段で受信される電圧信号の波形から得られる情報に基づいて前記被検査体内に存在するきずの位置を算出する一方、算出する位置に存在する前記被検査体内のきずの深さを、前記電圧信号の周波数スペクトルにおける中心周波数の時間変化に基づいて算出する演算抽出手段と、前記励磁体、前記検出体、および前記励磁手段を制御する制御手段と、を具備する渦電流探傷装置を用いて行う渦電流探傷方法であり、前記励磁手段が、前記励磁コイルの各々にパルス状の電流を供給するステップと、前記検出手段が、前記少なくとも1個の検出素子の各々で検出する前記電圧信号を受信するステップと、前記演算抽出手段が、前記電圧信号を受信するステップで受信される前記電圧信号の波形の上包絡線と下包絡線の差分の変化の総和を算出することで得られる2点以上の総和の極大のうち、前記励磁体および前記検出体を走査する方向に対して連続する2点の極大値の出現位置に基づいて前記被検査体内に存在するきずの位置を算出する一方、算出する位置に存在する前記被検査体内のきずの深さを、前記電圧信号の周波数スペクトルにおける中心周波数の時間変化に基づいて算出するステップと、前記制御手段が、前記電圧信号の周波数スペクトルにおける中心周波数の時間変化が生じない場合に、前記励磁体および前記検出体の走査を停止させ、前記励磁コイルの各々に時間差を有するパルス状の電流を供給して、前記渦電流が前記被検査体内で時間差をもって重畳するように、前記励磁体、前記検出体、および前記励磁手段を制御するステップと、を具備することを特徴とする。 In order to solve the above-described problem, the eddy current flaw detection method according to the embodiment of the present invention is configured such that two or more exciting coils that excite a pulsed magnetic field and form an eddy current can be arranged in the same plane in the inspected body. The at least one detection element from an excitation means for supplying a pulsed current to each of the excitation coils of the excitation body and at least one detection element for detecting a transient distribution change of the eddy current A detection means for receiving a voltage signal detected by each of the detection means, and a position for calculating the position of the flaw existing in the inspected body based on information obtained from the waveform of the voltage signal received by the detection means Calculation extraction means for calculating the depth of the flaw in the body to be inspected present on the basis of the temporal change of the center frequency in the frequency spectrum of the voltage signal, the excitation body, the detection body, And an eddy current flaw detection method performed using an eddy current flaw detector comprising the control means for controlling the excitation means, wherein the excitation means supplies a pulsed current to each of the excitation coils, The detection means receives the voltage signal detected by each of the at least one detection element, and the computation extraction means receives the voltage signal waveform received in the step of receiving the voltage signal. Of the local maximum of two or more points obtained by calculating the sum of changes in the difference between the envelope and the lower envelope, the local maximum of two points in the scanning direction of the excitation body and the detection body While calculating the position of a flaw existing in the inspected body based on the appearance position of the flaw, the depth of the flaw in the inspected object existing at the calculated position is calculated in the frequency spectrum of the voltage signal. A step of calculating based on a temporal change in frequency, and when the control means does not cause a temporal change in the center frequency in the frequency spectrum of the voltage signal, the scanning of the excitation body and the detection body is stopped, and the excitation Supplying a pulsed current having a time difference to each of the coils, and controlling the excitation body, the detection body, and the excitation means so that the eddy current is superimposed with a time difference in the inspected body; It is characterized by comprising.

本発明によれば、パルス励磁渦電流探傷検査(PECT)において、きずによる局所的な渦電流分布の変化を検出することができ、きずのサイジングが可能となる。また、きずのサイジングの際に、深い位置を探傷することが必要となる被検査対象に対しても検査精度を維持することができる。   According to the present invention, a local change in eddy current distribution caused by a flaw can be detected in pulse excitation eddy current flaw inspection (PECT), and flaw sizing becomes possible. In addition, it is possible to maintain the inspection accuracy even for an inspection object that requires flaw detection at a deep position when sizing a flaw.

本発明の実施形態に係る渦電流探傷装置の構成を示す機能ブロック図。The functional block diagram which shows the structure of the eddy current flaw detector which concerns on embodiment of this invention. 本発明の実施形態に係る渦電流探傷装置で適用される励磁コイルの配置例を説明する説明図。Explanatory drawing explaining the example of arrangement | positioning of the exciting coil applied with the eddy current flaw detector which concerns on embodiment of this invention. 本発明の実施形態に係る渦電流探傷装置において計測される検出信号の一例を示した説明図。Explanatory drawing which showed an example of the detection signal measured in the eddy current flaw detector which concerns on embodiment of this invention. 本発明の実施形態に係る渦電流探傷装置において計測される検出信号の一例を示した説明図。Explanatory drawing which showed an example of the detection signal measured in the eddy current flaw detector which concerns on embodiment of this invention. 本発明の実施形態に係る渦電流探傷装置によるきずの深端部の検出時刻を同定する方法を説明する説明図であり、(A)は検出電圧のタイムチャート、(B)はきず深端部まで渦電流が到達した場合の検出電圧の周波数スペクトル図。It is explanatory drawing explaining the method of identifying the detection time of the deep end part of a flaw by the eddy current flaw detector which concerns on embodiment of this invention, (A) is a time chart of a detection voltage, (B) is a flaw deep end part. The frequency spectrum figure of the detection voltage when an eddy current reaches to. 本発明の実施形態に係る渦電流探傷装置によるきずの深端部の検出時刻を同定する方法を説明する説明図であり、きず深端部まで渦電流が到達しない場合における検出電圧の周波数スペクトル図。It is explanatory drawing explaining the method of identifying the detection time of the deep end part of a flaw by the eddy current flaw detector which concerns on embodiment of this invention, and the frequency spectrum figure of the detection voltage when an eddy current does not reach a flaw deep end part . 本発明の実施形態に係る渦電流探傷装置が励磁体に供給するパルス電流の時間差付与パターンの第1の例を示す説明図。Explanatory drawing which shows the 1st example of the time difference provision pattern of the pulse current which the eddy current flaw detector which concerns on embodiment of this invention supplies to an exciting body. 本発明の実施形態に係る渦電流探傷装置が励磁体に供給するパルス電流の時間差付与パターンの第2の例を示す説明図。Explanatory drawing which shows the 2nd example of the time difference provision pattern of the pulse current which the eddy current flaw detector which concerns on embodiment of this invention supplies to an exciting body. 本発明の実施形態に係る渦電流探傷装置が励磁体に供給するパルス電流の時間差付与パターンの第3の例を示す説明図。Explanatory drawing which shows the 3rd example of the time difference provision pattern of the pulse current which the eddy current flaw detector which concerns on embodiment of this invention supplies to an exciting body. 本発明の実施形態に係る渦電流探傷装置において使用される校正試験片の一例を示す概略図。Schematic which shows an example of the calibration test piece used in the eddy current flaw detector which concerns on embodiment of this invention.

本発明の実施形態に係る渦電流探傷装置および渦電流探傷方法について、図面を参照して説明する。なお、以下の説明においては、上、下、左、右等の方向を示す言葉は、図示した状態または通常の使用状態を基準とする。   An eddy current flaw detection apparatus and an eddy current flaw detection method according to an embodiment of the present invention will be described with reference to the drawings. In the following description, words indicating directions such as up, down, left, and right are based on the illustrated state or the normal use state.

本発明の実施形態に係る渦電流探傷装置および渦電流探傷方法は、例えば、原子炉管台、炉底部、または金属配管等の金属構造材全般の検査に適用することができ、金属構造材に発生したきずの深さを同定することができる技術である。   The eddy current flaw detection apparatus and the eddy current flaw detection method according to the embodiment of the present invention can be applied to general inspection of metal structural materials such as a reactor pedestal, a reactor bottom, or a metal pipe, for example. This is a technique that can identify the depth of the generated flaw.

また、本発明の実施形態に係る渦電流探傷装置および渦電流探傷方法では、被検査対象のより深い位置に存在するきずの深部で生じる渦電流強度を適切に検出することができるので、大型の金属構造物等のより深い位置に存在するきずの深部で生じる渦電流強度を適切に検出することが必要となる被検査対象に対しても、検査精度を低下させることなく維持することができる。   Further, in the eddy current flaw detection apparatus and the eddy current flaw detection method according to the embodiment of the present invention, it is possible to appropriately detect the eddy current intensity generated in the deep part of the flaw existing deeper in the inspection target, Even for an object to be inspected for which it is necessary to appropriately detect the eddy current intensity generated in the deep part of the flaw existing in a deeper position such as a metal structure, the inspection accuracy can be maintained without lowering.

