JPH05264512A - Method and device for inspecting piping - Google Patents

Method and device for inspecting piping

Info

Publication number
JPH05264512A
JPH05264512A JP4060796A JP6079692A JPH05264512A JP H05264512 A JPH05264512 A JP H05264512A JP 4060796 A JP4060796 A JP 4060796A JP 6079692 A JP6079692 A JP 6079692A JP H05264512 A JPH05264512 A JP H05264512A
Authority
JP
Japan
Prior art keywords
defect
pipe
width
signal
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4060796A
Other languages
Japanese (ja)
Inventor
Takashi Kikuta
隆 菊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP4060796A priority Critical patent/JPH05264512A/en
Publication of JPH05264512A publication Critical patent/JPH05264512A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To obtain a method for inspecting a piping enabling presence or absence and the position of a defect of the piping to be detected and at the same time the aperture diameter and the depth of the defect to be estimated and a device using the method by moving a detection probe with a transmission coil and a reception coil within the piping, generating a magnetic field at the periphery part of the transmission coil, and then detecting the magnetic field which is formed at the piping part with the transmission coil. CONSTITUTION:When estimating the aperture diameter and the depth of a defect, the aperture diameter of the defect is estimated according to a width Sw of a defect signal and at the same time the defect depth is estimated by a detected defect signal strength width Sh by referring to a relation index between the defect signal intensity width and the defect depth with the aperture diameter of the defect which is obtained previously as a parameter. Furthermore, an inspection device is constituted of a storage means where the relation index is stored, a flaw-detection signal processing means for detecting the defect signal width Sw and the defect signal strength width Sh, and an estimation means.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、配管の腐食状況の検査
診断技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for inspecting and diagnosing the corrosion state of piping.

【0002】[0002]

【従来の技術】この種の配管の検査方法としては、長手
方向の異なった位置に送信コイルと受信コイルとを備え
た検知フローブを導電体の配管内で移動させ、送信コイ
ルにより、このコイルの周部に磁界を発生させ、配管内
に発生する渦電流により配管内に存在する欠陥の状況を
把握する方法が知られている。即ち、欠陥により乱れる
渦電流の状態を、欠陥周りに形成される磁界の変化とし
て前述の受信コイルにより検出して、欠陥の状況を把握
するものである。そして、このような配管の検査方法を
採用する装置としては、前述の検知プローブ、その管内
導入装置、さらには電源、検出装置等を備えた配管の検
査装置があった。
2. Description of the Related Art As a method of inspecting a pipe of this type, a detecting probe provided with a transmitting coil and a receiving coil at different positions in a longitudinal direction is moved in a pipe of a conductor, and the transmitting coil is used to move this coil. A method is known in which a magnetic field is generated in the peripheral portion and the situation of defects existing in the pipe is grasped by the eddy current generated in the pipe. That is, the state of the defect is grasped by detecting the state of the eddy current disturbed by the defect as the change of the magnetic field formed around the defect by the receiving coil. As an apparatus that adopts such a pipe inspection method, there is a pipe inspection apparatus including the above-described detection probe, a pipe introducing apparatus thereof, a power supply, a detection apparatus, and the like.

【0003】[0003]

【発明が解決しようとする課題】しかし上記従来技術に
おいては、欠陥信号強度が欠陥の深さ及び開口径に依存
するため、この情報のみからは欠陥の深さを正しく推定
することはできず、欠陥の有無、その位置の確認を主な
目的とするものであった。一方、このような配管の検査
の目的は、配管自体に存在する欠陥の程度(特に欠陥深
さの状況)により、この配管に対する保守作業が必要で
あるかどうかの判断をできるようにすることにある。し
かしながら、従来のような欠陥を検知する方法及び装置
では、この目的を達成することはできなかった。そこで
本発明の目的は、欠陥の有無、位置を検出することが可
能であるとともに、さらに、検出される欠陥の開口径及
びその欠陥深さを推定して、検知することが可能な配管
の検査方法及びその装置を得ることにある。
However, in the above-mentioned prior art, since the defect signal intensity depends on the depth of the defect and the opening diameter, the depth of the defect cannot be correctly estimated from only this information. The main purpose was to confirm the presence or absence of defects and their positions. On the other hand, the purpose of such pipe inspection is to make it possible to judge whether or not maintenance work is required for this pipe based on the degree of defects existing in the pipe itself (particularly the condition of the defect depth). is there. However, the conventional method and apparatus for detecting a defect cannot achieve this object. Therefore, an object of the present invention is to inspect a pipe capable of detecting the presence or absence of a defect and the position thereof, and further estimating and estimating the opening diameter and the defect depth of the detected defect. To obtain a method and an apparatus thereof.