図1は、本発明の実施形態に係る渦電流探傷装置の一例である渦電流探傷装置10の構成を示す機能ブロック図である。   FIG. 1 is a functional block diagram showing a configuration of an eddy current flaw detector 10 which is an example of an eddy current flaw detector according to an embodiment of the present invention.

渦電流探傷装置10は、被検査体1の表面の複数箇所で被検査体1の内部へ向かって伝播する渦電流(進行波)を発生させ、波の重ね合わせの原理により、被検査体1の探傷したい深さの範囲でより渦電流が強まるように励磁電流を供給するタイミングや大きさを制御することで、従来のPECTと比較して金属構造材内部のより深い領域での渦電流強度を高くすることができ、被検査体1のより深い位置に存在するきずの深さを同定することが可能な渦電流探傷装置である。   The eddy current flaw detector 10 generates eddy currents (traveling waves) that propagate toward the inside of the inspection object 1 at a plurality of locations on the surface of the inspection object 1, and the inspection object 1 is in accordance with the principle of wave superposition. Compared with conventional PECT, the eddy current intensity in deeper regions in the metal structure is controlled by controlling the timing and magnitude of the excitation current so that the eddy current becomes stronger in the depth range where the flaw detection is desired. This is an eddy current flaw detector capable of identifying the depth of a flaw existing at a deeper position of the inspection object 1.

渦電流探傷装置10は、パルス励磁渦電流探傷検査(PECT)によって被検査体1のきず2の有無を検査する装置であり、例えば、同一平面内に配置される複数個(図1に示される例では3個)の励磁コイル11(11a〜11c)等の励磁要素を有する励磁体12と、把持手段13と、励磁手段14と、複数個(図1に示される例では3個)の検出素子15(15a〜15c)を有する検出体16と、検出手段17と、演算抽出手段18と、制御手段19と、表示手段21と、を具備する。   The eddy current flaw detection apparatus 10 is an apparatus for inspecting the presence or absence of a flaw 2 of the object 1 by pulse excitation eddy current flaw inspection (PECT). For example, a plurality of eddy current flaw detection apparatuses 10 (shown in FIG. 1) are arranged in the same plane. In the example, the excitation body 12 having excitation elements such as the excitation coils 11 (11a to 11c), the gripping means 13, the excitation means 14, and a plurality (three in the example shown in FIG. 1) are detected. A detection body 16 having elements 15 (15a to 15c), a detection means 17, a calculation extraction means 18, a control means 19, and a display means 21 are provided.

励磁コイル11(11a〜11c)は、励磁手段14からパルス状の電流(励磁電流)の供給を受けて被検査体1にパルス磁場を励起し、渦電流を形成する。   The exciting coil 11 (11a to 11c) is supplied with a pulsed current (exciting current) from the exciting means 14 to excite a pulsed magnetic field in the device under test 1 to form an eddy current.

励磁体12は、例えば、同一平面内に配置される3個の励磁コイル11a〜11c等の複数個の励磁要素を有し、把持手段13によって、三次元的に移動可能な状態で把持される。   The exciter 12 has a plurality of exciting elements such as three exciting coils 11a to 11c arranged in the same plane and is gripped by the gripping means 13 in a three-dimensionally movable state. .

把持手段13は、励磁体12と検出体16と把持する。把持手段13は、励磁体12および検出体16を把持しつつ励磁体12および検出体16を被検査体1の表面(検査面)上の所望の地点に移動させる機能と、三次元空間内に設定される原点Oを基準とした励磁コイル11a〜11c(励磁体12)および検出素子15a〜15c(検出体16)の位置および姿勢情報を記録し、制御手段19へ伝送する機能とを有する。   The gripping means 13 grips the exciter 12 and the detector 16. The gripping means 13 has a function of moving the exciter 12 and the detector 16 to a desired point on the surface (inspection surface) of the device under test 1 while holding the exciter 12 and the detector 16 and within the three-dimensional space. The position and orientation information of the excitation coils 11 a to 11 c (excitation body 12) and the detection elements 15 a to 15 c (detection body 16) with the set origin O as a reference is recorded and transmitted to the control means 19.

励磁手段14は、各励磁コイル11a〜11cと電気的に接続される。励磁手段14は、パルス状の電流を発生させて、発生させたパルス状の電流を励磁電流として各励磁コイル11a〜11cに供給する。   The exciting means 14 is electrically connected to the exciting coils 11a to 11c. The exciting means 14 generates a pulsed current and supplies the generated pulsed current to the exciting coils 11a to 11c as an exciting current.

検出素子15(15a〜15c)は、励磁体12によって被検査体1に形成される渦電流の過渡的な広がりによる渦電流分布変化を検出する。検出素子15の個数や配置は検出の分解能や1回の走査で探傷できる範囲を考慮して適宜決定される。また、検出素子15は、コイル、ホール素子、MRセンサ等の磁場を検出可能な各種の検出素子を適用することができる。   The detection element 15 (15a to 15c) detects an eddy current distribution change due to a transient spread of the eddy current formed in the device under test 1 by the exciter 12. The number and arrangement of the detection elements 15 are appropriately determined in consideration of detection resolution and a range in which flaws can be detected by one scan. As the detection element 15, various detection elements capable of detecting a magnetic field such as a coil, a Hall element, and an MR sensor can be applied.

検出体16は、例えば、3個の検出素子15a〜15c等の複数個の検出素子を有し、把持手段13によって、三次元的に移動可能な状態で把持される。なお、検出体16は、励磁体12と一体的に収容した状態で適用することもできる(例えば、後述の図4に示されるセンサ43)。   The detection body 16 has a plurality of detection elements such as three detection elements 15a to 15c, for example, and is gripped by the gripping means 13 in a three-dimensionally movable state. In addition, the detection body 16 can also be applied in the state accommodated integrally with the excitation body 12 (for example, the sensor 43 shown by FIG. 4 mentioned later).

検出手段17は、各検出素子15a〜15cと電気的に接続される。検出手段17は、各検出素子15a〜15cに生じる電気信号を検出し、検出した電気信号を検出信号として演算抽出手段18へ伝送する。また、検出手段17は、増幅器(アンプ)と濾波器(フィルタ)とを有しており、検出された電気信号を適宜増幅およびノイズ除去して演算抽出手段18へ伝送する。   The detection means 17 is electrically connected to each detection element 15a-15c. The detection means 17 detects an electrical signal generated in each of the detection elements 15a to 15c, and transmits the detected electrical signal to the calculation extraction means 18 as a detection signal. The detection means 17 has an amplifier and a filter, and appropriately amplifies and removes the detected electric signal and transmits it to the calculation extraction means 18.

演算抽出手段18は、励磁手段14、検出手段17、および制御手段19と電気的に接続される。演算抽出手段18は、励磁手段14からどのような励磁電流を供給したかを示す情報を受け取り、検出手段17から検出信号(電気信号)を受け取り、制御手段19から励磁コイル11a〜11c(励磁体12)および検出素子15a〜15c(検出体16)の位置情報、および所定の波形分析処理の実行指令を受け取る。   The calculation extraction unit 18 is electrically connected to the excitation unit 14, the detection unit 17, and the control unit 19. The calculation extraction means 18 receives information indicating what excitation current is supplied from the excitation means 14, receives a detection signal (electric signal) from the detection means 17, and receives excitation signals 11 a to 11 c (excitation bodies) from the control means 19. 12) and position information of the detecting elements 15a to 15c (detecting body 16) and a predetermined waveform analysis processing execution command are received.

演算抽出手段18は、これらの情報および指令を受け取ると、検出手段17から伝送される検出信号(電気信号)に対して、所定の波形分析処理(詳細は後述する)を行うことで、被検査体1に存在し得るきず2のサイジングを行う。演算抽出手段18が所定の波形分析処理した結果は、制御手段19に与えられる。   Upon receiving these information and commands, the operation extraction means 18 performs a predetermined waveform analysis process (details will be described later) on the detection signal (electrical signal) transmitted from the detection means 17, thereby inspecting the object to be inspected. Sizing flaw 2 that may exist in body 1. The result of the predetermined waveform analysis processing performed by the arithmetic extraction means 18 is given to the control means 19.