【0004】[0004]

【課題を解決するための手段】この目的を達成する本発
明による配管の検査方法の特徴手段は、配管の管軸方向
に沿って検出される探傷信号に於ける欠陥対応信号部の
管軸方向での欠陥信号幅と欠陥信号強度幅とを検出し、
欠陥信号幅より欠陥の開口径を推定するとともに、予
め、欠陥の開口径をパラメータとした欠陥信号強度幅と
欠陥深さの関係指標を求めておき、この関係指標を参照
して、推定された開口径と検出された前記欠陥信号強度
幅とより欠陥深さを推定することにある。
To achieve this object, the characteristic means of the pipe inspection method according to the present invention is the pipe axial direction of the defect-corresponding signal portion in the flaw detection signal detected along the pipe axial direction. The defect signal width and the defect signal intensity width at
The opening diameter of the defect is estimated from the defect signal width, and in advance, the relation index between the defect signal intensity width and the defect depth with the aperture diameter of the defect as a parameter is obtained, and the relation index is estimated. The defect depth is estimated from the opening diameter and the detected defect signal intensity width.

【0005】さらに、配管の検査装置の特徴構成は、欠
陥の開口径をパラメータとした欠陥信号強度幅と欠陥深
さの関係指標を記憶する記憶手段と、配管の管軸方向に
沿って検出される探傷信号に於ける欠陥対応信号部の管
軸方向の欠陥信号幅と欠陥信号強度幅とを検出する探傷
信号処理手段と、欠陥信号幅より欠陥の開口径を推定す
るとともに、関係指標を参照して、推定された開口径と
検出された欠陥信号強度幅とより欠陥深さを推定する推
定手段とを備えたことにあり、それらの作用・効果は次
に通りである。
Further, the characteristic structure of the pipe inspection apparatus is detected along a pipe axis direction of the pipe and a storage means for storing a relational index of the defect signal intensity width and the defect depth with the opening diameter of the defect as a parameter. Flaw detection signal processing means for detecting the defect signal width and the defect signal intensity width in the pipe axis direction of the defect corresponding signal portion in the flaw detection signal, and estimating the aperture diameter of the defect from the defect signal width, and referencing the relation index Then, the estimated aperture diameter, the detected defect signal intensity width, and the estimating means for estimating the defect depth are provided, and their actions and effects are as follows.

【0006】[0006]

【作用】上記のような技術において得られる探傷信号
は、その固有の特性として、管軸方向での欠陥信号幅が
ほぼ欠陥の開口径にのみ関係する情報であり、欠陥信号
強度幅がほぼ欠陥の開口径と欠陥深さに関係する情報で
ある。従って、本願においてはこの特性を積極的に利用
して、配管の保守・管理に非常に重要な情報である欠陥
深さを精度良く検知しようとする。即ち、本願の配管の
検査方法においては、先ず、探傷信号の欠陥対応信号部
の欠陥信号幅及び欠陥信号強度幅が検出される。そし
て、欠陥信号幅により欠陥の開口径が推定される。その
後、この推定値と、欠陥信号強度幅に基づき別途求めら
れている欠陥の開口径をパラメータとした欠陥信号強度
幅と欠陥深さの関係指標より、欠陥深さの推定値が求め
られる。さらに、この方法を実行するため、配管の検査
装置には、記憶手段と、探傷信号処理手段及び推定手段
が備えられる。
The flaw detection signal obtained by the above-mentioned technique has a unique characteristic that the defect signal width in the tube axis direction is substantially related only to the opening diameter of the defect, and the defect signal intensity width is almost the defect. This information is related to the opening diameter and the defect depth. Therefore, in the present application, this characteristic is positively used to accurately detect the defect depth, which is very important information for maintenance and management of piping. That is, in the pipe inspection method of the present application, first, the defect signal width and the defect signal intensity width of the defect corresponding signal portion of the flaw detection signal are detected. Then, the opening diameter of the defect is estimated from the defect signal width. After that, the estimated value of the defect depth is obtained from this estimated value and the relationship index of the defect signal intensity width and the defect depth, which is obtained separately based on the defect signal intensity width, using the defect opening diameter as a parameter. Further, in order to execute this method, the pipe inspection device is provided with a storage unit, a flaw detection signal processing unit, and an estimation unit.

【0007】[0007]

【発明の効果】従って、欠陥の有無、位置を検出するこ
とが可能であるとともに、検出される欠陥の開口径及び
その欠陥深さを推定して、この情報を得ることが可能な
配管の検査方法及びその装置が得られ、本発明により欠
陥の開口径という情報が混在しない状態の欠陥深さに関
する情報を、探傷信号から精度良く推定できるようにな
った。
Therefore, it is possible to detect the presence or absence of a defect and the position thereof, and to estimate the opening diameter of the detected defect and the defect depth thereof to obtain this information. A method and an apparatus therefor can be obtained, and according to the present invention, it becomes possible to accurately estimate information on a defect depth in a state where information of an opening diameter of a defect does not coexist from a flaw detection signal.

【0008】[0008]

【実施例】本願の実施例を図面に基づいて説明する。こ
の配管の検査は、検査装置1に備えられている検知プロ
ーブ2を配管3内に挿入するとともに、これを移動させ
て配管3の外周部にある欠陥4の状況を検出しようとす
るものである。検査方法の原理について説明すると、図
1(イ)に示されるように、検知プローブ2の長手方向
で異なった位置に配設される送信コイル5及び受信コイ
ル6を利用して、欠陥4の検査がおこなわれるのである
が、検査においては、送信コイル5に35Hz前後の交
流が流され、配管3に渦電流7が発生される。そして、
欠陥4の存在により乱れる渦電流7により発生する間接
磁場8が、受信コイル6でとらえて、磁界の位相変化か
ら管外面の欠陥4が把握される。ここで、図示する実施
例においては、送信コイル5の軸芯と配管3の軸芯とが
平行に配設され、受信コイル6の軸芯が配管3の軸芯に
対して直角に配設されている。図1(ロ)には、管軸方
向の位置を横軸とした探傷信号の状態を示した。探傷信
号中、フラットな部位は配管3に欠陥4が無い正常な部
位であり、この正常部位とは異なった値を示している部
位が欠陥4がある欠陥対応信号部である。
Embodiments of the present application will be described with reference to the drawings. In the inspection of this pipe, the detection probe 2 provided in the inspection device 1 is inserted into the pipe 3 and is moved to detect the state of the defect 4 on the outer peripheral portion of the pipe 3. .. Explaining the principle of the inspection method, as shown in FIG. 1A, the inspection of the defect 4 is performed by using the transmitting coil 5 and the receiving coil 6 arranged at different positions in the longitudinal direction of the detection probe 2. However, in the inspection, an alternating current of about 35 Hz is applied to the transmission coil 5, and an eddy current 7 is generated in the pipe 3. And
The indirect magnetic field 8 generated by the eddy current 7 disturbed by the presence of the defect 4 is caught by the receiving coil 6, and the defect 4 on the outer surface of the tube is grasped from the phase change of the magnetic field. Here, in the illustrated embodiment, the axis of the transmitter coil 5 and the axis of the pipe 3 are arranged in parallel, and the axis of the receiver coil 6 is arranged at right angles to the axis of the pipe 3. ing. FIG. 1B shows the state of the flaw detection signal with the position in the tube axis direction as the horizontal axis. In the flaw detection signal, a flat portion is a normal portion having no defect 4 in the pipe 3, and a portion showing a value different from the normal portion is a defect corresponding signal portion having the defect 4.