制御手段19は、把持手段13、励磁手段14、演算抽出手段18、および表示手段21と電気的に接続されており、把持手段13、励磁手段14、演算抽出手段18、および表示手段21を制御する。   The control means 19 is electrically connected to the gripping means 13, the excitation means 14, the calculation extraction means 18, and the display means 21, and controls the gripping means 13, the excitation means 14, the calculation extraction means 18, and the display means 21. To do.

制御手段19は、把持手段13に移動指令を与えて、励磁体12および検出体16を独立的に被検査体1の表面(検査面)上の所望の地点に移動させる。また、制御手段19は、位置情報伝送指令を与えて、把持手段13が取得した励磁コイル11a〜11c(励磁体12)および検出素子15a〜15c(検出体16)の位置情報を受け取る。制御手段19が受け取る励磁コイル11a〜11c(励磁体12)および検出素子15a〜15c(検出体16)の位置情報は、演算抽出手段18へ与えられる。   The control means 19 gives a movement command to the gripping means 13 and moves the exciter 12 and the detector 16 independently to desired points on the surface (inspection surface) of the object 1 to be inspected. Further, the control means 19 gives a position information transmission command and receives the position information of the excitation coils 11a to 11c (excitation body 12) and the detection elements 15a to 15c (detection body 16) acquired by the gripping means 13. Position information of the excitation coils 11a to 11c (excitation body 12) and the detection elements 15a to 15c (detection body 16) received by the control means 19 is given to the calculation extraction means 18.

制御手段19は、励磁手段14に励磁電流制御指令を与えて、励磁手段14が発生させる励磁電流(励磁パルス)の入/切(ON/OFF)、大きさ、パルスの立ち上がり時間、パルスの立ち下がり時間、幅、周期等を制御する。渦電流探傷装置10では、当該制御によって、時間差を付与したパルス電流(図8〜10)を励磁コイル11a〜11cに供給することができる。   The control means 19 gives an excitation current control command to the excitation means 14 to turn on / off (ON / OFF) the excitation current (excitation pulse) generated by the excitation means 14, the magnitude, the rise time of the pulse, and the rise of the pulse. Control fall time, width, period, etc. In the eddy current flaw detector 10, the pulse current (FIGS. 8 to 10) with a time difference can be supplied to the exciting coils 11a to 11c by the control.

制御手段19は、励磁コイル11a〜11c(励磁体12)および検出素子15a〜15c(検出体16)の位置情報を演算抽出手段18に与えるとともに、演算抽出手段18に所定の波形分析処理を実行させる指令を与える。演算抽出手段18が所定の波形分析処理した結果は、制御手段19を介して表示手段21に与えられ、表示手段21にて表示される。   The control means 19 gives the position information of the excitation coils 11a to 11c (excitation body 12) and the detection elements 15a to 15c (detection body 16) to the calculation extraction means 18 and executes a predetermined waveform analysis process on the calculation extraction means 18. Give a directive to The result of the predetermined waveform analysis processing performed by the arithmetic extraction means 18 is given to the display means 21 via the control means 19 and displayed on the display means 21.

なお、渦電流探傷装置10において、励磁体12を構成する励磁コイル11の配置は、図1に示されるような直線状(1列)に限定されず、任意に配置することができる。   In the eddy current flaw detector 10, the arrangement of the exciting coils 11 constituting the exciter 12 is not limited to a linear shape (one line) as shown in FIG. 1, and can be arbitrarily arranged.

図2は、渦電流探傷装置10で適用される励磁コイル11の配置例を説明する説明図である。   FIG. 2 is an explanatory view for explaining an arrangement example of the excitation coils 11 applied in the eddy current flaw detector 10.

例えば、図2に示されるように、励磁コイル11の他の配置として、励磁コイル11a〜11eを十字型に配置することもできる。また、これらの他にも、円状やアレイ状等に配置することもできる。   For example, as shown in FIG. 2, as another arrangement of the excitation coil 11, the excitation coils 11a to 11e can be arranged in a cross shape. In addition to these, they may be arranged in a circular shape, an array shape, or the like.

次に、渦電流探傷装置10を用いて行う被検査体1のパルス励磁渦電流探傷検査(PECT)について説明する。   Next, the pulse excitation eddy current flaw inspection (PECT) of the inspection object 1 performed using the eddy current flaw detector 10 will be described.

励磁コイル11が被検査体1の検査面上に位置決めされると、励磁手段14が、以下の式(1)で示されるパルス電流I(t)を励磁コイル11に供給する。励磁コイル11にパルス電流I(t)が励磁電流として供給されると、検出素子15による磁場信号の検出を開始する。   When the excitation coil 11 is positioned on the inspection surface of the device under test 1, the excitation means 14 supplies the excitation coil 11 with a pulse current I (t) represented by the following equation (1). When the pulse current I (t) is supplied to the exciting coil 11 as an exciting current, the detection of the magnetic field signal by the detecting element 15 is started.

Figure 0006058436
Figure 0006058436

励磁手段14は、表皮深さδから算出される係数を持つフーリエ級数から生成されるパルス形状の印加電流I(t)を励磁電流として励磁コイル11に供給することで、被検査体1の深さ方向に略同程度の振幅強度である渦電流をパルス電流切断直後に誘起することができる。   The exciting means 14 supplies a pulse-shaped applied current I (t) generated from a Fourier series having a coefficient calculated from the skin depth δ as an exciting current to the exciting coil 11, so that the depth of the device under test 1 is increased. An eddy current having substantially the same magnitude in the vertical direction can be induced immediately after the pulse current is cut.

続いて、本発明の実施形態に係る渦電流探傷方法として、渦電流探傷装置10を用いて行う被検査体1のパルス励磁渦電流探傷検査(PECT)におけるきず2のサイジング方法について説明する。   Subsequently, as a eddy current flaw detection method according to the embodiment of the present invention, a flaw 2 sizing method in a pulse excitation eddy current flaw detection (PECT) of the inspection object 1 performed using the eddy current flaw detection apparatus 10 will be described.

[きず2の位置の同定]
図3は渦電流探傷装置10において計測される検出信号の一例を示した説明図である。
[Identification of the position of scratch 2]
FIG. 3 is an explanatory view showing an example of a detection signal measured in the eddy current flaw detector 10.

ここで、破線Vはきずが無い場合の検出信号、実線Vはきずが存在する場合の検出信号である。 Here, the broken line V 1 is a detection signal when there is no flaw, and the solid line V 2 is a detection signal when there is a flaw.

検出信号V,Vは、検出素子15の電圧信号に相当し、検出手段17で増幅およびフィルタ処理された後に演算抽出手段18へと送られる。 The detection signals V 1 and V 2 correspond to the voltage signal of the detection element 15, are amplified and filtered by the detection unit 17, and are sent to the calculation extraction unit 18.

演算抽出手段18では、検出信号V,Vに対してフーリエ変換を行い、検出信号V,Vの周波数スペクトルを求める。さらに、検出信号V,Vの周波数スペクトルを求める過程において、図3に示される微小区間41である(t,t+Δt)に限定して周波数スペクトルを求めることもできる。Δtは可変であり、測定開始から終了までの時間領域でフーリエ変換対象区間を掃引させることで、周波数スペクトルの時間的な変化を求めることができる。 In operation extraction unit 18 performs a Fourier transform on the detection signals V 1, V 2, determine the frequency spectrum of the detection signal V 1, V 2. Further, in the process of obtaining the frequency spectra of the detection signals V 1 and V 2 , the frequency spectrum can be obtained by limiting to (t, t + Δt) which is the minute section 41 shown in FIG. Δt is variable, and the temporal change of the frequency spectrum can be obtained by sweeping the Fourier transform target section in the time domain from the start to the end of measurement.

また、演算抽出手段18では、検出信号V,Vの上包絡線UE,UEおよび下包絡線LE,LEを求め、さらに、上包絡線UE,UEと下包絡線LE,LEとの差分(以下、「包絡線差分」と称する。)42を求める。さらにまた、演算抽出手段18では、上包絡線UE,UE、下包絡線LE,LE、および包絡線差分に対して前後のスキャンステップでの差分を算出し、検出体16等のセンサの位置変化に対する包絡線差分変化、および包絡線差分変化の総和(面積)を求める。 Further, the operation extraction means 18 obtains the upper envelopes UE 1 and UE 2 and the lower envelopes LE 1 and LE 2 of the detection signals V 1 and V 2 , and further, the upper envelopes UE 1 and UE 2 and the lower envelopes A difference 42 between LE 1 and LE 2 (hereinafter referred to as “envelope difference”) 42 is obtained. Further, the calculation extraction means 18 calculates the difference in the preceding and following scan steps with respect to the upper envelopes UE 1 and UE 2 , the lower envelopes LE 1 and LE 2 , and the envelope difference, The envelope difference change with respect to the sensor position change and the sum (area) of the envelope difference change are obtained.

図4は渦電流探傷装置10におけるきず位置を同定する方法を説明する説明図である。   FIG. 4 is an explanatory diagram for explaining a method for identifying a flaw position in the eddy current flaw detector 10.

なお、図4は、一次元(x軸方向)の走査の場合を一例として示している。また、符号43は励磁体12と検出体16とをケーシングに収容したもの(以下、単に「センサ」と称する。)である。   FIG. 4 shows an example of one-dimensional (x-axis direction) scanning. Reference numeral 43 denotes an exciter 12 and detector 16 housed in a casing (hereinafter simply referred to as “sensor”).

センサ43がきず2の上を通過する際、複数の特定の座標において、きず2の存在が原因となって包絡線差分変化の総和が極大となる。例えば、図5に示される例では、包絡線差分変化の総和の極大値が、座標x,xの2点において出現している。この場合、きず2の位置xは、包絡線差分変化の総和が極大となる座標xおよびxの中点、すなわち、x=(x+x)/2として特定される。きず2の位置を同定する計算は、演算抽出手段18が行う。 When the sensor 43 passes over the flaw 2, the total sum of changes in the envelope difference is maximized due to the presence of the flaw 2 at a plurality of specific coordinates. For example, in the example shown in FIG. 5, the maximum value of the sum of the envelope difference changes appears at two points of coordinates x 1 and x 2 . In this case, the position x 0 of the flaw 2 is specified as the midpoint of the coordinates x 1 and x 2 at which the sum of the envelope difference changes becomes maximum, that is, x 0 = (x 1 + x 2 ) / 2. The calculation extracting means 18 performs the calculation for identifying the position of the flaw 2.

なお、包絡線差分変化の総和が極大となる前記座標およびその個数は、センサ43の構造やきずの形状によって変化する。包絡線差分変化の総和が極大となる座標の個数については、2個に限らず、3個以上が出現する場合もある。その場合には、連続する2点の極大値を抽出し、抽出した2つの極大値の中点にきず2が存在するものとみなして計算する。   It should be noted that the coordinates and the number of the coordinates at which the sum of the envelope difference changes becomes maximum vary depending on the structure of the sensor 43 and the shape of the flaw. The number of coordinates at which the total sum of envelope difference changes is maximized is not limited to two and may be three or more. In that case, the local maximum values of two consecutive points are extracted, and calculation is performed assuming that a flaw 2 exists at the midpoint of the two extracted local maximum values.

[きず2の深さの同定]
図5は渦電流探傷装置10によるきず2の最も深い位置である深端部2b(図4)の検出時刻を同定する方法を説明する説明図であり、図5(A)は時間に対する検出信号(検出電圧)の変化を示すグラフ(検出電圧の時間チャート)であり、図5(B)はきず深端部2bまで渦電流が到達した場合における周波数に対する検出信号(検出電圧)の変化を示すグラフ(検出電圧の周波数スペクトル図)である。
[Identification of Defect 2 Depth]
FIG. 5 is an explanatory diagram for explaining a method for identifying the detection time of the deep end 2b (FIG. 4) which is the deepest position of the flaw 2 by the eddy current flaw detector 10, and FIG. 5 (A) is a detection signal with respect to time. FIG. 5B is a graph (detection voltage time chart) showing a change in (detection voltage), and FIG. 5B shows a change in detection signal (detection voltage) with respect to the frequency when the eddy current reaches the flaw deep end 2b. It is a graph (frequency spectrum figure of a detection voltage).

ここで、図5(A)に示されるΔtは図3に示されるΔtと対応する微小時間である。また、符号Rは渦電流がきず2の表面側の端部である表端部2aに到達した時刻からΔtが経過するまでの間の時間領域、Rは表端部2aに到達した渦電流が深さ方向に伝播してきず2の深端部2bに到達した時刻からΔtが経過するまでの間の時間領域であり、RはRとRの間の時間領域、RはR以降の時間領域である。さらに、VR1〜VR4は、それぞれ、時間領域R〜Rにおける検出電圧の周波数スペクトルである。 Here, Δt shown in FIG. 5A is a minute time corresponding to Δt shown in FIG. Reference numeral R 1 denotes a time region from when the eddy current reaches the front end 2 a, which is an end on the surface side of the flaw 2, until Δt elapses, and R 3 denotes an eddy that has reached the front end 2 a. This is a time region from when the current propagates in the depth direction until it reaches the deep end 2b of the flaw 2 until Δt elapses, R 2 is a time region between R 1 and R 3 , and R 4 is R 3 or later of the time domain. Furthermore, V R1 to V R4 are frequency spectra of detection voltages in the time domains R 1 to R 4 , respectively.

上述した手順によって、演算抽出手段18が包絡線差分変化の総和が極大となる座標x,xを特定すると、続いて、演算抽出手段18は包絡線差分変化の総和が極大となる座標として特定された座標xまたはxにおける検出信号(検出電圧)に対して時間幅Δtの区間でフーリエ変換を行って得られる周波数スペクトルを取得する。また、演算抽出手段18は、フーリエ変換の対象区間を測定開始時から測定終了時までの時間領域とし当該対象区間を掃引させることで、検出電圧の周波数スペクトルの時間変化を得る。 When the calculation extraction unit 18 specifies the coordinates x 1 and x 2 at which the total sum of the envelope difference changes becomes a maximum by the above-described procedure, the calculation extraction unit 18 then sets the coordinates at which the total sum of the envelope difference changes becomes a maximum. obtaining a frequency spectrum obtained by performing a Fourier transform at intervals of time width Δt with respect to the detection signal (detection voltage) in the coordinate x 1 or x 2 identified. Further, the arithmetic extraction unit 18 obtains a time change of the frequency spectrum of the detected voltage by setting the target section of Fourier transform as a time region from the start of measurement to the end of measurement and sweeping the target section.

図5(B)に示されるように、時間領域R〜Rの間、すなわち、渦電流が表端部2a(図4)から深さ方向に伝播して深端部2b(図4)に到達するまでの間では、検出電圧の周波数スペクトルVR1,VR2,VR3の中心周波数は、励磁コイル11に与えるパルス状の励磁電流(励磁パルス)の中心周波数fから周波数がシフトしてf+Δfとなる。また、この時間領域R〜Rの間では、中心周波数は変化せず、振幅のみが減衰していく。 As shown in FIG. 5B, during the time regions R 1 to R 3 , that is, the eddy current propagates in the depth direction from the front end 2a (FIG. 4), and the deep end 2b (FIG. 4). to the until it reaches the center frequency of the frequency spectrum V R1, V R2, V R3 of the detection voltage is shifted in frequency from the center frequency f 0 of the pulsed excitation current applied to the exciting coil 11 (excitation pulse) F 0 + Δf. In addition, between these time regions R 1 to R 3 , the center frequency does not change and only the amplitude is attenuated.

そして、時間領域R以降、すなわち、時間領域Rでは、きず2の影響を受けない渦電流の信号も検出されるため、検出電圧の周波数スペクトルVR4の中心周波数は励磁パルスの中心周波数fへとシフトしていく。 In the time domain R 3 and thereafter, that is, in the time domain R 4 , an eddy current signal that is not affected by the flaw 2 is also detected. Therefore , the center frequency of the frequency spectrum VR 4 of the detected voltage is the center frequency f of the excitation pulse. Shift to zero .