【0009】本願の配管の検査方法を説明する前に、こ
の装置1全体の概略構成を図2に基づいて説明する。配
管の検査装置1は、前述の検知プローブ2と、この検知
プローブ2を先端に備えたケーブル9、このケーブル9
用のケーブルドラム10を備え、さらにケーブル送り出
し用のケーブル自動送り装置11を備えるともに、この
送り装置11に走行指令を出す走行装置コントローラ1
2を備えている。また、装置1には検知プローブ2に備
えられる送信コイル5、受信コイル6の制御をおこなう
とともに、検出情報を得る欠陥検査装置13が備えら
れ、これらの走行装置コントローラ12、欠陥検査装置
13からの配管内位置情報、検出出力情報等の情報を処
理する処理装置14が備えられ、検出情報は、これに送
られて処理され、図1(イ)に示すような探傷信号が出
力装置15により出力される。
Before describing the pipe inspection method of the present application, a schematic configuration of the entire apparatus 1 will be described with reference to FIG. The pipe inspection device 1 includes the above-described detection probe 2, a cable 9 provided with the detection probe 2 at its tip, and this cable 9
And a cable automatic feeding device 11 for feeding a cable, and a traveling device controller 1 for issuing a traveling command to the feeding device 11.
Equipped with 2. Further, the device 1 is provided with a defect inspection device 13 that controls the transmission coil 5 and the reception coil 6 provided in the detection probe 2 and obtains detection information. A processing device 14 for processing information such as in-pipe position information and detection output information is provided, and the detection information is sent to and processed by the processing device 14, and a flaw detection signal as shown in FIG. To be done.

【0010】以上が、配管の検査装置1の概略構成であ
るが、以下に本願の配管3の検査方法を採用する欠陥の
開口径、欠陥深さの推定方法及びその処理手段16の構
成について説明する。ここで、この処理手段16は前述
の処理装置14に内蔵されるものである。
The above is a schematic configuration of the pipe inspection apparatus 1. The following will describe the method of estimating the defect opening diameter and the defect depth and the configuration of the processing means 16 thereof, which adopts the inspection method of the pipe 3 of the present application. To do. Here, the processing means 16 is built in the processing device 14 described above.

【0011】即ち処理手段16は、管軸方向での欠陥信
号幅と欠陥の開口径の関係を記憶した第一関係指標(実
際は図4に示すような関係グラフ又はテーブル)と、欠
陥の開口径をパラメータとした欠陥信号強度幅と欠陥深
さの第二関係指標(実際は図5に示すような関係グラフ
又はテーブル)を記憶した記憶手段16aを備えるとと
もに、配管3の管軸方向に沿って検出される探傷信号に
於ける欠陥対応信号部の管軸方向での欠陥信号幅(図1
(ロ)においてSwで示す)と欠陥信号強度幅(図1
(ロ)においてShで示す)とを検出する探傷信号処理
手段16bと、欠陥信号幅Swより欠陥の開口径を推定
するとともに、第二関係指標に基づいて、推定された欠
陥の開口径と検出された欠陥信号強度幅Shとより欠陥
深さを推定する推定手段16cを備えて構成されてい
る。
That is, the processing means 16 stores a first relation index (actually a relation graph or table as shown in FIG. 4) storing the relation between the defect signal width in the tube axis direction and the defect opening diameter, and the defect opening diameter. With a storage means 16a storing a second relation index (actually, a relation graph or table as shown in FIG. 5) of the defect signal intensity width and the defect depth with the parameter as a parameter, and is detected along the pipe axis direction of the pipe 3. The defect signal width in the pipe axis direction of the defect corresponding signal portion in the detected flaw detection signal (Fig. 1
In (b), indicated by Sw) and the defect signal intensity width (FIG. 1).
(Indicated by Sh in (b)) and the flaw detection signal processing means 16b for detecting the defect opening width, and the defect opening width is estimated from the defect signal width Sw, and the estimated opening diameter of the defect is detected based on the second relation index. The defect signal strength width Sh and the estimating means 16c for estimating the defect depth are provided.