渦電流探傷装置10は、きず2(表端部2a)の影響を受けて中心周波数がf+Δfにシフトし、その後、深さ方向に伝播する渦電流が深端部2bよりも深い位置に達してきず2の影響を受けなくなり、検出電圧の周波数スペクトルの中心周波数は励磁パルスの中心周波数fへとシフトして戻っていく現象を捉えることで、渦電流がきず2による影響を受けている時間、すなわち、きず2の深さ方向へ渦電流が伝播する時間を計測する。 In the eddy current flaw detector 10, the center frequency is shifted to f 0 + Δf under the influence of the flaw 2 (front end 2a), and then the eddy current propagating in the depth direction is deeper than the deep end 2b. By observing the phenomenon that the center frequency of the frequency spectrum of the detection voltage shifts back to the center frequency f 0 of the excitation pulse and returns, the eddy current is affected by the scratch 2 The time during which the eddy current propagates in the depth direction of the flaw 2 is measured.

このような計測を行うことで、渦電流探傷装置10は、被検査体1にきず2が存在する場合、そのきず2の深さ方向の長さ(表端部2aから深端部2bまでの長さ)を測定(算出)することができる。なお、きず2の深さ方向の長さの測定時には、渦電流が被検査体1を伝播する伝播速度およびセンサの傾き等を考慮した補正計算が行われる。   By performing such measurement, the eddy current flaw detector 10 allows the length 2 of the flaw 2 in the depth direction (from the front end portion 2a to the deep end portion 2b) when the flaw 2 exists in the inspection object 1. (Length) can be measured (calculated). When measuring the length of the flaw 2 in the depth direction, correction calculation is performed in consideration of the propagation speed at which the eddy current propagates through the object 1 and the inclination of the sensor.

渦電流が被検査体1を伝播する伝播速度や補正計算の数式情報については、演算抽出手段18が演算可能なように予め与えておく。このとき、渦電流が被検査体1を伝播する伝播速度については、例えば、後述する試験片50(図10)を用いて予め算出することができる。   The propagation speed at which the eddy current propagates through the device under test 1 and the mathematical information of the correction calculation are given in advance so that the calculation extraction means 18 can calculate them. At this time, the propagation speed at which the eddy current propagates through the device under test 1 can be calculated in advance using, for example, a test piece 50 (FIG. 10) described later.

一方で、きずの深端部2b(図4)の位置が表面から深い位置にある場合、すなわち、図5(A)に示される時間領域Rがより右方に存在する場合、検出電圧の周波数スペクトルの時間の経過に伴った中心周波数の変化(中心周波数f+Δfからfへのシフト)を検出できない場合がある。 On the other hand, when the position of the depth end portion 2b of the flaw (Figure 4) is in a deep position from the surface, i.e., when the time domain R 3 which are shown in FIG. 5 (A) is present in more right, the detected voltage In some cases, a change in the center frequency over time of the frequency spectrum (shift from the center frequency f 0 + Δf to f 0 ) cannot be detected.

図6は渦電流探傷装置10によるきず2の最も深い位置である深端部2b(図4)の検出時刻を同定する方法を説明する説明図であり、きず深端部2bまで渦電流が到達していない場合における周波数に対する検出信号(検出電圧)の変化を示すグラフ(検出電圧の周波数スペクトル図)である。   FIG. 6 is an explanatory diagram for explaining a method of identifying the detection time of the deep end 2b (FIG. 4) which is the deepest position of the flaw 2 by the eddy current flaw detector 10, and the eddy current reaches the flaw deep end 2b. It is a graph (frequency spectrum figure of a detection voltage) which shows change of a detection signal (detection voltage) with respect to a frequency when not doing.

図6に示されるように、検出電圧の周波数スペクトルは、渦電流がきず2まで伝播し、きず2の影響を受けると中心周波数がfからf+Δfにシフトし、その後、きず2の影響を受けている間は中心周波数がf+Δfの位置で振幅が時間の経過(渦電流の伝播)に伴いどんどん減少していく。 As shown in FIG. 6, the frequency spectrum of the detected voltage is propagated to 2 not come eddy current, center frequency under the influence of the flaw 2 is shifted from f 0 to f 0 + Delta] f, then the influence of the flaw 2 While the signal is being received, the amplitude gradually decreases with the passage of time (propagation of eddy current) at the position where the center frequency is f 0 + Δf.

きずの深端部2b(図4)の位置が表面から深い位置にある場合、すなわち、時間領域Rが長く時間領域RとRの間隔が大きい場合、図5(B)に示されるような時間の経過に伴った中心周波数のf+Δfからfへのシフト現象が検出される前に、検出電圧の振幅が観測不可能な程に小さくなってしまうことが生じ得る。この場合、きず2の深さを算出することができなくなってしまう。 If the position of the depth end portion 2b of the flaw (Figure 4) is in a deep position from the surface, i.e., if the time domain interval of R 2 is a long time domain R 1 and R 3 is large, as shown in FIG. 5 (B) As the time elapses, the amplitude of the detected voltage may become so small that it cannot be observed before the shift phenomenon of the center frequency from f 0 + Δf to f 0 is detected. In this case, the depth of the scratch 2 cannot be calculated.

そこで渦電流探傷装置10では、時間の経過に伴った中心周波数のf+Δfからfへのシフト現象が検出される前に、検出電圧の振幅が観測不可能な程に小さくなってしまった場合に、各励磁コイル11a〜11cに対して、時間差を付与したパルス電流を供給する。 Therefore, in the eddy current flaw detector 10, before the shift phenomenon of the center frequency from f 0 + Δf to f 0 with the passage of time is detected, the amplitude of the detected voltage becomes so small that it cannot be observed. In this case, a pulse current having a time difference is supplied to each of the exciting coils 11a to 11c.

渦電流探傷装置10では、各励磁コイル11a〜11cに対して供給するパルス電流を制御することによって、複数の渦電流を被検査体1に発生させるタイミング等を制御し、被検査体1の内部を伝播する過程で重畳させる。複数の渦電流を被検査体1の内部で重畳させることによって、被検査体1の内部を伝播する渦電流がお互いに干渉して強め合う現象を生じさせることができ、当該現象を生じさせることによって、被検査体1の内部のより深い位置においても振幅の大きな検出電圧を得ることを可能にしている。   The eddy current flaw detector 10 controls the timing of generating a plurality of eddy currents in the device under test 1 by controlling the pulse currents supplied to the respective excitation coils 11a to 11c. Is superimposed in the process of propagation. By superimposing a plurality of eddy currents inside the object 1 to be inspected, it is possible to cause a phenomenon in which eddy currents propagating inside the object 1 to be inspected interfere with each other and strengthen each other. Thus, it is possible to obtain a detection voltage having a large amplitude even at a deeper position inside the device under test 1.

より具体的には、制御手段19が把持手段13に停止指令を与える一方、励磁手段14に対して励磁電流制御指令を与えて、センサ43(励磁体12および検出体16)による走査を停止した状態で、時間差を付与したパルス電流を励磁体12に供給する。   More specifically, the control means 19 gives a stop command to the gripping means 13, while giving an excitation current control command to the excitation means 14 to stop scanning by the sensor 43 (excitation body 12 and detection body 16). In this state, a pulse current having a time difference is supplied to the exciter 12.

図7〜9は、渦電流探傷装置10が励磁体12に供給するパルス電流の時間差付与パターンの第1〜3の例を示す説明図である。なお、図7〜9に示される符号I〜Iは、それぞれ、励磁コイル11a,11cのパルス電流を表している。また、図7〜9に示されるI〜Iの各励磁電流のパルスは、一例として、パルス高、およびパルス幅が同じ場合を示している。 7 to 9 are explanatory views showing first to third examples of a time difference application pattern of pulse currents supplied to the exciter 12 by the eddy current flaw detector 10. Reference numerals I a to I c shown in FIGS. 7 to 9 represent pulse currents of the excitation coils 11a and 11c, respectively. The pulse of the excitation current I a ~I c shown in FIGS. 7-9, as an example, pulse height, and the pulse width indicates the case the same.

時間差の付与パターンは、例えば、図8に示されるように、励磁コイル11bのパルス電流の供給タイミングを、他の励磁コイル11a,11cのパルス電流の供給タイミングよりも遅延させたパターン(遅延パターン)がある。   For example, as shown in FIG. 8, the time difference providing pattern is a pattern in which the pulse current supply timing of the excitation coil 11b is delayed from the pulse current supply timing of the other excitation coils 11a and 11c (delay pattern). There is.

また、時間差の付与パターンは、図8に示される励磁コイル11bの遅延パターンに限らず、他にも図9に示される励磁コイル11bのパルス電流の供給タイミングを他の励磁コイル11a,11cのパルス電流の供給タイミングよりも先行させたパターン(先行パターン)や、図10に示される励磁コイル11a,11b,11cとΔt間隔で順次に遅延させるパターン(連続遅延パターン)等の任意の時間差の付与が可能である。   Further, the time difference application pattern is not limited to the delay pattern of the excitation coil 11b shown in FIG. 8, and the pulse current supply timing of the excitation coil 11b shown in FIG. Arbitrary time differences such as a pattern that precedes the current supply timing (preceding pattern) and a pattern that sequentially delays the exciting coils 11a, 11b, and 11c shown in FIG. Is possible.

ここで付与される時間差Δtは、図3に示される検出信号が完全に減衰する間の時間で可変であり特定の値を与えることも、可変な範囲で掃引させることもできる。   The time difference Δt given here is variable depending on the time during which the detection signal shown in FIG. 3 is completely attenuated, and can be given a specific value or swept within a variable range.

制御手段19は、例えば、図6に示されるように、検出電圧の周波数スペクトルの中心周波数の変化が生じない場合、把持手段13に対する停止指令、および励磁手段14に対して時間差の付与パターンとΔtの範囲を指定する励磁電流制御指令を与えて、検出電圧の周波数スペクトルの中心周波数の変化が生じるまで、時間差の付与パターン選択とΔtの範囲調整を繰り返し、データの取得を行う。   For example, as shown in FIG. 6, when the center frequency of the frequency spectrum of the detection voltage does not change, the control unit 19 generates a stop command for the gripping unit 13 and a time difference application pattern for the excitation unit 14 and Δt. The excitation current control command for designating the range is given and the selection of the time difference pattern and the Δt range adjustment are repeated until the center frequency of the frequency spectrum of the detection voltage changes, and data is acquired.

最終的に、演算抽出手段18は、これまでに同定した、きず2とセンサとの相対的位置関係、きず深端部2bの検出時刻、被検査体1内での渦電流の伝播速度を用いて、きずの深さ方向の長さを同定する。   Finally, the calculation extraction means 18 uses the relative positional relationship between the flaw 2 and the sensor, the detection time of the flaw deep end 2b, and the propagation speed of the eddy current in the inspection object 1 identified so far. To identify the length of the flaw in the depth direction.

[校正試験片]
図10は渦電流探傷装置10において使用される校正試験片の一例である試験片50を示す概略図である。
[Calibration specimen]
FIG. 10 is a schematic view showing a test piece 50 which is an example of a calibration test piece used in the eddy current flaw detector 10.

試験片50は、被検査体1と材質が同一または略同一の材料(少なくとも導電率σおよび透磁率μが、ユーザが必要とする検査精度を考慮した際に同一視できる材料)で構成されており、例えば、少なくとも1以上の段差を有する。すなわち、試験片50は、厚みの異なる個所(段)が複数あり、n(nは2以上の自然数)段の階段状に形成される。ここで、符号dは第1段の厚さであり、符号dは第n段の厚さである。 The test piece 50 is made of a material that is the same as or substantially the same as the material to be inspected 1 (a material that can be identified with at least the conductivity σ and the permeability μ when considering the inspection accuracy required by the user). For example, it has at least one step. That is, the test piece 50 has a plurality of portions (steps) having different thicknesses, and is formed in a step shape having n steps (n is a natural number of 2 or more). Here, reference numeral d 1 is the thickness of the first stage, code d n is the thickness of the n stages.

校正時には、センサ43(励磁体12および検出体16)を試験片50に配置して周波数スペクトルや包絡線を得る。ここから、パルス渦電流が底面51まで伝播するまでの時間を同定し、伝播距離(校正試験片の厚さd,…,d)から伝播速度を算出する。 At the time of calibration, the sensor 43 (exciter 12 and detector 16) is arranged on the test piece 50 to obtain a frequency spectrum and envelope. Here, pulsed eddy current identified time to propagate to the bottom surface 51, (the thickness d 1 of the calibration specimen, ..., d n) propagation distance for calculating the propagation velocity from.

なお、試験片50は、必ずしも複数段を有する階段状に構成される必要はないが、被検査体1における伝播速度の算出精度を高める観点から少なくとも2段を有する階段状に構成されている。   Note that the test piece 50 is not necessarily configured in a stepped shape having a plurality of steps, but is configured in a stepped shape having at least two steps from the viewpoint of improving the calculation accuracy of the propagation velocity in the inspection object 1.

また、被検査体1における伝播速度の算出精度をより高める観点からすれば、試験片50の段数nは、なるべく多くすることが望ましい。被検査体1での渦電流の伝播速度は、最終的にきず2の深さ方向の長さを同定する際に使用されるため、より正確にきず2の深さ方向の長さを知りたい場合には、試験片50の段数nを多くして、より高精度に被検査体1での渦電流の伝播速度を算出することが望ましい。   Further, from the viewpoint of further increasing the calculation accuracy of the propagation velocity in the device under test 1, it is desirable to increase the number n of the test pieces 50 as much as possible. The propagation speed of the eddy current in the inspected object 1 is finally used to identify the length of the flaw 2 in the depth direction, so it is desired to know the length of the flaw 2 in the depth direction more accurately. In this case, it is desirable to increase the number of stages n of the test piece 50 and calculate the propagation speed of the eddy current in the inspection object 1 with higher accuracy.

以上、渦電流探傷装置10および渦電流探傷装置10を用いて行う被検査体1の渦電流探傷方法によれば、従来パルス励磁渦電流探傷検査(PECT)では検出できなかった伝播する渦電流の局所的な時間における信号変化についても検出することができるので、きず2の様に局所的な渦電流分布の変化を生じる被検査体1等の対象に対してもPECTを実施でき、被検査体1に対してきず2のサイジングが可能となる。   As described above, according to the eddy current flaw detection apparatus 10 and the eddy current flaw detection method for the object 1 to be inspected using the eddy current flaw detection apparatus 10, the propagation eddy current that could not be detected by the conventional pulsed eddy current flaw detection (PECT) is detected. Since signal changes in local time can also be detected, PECT can be performed on an object such as a test object 1 that causes a change in local eddy current distribution, such as flaw 2, and the test object. Scratch 2 can be sized with respect to 1.

また、渦電流探傷装置10および渦電流探傷装置10を用いて行う被検査体1の渦電流探傷方法によれば、パルス励磁渦電流探傷検査によるきず2のサイジングの際に、被検査体1の内部を伝播する複数の渦電流が強め合う深さ位置を励磁電流を制御することで制御することができるので、深い位置を探傷することが必要となる被検査体1に対しても、中心周波数のf+Δfからfへのシフト現象を観測するのに十分な検出電圧を得ることができる。従って、深い位置を探傷することが必要となる被検査体1を検査する(きず2のサイジングを行う)場合においても、検出電圧の周波数スペクトルにおける中心周波数のシフト現象を的確に捉えることができるので、検査精度を維持することができる。 Further, according to the eddy current flaw detection apparatus 10 and the eddy current flaw detection method for the object to be inspected 1 using the eddy current flaw detection apparatus 10, the sizing of the flaw 2 by the pulse excitation eddy current flaw inspection is performed. Since the depth position where a plurality of eddy currents propagating through the inside is strengthened can be controlled by controlling the excitation current, the center frequency can be obtained even for the inspected object 1 that needs to detect a deep position. A sufficient detection voltage for observing the shift phenomenon from f 0 + Δf to f 0 can be obtained. Therefore, even when the inspection object 1 that requires flaw detection at a deep position is inspected (the flaw 2 is sized), the shift phenomenon of the center frequency in the frequency spectrum of the detected voltage can be accurately grasped. Inspection accuracy can be maintained.

なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階では、上述した実施例以外にも様々な形態で実施することが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、追加、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   It should be noted that the present invention is not limited to the above-described embodiment as it is, and can be implemented in various forms other than the above-described examples in the implementation stage, and various modifications can be made without departing from the spirit of the invention. Can be omitted, added, replaced, or changed. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…被検査体、2…きず、2a…きず表端部、2b…きず深端部、10…渦電流探傷装置、11(11a〜11e)…励磁コイル、12…励磁体、13…把持手段、14…励磁手段、15(15a〜15c)…検出素子、16…検出体、17…検出手段、18…演算抽出手段、19…制御手段、21…表示手段、41…微小区間、42…包絡線差分、43…センサ、50…試験片、51…(試験片の)底面、VR1…時間領域Rにおける検出電圧の周波数スペクトル、VR2…時間領域Rにおける検出電圧の周波数スペクトル、VR3…時間領域Rにおける検出電圧の周波数スペクトル、VR4…時間領域Rにおける検出電圧の周波数スペクトル、I…励磁コイル11aに流れる励磁電流、I…励磁コイル11bに流れる励磁電流、I…励磁コイル11cに流れる励磁電流。 DESCRIPTION OF SYMBOLS 1 ... Test object, 2 ... Scratch, 2a ... Scratch front end part, 2b ... Scratch deep end part, 10 ... Eddy current flaw detector, 11 (11a-11e) ... Excitation coil, 12 ... Excitation body, 13 ... Grasping means , 14 ... Excitation means, 15 (15a to 15c) ... detection element, 16 ... detection body, 17 ... detection means, 18 ... calculation extraction means, 19 ... control means, 21 ... display means, 41 ... minute section, 42 ... envelope Line difference, 43 ... Sensor, 50 ... Test piece, 51 ... Bottom of test piece, V R1 ... Frequency spectrum of detection voltage in time domain R 1 , V R2 ... Frequency spectrum of detection voltage in time domain R 2 , V R3 ... the frequency spectrum of the detected voltage in the time domain R 3, the frequency spectrum of the detected voltage in V R4 ... time domain R 4, the excitation current flowing through the I a ... exciting coil 11a, the flow to the I b ... exciting coil 11b Excitation current, the excitation current flowing through the I c ... exciting coil 11c to be.

Claims (10)

被検査体内にパルス磁場を励起し渦電流を形成する励磁コイルを同一平面内に2個以上配置可能に構成される励磁体の前記励磁コイルの各々にパルス状の電流を供給する励磁手段と、
前記渦電流の過渡的な分布変化を検出する検出素子を少なくとも1個有する検出体から前記少なくとも1個の検出素子の各々で検出する電圧信号を受信する検出手段と、
前記励磁体および前記検出体を把持し、前記励磁体および前記検出体を走査させる把持手段と、
前記検出手段で検出された前記電圧信号波形の上包絡線と下包絡線の差分の変化の総和を算出することで得られる2点以上の総和の極大のうち、前記走査の方向に対して連続する2点の極大値の出現位置に基づいて被検査体内に存在するきずの位置を算出する一方、算出する位置に存在する前記被検査体内のきずの深さを、前記検出手段で検出される電圧信号の周波数スペクトルにおける中心周波数の時間変化に基づいて算出する演算抽出手段と、
前記励磁コイルの各々に供給されるパルス状の電流によって形成される前記渦電流が、前記被検査体内で時間差をもって重畳するように前記励磁手段を制御する制御手段と、を具備することを特徴とする渦電流探傷装置。
Excitation means for supplying a pulsed current to each of the excitation coils of an exciter configured to excite two or more excitation coils that form an eddy current by exciting a pulsed magnetic field in the body to be inspected;
Detection means for receiving a voltage signal detected by each of the at least one detection element from a detection body having at least one detection element for detecting a transient distribution change of the eddy current;
Gripping means for gripping the exciter and the detector, and scanning the exciter and the detector;
Of the maximum of the sum of two or more points obtained by calculating the sum of changes in the difference between the upper envelope and the lower envelope of the waveform of the voltage signal detected by the detection means, the maximum of the sum is obtained with respect to the scanning direction. While calculating the position of a flaw existing in the subject based on the appearance position of two consecutive local maximum values, the detection means detects the depth of the flaw in the subject existing at the calculated position. Calculation extraction means for calculating based on the time change of the center frequency in the frequency spectrum of the voltage signal
Control means for controlling the excitation means so that the eddy current formed by the pulsed current supplied to each of the excitation coils is superimposed with a time difference in the body to be inspected. Eddy current flaw detector.
前記把持手段は、前記励磁体および前記検出体を三次元的に走査可能であり、
前記制御手段は、前記走査中に前記演算抽出手段の算出の結果、前記中心周波数の時間変化が生じない場合に、前記把持手段を停止させ、前記渦電流が前記被検査体内で時間差をもって重畳するように前記励磁手段を制御することを特徴とする請求項1記載の渦電流探傷装置。
The gripping means can three-dimensionally scan the excitation body and the detection body,
The control means stops the gripping means when the time change of the center frequency does not occur as a result of the calculation by the calculation extraction means during the scanning, and the eddy current is superimposed with a time difference in the subject. 2. The eddy current flaw detector according to claim 1, wherein the excitation means is controlled as described above.
前記制御手段は、前記励磁コイルの各々に供給するパルス状電流の時間差を連続的に変化させ、前記中心周波数の時間変化が生じるまで前記時間差の変化と前記周波数スペクトルの演算を繰り返すように、前記励磁手段および前記演算抽出手段を制御することを特徴とする請求項1または2に記載の渦電流探傷装置。 The control means continuously changes the time difference of the pulsed current supplied to each of the exciting coils, and repeats the change of the time difference and the calculation of the frequency spectrum until the time change of the center frequency occurs. The eddy current flaw detector according to claim 1 or 2, wherein the excitation means and the calculation extraction means are controlled. 前記演算抽出手段は、前記渦電流が前記被検査体内のきずを深さ方向に伝播する時間と、予め与えられる前記渦電流が前記被検査体内のきずを深さ方向に伝播する速さとに基づいて前記被検査体内のきずの深さを算出するものであり、前記検出手段で受信される前記電圧信号の周波数スペクトルの時間変化から、前記検出手段で受信される前記電圧信号の周波数スペクトルのピーク値をとる周波数が、前記励磁コイルに供給されるパルス状の電流の中心周波数に対して所定量シフトした状態で維持される時間を計測することで得られる時間を前記渦電流が前記被検査体内のきずを深さ方向に伝播する時間として演算することを特徴とする請求項1から3の何れか1項に記載の渦電流探傷装置。 The calculation extraction means is based on a time during which the eddy current propagates in the depth direction through the flaw in the inspection subject and a speed at which the eddy current given in advance propagates through the flaw in the inspection subject in the depth direction. The depth of the flaw in the body to be inspected, and from the time change of the frequency spectrum of the voltage signal received by the detection means, the peak of the frequency spectrum of the voltage signal received by the detection means The eddy current is a time obtained by measuring a time during which a frequency taking a value is maintained in a state of being shifted by a predetermined amount with respect to a center frequency of a pulsed current supplied to the exciting coil. The eddy current flaw detector according to any one of claims 1 to 3, wherein the flaw is calculated as a time for propagation in the depth direction. 前記渦電流が前記被検査体を深さ方向に伝播する速さは、前記被検査体と少なくとも導電率および透磁率が同じ材料で構成される校正試験片を用いて事前に算出した値であることを特徴とする請求項4記載の渦電流探傷装置。 The speed at which the eddy current propagates in the depth direction through the object to be inspected is a value calculated in advance using a calibration test piece made of a material having at least the same conductivity and permeability as the object to be inspected. The eddy current flaw detector according to claim 4. 前記校正試験片は、前記励磁コイルと前記検出素子とを一緒にして載置可能な面積を持つ平面を複数有し、前記平面の各々は、底面と平行であって当該底面からの距離がそれぞれ異なることを特徴とする請求項5記載の渦電流探傷装置。 The calibration test piece has a plurality of planes having an area on which the exciting coil and the detection element can be placed together, and each of the planes is parallel to the bottom surface and has a distance from the bottom surface. The eddy current flaw detector according to claim 5, which is different. 前記演算抽出手段は、前記周波数スペクトルを得る際に、任意の微少な時間領域で分割した時間領域を対象としてフーリエ変換を行い、前記周波数スペクトルの時間変化を観測することを特徴とする請求項1から6の何れか1項に記載の渦電流探傷装置。 2. The calculation extraction unit, when obtaining the frequency spectrum, performs a Fourier transform on a time domain divided by an arbitrary minute time domain, and observes a time change of the frequency spectrum. The eddy current flaw detector according to any one of 1 to 6. 前記演算抽出手段は、前記走査の方向に対して連続する2点の極大値の出現位置の中点を算出し、算出結果を前記被検査体内に存在するきずの位置とすることを特徴とする請求項1から7の何れか1項に記載の渦電流探傷装置。 The calculation extraction unit calculates a midpoint of the appearance positions of two maximum values that are continuous in the scanning direction, and sets the calculation result as a position of a flaw existing in the body to be inspected. The eddy current flaw detector according to any one of claims 1 to 7. 前記励磁コイルに供給されるパルス状の電流は、表皮深さから算出される係数を持つフーリエ級数から生成されるパルス形状の印加電流であることを特徴とする請求項1から8の何れか1項に記載の渦電流探傷装置。 9. The pulse-shaped applied current supplied to the exciting coil is a pulse-shaped applied current generated from a Fourier series having a coefficient calculated from the skin depth. The eddy current flaw detector described in the paragraph. 被検査体内にパルス磁場を励起し渦電流を形成する励磁コイルを同一平面内に2個以上配置可能に構成される励磁体の前記励磁コイルの各々にパルス状の電流を供給する励磁手段と、前記渦電流の過渡的な分布変化を検出する検出素子を少なくとも1個有する検出体から前記少なくとも1個の検出素子の各々で検出する電圧信号を受信する検出手段と、前記検出手段で受信される電圧信号の波形から得られる情報に基づいて前記被検査体内に存在するきずの位置を算出する一方、算出する位置に存在する前記被検査体内のきずの深さを、前記電圧信号の周波数スペクトルにおける中心周波数の時間変化に基づいて算出する演算抽出手段と、前記励磁体、前記検出体、および前記励磁手段を制御する制御手段と、を具備する渦電流探傷装置を用いて行う渦電流探傷方法であり、
前記励磁手段が、前記励磁コイルの各々にパルス状の電流を供給するステップと、
前記検出手段が、前記少なくとも1個の検出素子の各々で検出する前記電圧信号を受信するステップと、
前記演算抽出手段が、前記電圧信号を受信するステップで受信される前記電圧信号の波形の上包絡線と下包絡線の差分の変化の総和を算出することで得られる2点以上の総和の極大のうち、前記励磁体および前記検出体を走査する方向に対して連続する2点の極大値の出現位置に基づいて前記被検査体内に存在するきずの位置を算出する一方、算出する位置に存在する前記被検査体内のきずの深さを、前記電圧信号の周波数スペクトルにおける中心周波数の時間変化に基づいて算出するステップと、
前記制御手段が、前記電圧信号の周波数スペクトルにおける中心周波数の時間変化が生じない場合に、前記励磁体および前記検出体の走査を停止させ、前記励磁コイルの各々に時間差を有するパルス状の電流を供給して、前記渦電流が前記被検査体内で時間差をもって重畳するように、前記励磁体、前記検出体、および前記励磁手段を制御するステップと、を具備することを特徴とする渦電流探傷方法。
Excitation means for supplying a pulsed current to each of the excitation coils of an exciter configured to excite two or more excitation coils that form an eddy current by exciting a pulsed magnetic field in the body to be inspected; A detecting means for receiving a voltage signal detected by each of the at least one detecting element from a detecting body having at least one detecting element for detecting a transient distribution change of the eddy current; While calculating the position of the flaw existing in the inspected object based on information obtained from the waveform of the voltage signal, the depth of the flaw in the inspected object existing at the calculated position is calculated in the frequency spectrum of the voltage signal. An eddy current flaw detector comprising a calculation extraction means for calculating based on a change in center frequency with time, and a control means for controlling the excitation body, the detection body, and the excitation means is used. An eddy current testing method that performs,
The excitation means supplying a pulsed current to each of the excitation coils;
The detection means receiving the voltage signal detected by each of the at least one detection element;
The maximum of the sum of two or more points obtained by calculating the sum of changes in the difference between the upper envelope and the lower envelope of the waveform of the voltage signal received in the step of receiving the voltage signal by the calculation extraction means. Among these, the position of the flaw that exists in the inspected body is calculated based on the appearance positions of two local maximum values that are continuous in the scanning direction of the excitation body and the detection body. Calculating the depth of the flaw in the subject to be inspected based on the time change of the center frequency in the frequency spectrum of the voltage signal;
When the control means does not cause a time change of the center frequency in the frequency spectrum of the voltage signal, scanning of the excitation body and the detection body is stopped, and a pulsed current having a time difference is applied to each of the excitation coils. Eddy current flaw detection method comprising: supplying and controlling the exciter, the detector, and the exciter so that the eddy current is superimposed with a time difference in the subject. .
JP2013052236A 2013-03-14 2013-03-14 Eddy current flaw detector and eddy current flaw detection method Active JP6058436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013052236A JP6058436B2 (en) 2013-03-14 2013-03-14 Eddy current flaw detector and eddy current flaw detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013052236A JP6058436B2 (en) 2013-03-14 2013-03-14 Eddy current flaw detector and eddy current flaw detection method