【0012】ここで、このような送信、受信コイルを伴
った磁気による探傷方法においては、探傷信号は、管軸
方向での欠陥信号幅Swがほぼ欠陥の開口径にのみ関係
する情報であり、欠陥信号強度幅Shがほぼ欠陥の開口
径と欠陥深さに関係する情報である。従って、本願に開
示する方法は、この特徴を積極的に利用して、配管の保
守・管理に非常に重要な情報である欠陥深さを精度良く
検知しようとするものである。以下、図3、図4、図5
に基づいて本願の配管検査方法の手順について説明す
る。ここで、図3には欠陥状況の推定手順フローが、図
4には欠陥信号幅Swと欠陥の開口径の関係が、さらに
図5には、欠陥の開口径をパラメータとした欠陥信号強
度幅Shと欠陥深さの関係が示されている。
Here, in such a flaw detection method using magnetism with the transmitting and receiving coils, the flaw detection signal is information in which the defect signal width Sw in the tube axis direction is related only to the aperture diameter of the defect, The defect signal intensity width Sh is information related to the defect opening diameter and the defect depth. Therefore, the method disclosed in the present application positively utilizes this feature to accurately detect the defect depth, which is very important information for maintenance and management of piping. Hereinafter, FIG. 3, FIG. 4, and FIG.
The procedure of the pipe inspection method of the present application will be described based on FIG. Here, FIG. 3 shows the flow of the defect state estimation procedure, FIG. 4 shows the relationship between the defect signal width Sw and the defect opening diameter, and FIG. 5 shows the defect signal intensity width using the defect opening diameter as a parameter. The relationship between Sh and defect depth is shown.

【0013】処理手順を箇条書きする。 〈欠陥深さの推定フロー〉 (イ)図1(ロ)に示すような探傷信号の入力 (ロ)探傷信号処理手段16bによる欠陥信号幅Sw及
び欠陥信号強度幅Shの測定処理 ここで、図1(ロ)に示す例の場合は、欠陥信号幅Sw
として欠陥信号のピークからピークまでの幅(距離のデ
ィメンジョンを備える)が測定され、欠陥信号強度幅S
hとしては、ピークからピークまでの欠陥信号強度幅
(強度のディメンジョンを備える)が、測定処理され
る。 (ハ)推定手段16cによる欠陥信号幅Swよりの図4
に示す第一関係指標に基づく欠陥の開口径の推定(図4
に一点鎖線の矢印で示す) (ニ)推定手段16cによる欠陥信号強度幅Shよりの
図5に示す第二関係指標に基づく欠陥深さの推定(図5
に一点鎖線の矢印で示す) この推定過程においては、(ハ)の工程で求められた欠
陥の開口径が利用される。 例えば欠陥信号幅Sw 1.6 欠陥信号強度幅Sh 80 の場合は、 欠陥の開口径 1.5 cm 欠陥深さ 0.28cm と推定される。ここで、第一関係指標、第二関係指標
は、コイルの配置構成、欠陥の一般的な形状、渦電流の
発生状況等により一義的に決まるものであり、この関係
があることは、今般始めて発明者により実験的且つシミ
ュレーション的に確認された。
The processing procedure is itemized. <Estimation Flow of Defect Depth> (a) Input of flaw detection signal as shown in FIG. 1 (b) (b) Measurement processing of defect signal width Sw and defect signal strength width Sh by flaw detection signal processing means 16b In the case of the example shown in 1 (b), the defect signal width Sw
The peak-to-peak width of the defect signal (with distance dimension) is measured as
As h, the defect signal intensity width from peak to peak (with intensity dimension) is measured. (C) FIG. 4 from the defect signal width Sw by the estimation means 16c.
Of the opening diameter of the defect based on the first relation index shown in FIG.
(D) is indicated by a dashed-dotted line arrow) (d) Estimation of the defect depth based on the second relation index shown in FIG. 5 from the defect signal intensity width Sh by the estimating means 16c (FIG. 5)
In the estimation process, the opening diameter of the defect obtained in the step (c) is used. For example, in the case of the defect signal width Sw 1.6 and the defect signal intensity width Sh 80, it is estimated that the defect opening diameter is 1.5 cm and the defect depth is 0.28 cm. Here, the first relation index and the second relation index are uniquely determined by the coil arrangement configuration, the general shape of the defect, the eddy current generation state, and the like. It was confirmed experimentally and by simulation by the inventor.