Publications (2)

Publication Number Publication Date
JP2014178200A JP2014178200A (en) 2014-09-25
JP6058436B2 true JP6058436B2 (en) 2017-01-11

Family

ID=51698306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013052236A Active JP6058436B2 (en) 2013-03-14 2013-03-14 Eddy current flaw detector and eddy current flaw detection method

Country Status (1)

Country Link
JP (1) JP6058436B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101692595B1 (en) * 2014-12-15 2017-01-17 군산대학교산학협력단 An apparatus for monitoring metal pipes using pulsed eddy current detection and a method thereof
JP6966483B2 (en) * 2016-07-01 2021-11-17 イリノイ トゥール ワークス インコーポレイティド Integrated system and method for in-situ (in-situ) 3-axis scanning and detection of defects in objects under static and repeated tests

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326284A (en) * 1998-05-08 1999-11-26 Yonekura Seisakusho:Kk Method and apparatus for pulse eddy current examination
US7005851B2 (en) * 2003-09-30 2006-02-28 General Electric Company Methods and apparatus for inspection utilizing pulsed eddy current
CN100470245C (en) * 2006-09-22 2009-03-18 清华大学 Resonance eddy detection method for surface crack
KR101066248B1 (en) * 2009-08-12 2011-09-20 서울대학교산학협력단 Non-contact type transducer for rod member having multi-loop coil
CN102230914B (en) * 2011-03-31 2012-11-21 厦门安锐捷电子科技有限公司 Electromagnetic resonance-based nondestructive testing method for metal material

Also Published As

Publication number Publication date
JP2014178200A (en) 2014-09-25

Similar Documents

Publication Publication Date Title
JP6058343B2 (en) Eddy current flaw detector and eddy current flaw detection method
JP6529887B2 (en) Residual stress evaluation method
JP2005518534A (en) Measuring the surface profile of an object
US11193912B2 (en) Ultrasonic measurement apparatus and ultrasonic measurement method
Nguyen et al. Improved signal interpretation for cast iron thickness assessment based on pulsed eddy current sensing
Huang et al. A novel eddy current method for defect detection immune to lift-off
JP6058436B2 (en) Eddy current flaw detector and eddy current flaw detection method
Chady et al. Neural network models of eddy current multi-frequency system for nondestructive testing
JP4646835B2 (en) Evaluation method and apparatus for residual thickness by eddy current flaw detection
JP6175091B2 (en) Eddy current inspection device and eddy current inspection method
JP6378554B2 (en) Nondestructive inspection apparatus and nondestructive inspection method
Zainal Abidin Modelling and experimental investigation of eddy current distribution for angular defect characterisation
US10775347B2 (en) Material inspection using eddy currents
JP2017096678A (en) Eddy current flaw detection probe for detecting thinned state of ground contact portion of object to be inspected and method for detecting reduction in thickness using eddy current flaw detection probe
JP2017067743A (en) Non-destructive inspection device and non-destructive inspection method
EP3126825A1 (en) Method and device for inspection of solids by means of ultrasound
RU2586261C2 (en) Device for magnetic flaw detector and method of reducing error in determining size of defects of pipeline magnetic flaw detectors
JP4526046B1 (en) Inspection method using guide waves
JP2004294341A (en) Flaw detection method and flaw detection apparatus by pulsed remote field eddy current
Lopes Ribeiro et al. Determination of crack depth in aluminum using eddy currents and GMR sensors
JP2019128161A (en) Analysis method, analysis program, and analysis apparatus
JP4475477B1 (en) Inspection method using guide waves
Malikov et al. Investigation of steel to dielectric transition using microminiature eddy-current converter
JP2007333630A (en) Eddy current flaw detecting method and device
Kishore et al. Detection of deep subsurface cracks in thick stainless steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161207

R151 Written notification of patent or utility model registration

Ref document number: 6058436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151