【0014】〔別実施例〕上記の実施例においては、送
信コイル5の軸芯と配管3の軸芯とを平行に配設し、受
信コイル6の軸芯を配管の軸芯に対して直角に配設する
ことにより、図1(ロ)に示すような、探傷信号形状を
得て、そのピーク、ピーク間の幅を計測することによ
り、欠陥信号幅Sw及び欠陥信号強度幅Shを求めた
が、図6(イ)に示すように、受信コイル60の軸芯を
配管の軸芯に平行に配設する場合は、図6(ロ)に示す
ような探傷信号形状が得られるため、その計測基準とし
て信号の半値部をレファレンスとして、欠陥信号幅Sw
及び欠陥信号強度幅Shを求めてもよい。 即ち、管軸
方向の情報の幅と信号強度の幅とを採れれば、本願の方
法を適応することが可能である。
[Other Embodiment] In the above embodiment, the axis of the transmitter coil 5 and the axis of the pipe 3 are arranged in parallel, and the axis of the receiver coil 6 is perpendicular to the axis of the pipe. The defect signal width Sw and the defect signal intensity width Sh were obtained by obtaining the flaw detection signal shape as shown in FIG. 1B and measuring the peak and the width between the peaks. However, as shown in FIG. 6A, when the axis of the receiving coil 60 is arranged in parallel with the axis of the pipe, the flaw detection signal shape as shown in FIG. With the half-value portion of the signal as the reference as the measurement reference, the defect signal width Sw
Alternatively, the defect signal intensity width Sh may be obtained. That is, if the width of information and the width of signal strength in the tube axis direction can be taken, the method of the present application can be applied.

【0015】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】測定原理と探傷信号の状態を示す図FIG. 1 is a diagram showing a measurement principle and a state of a flaw detection signal.

【図2】測定装置の構成を示す図FIG. 2 is a diagram showing a configuration of a measuring device.

【図3】欠陥状況の推定手順フロー[Fig. 3] Defect state estimation procedure flow

【図4】欠陥信号信号幅と欠陥の開口径の関係を示す図FIG. 4 is a diagram showing a relationship between a defect signal signal width and a defect opening diameter.

【図5】欠陥信号強度幅と欠陥深さの関係を示す図FIG. 5 is a diagram showing a relationship between a defect signal intensity width and a defect depth.

【図6】別実施例のコイル配置状態と信号状態を示す図FIG. 6 is a diagram showing a coil arrangement state and a signal state of another embodiment.

【符号の説明】[Explanation of symbols]

2 検知プローブ 3 配管 4 欠陥 5 送信コイル 6 受信コイル 16a 記憶手段 16b 探傷信号処理手段 16c 推定手段 Sw 欠陥信号幅 Sh 欠陥信号強度幅 2 Detection probe 3 Piping 4 Defect 5 Transmission coil 6 Reception coil 16a Storage means 16b Flaw detection signal processing means 16c Estimating means Sw Defect signal width Sh Defect signal strength width

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 長手方向の異なった位置に送信コイル
(5)と受信コイル(6)とを備えた検知フローブ
(2)を導電体の配管(3)内で移動させ、前記送信コ
イル(5)の周部に磁界を発生させるとともに、前記受
信コイル(6)に対する配管部に形成される磁界を前記
受信コイル(6)により検出して、前記配管部に存在す
る欠陥(4)の状況を検出する配管の検査方法におい
て、 前記配管(3)の管軸方向に沿って検出される探傷信号
に於ける欠陥対応信号部の管軸方向での欠陥信号幅(S
w)と欠陥信号強度幅(Sh)とを検出し、 前記欠陥信号幅(Sw)より前記欠陥の開口径を推定す
るとともに、 予め、欠陥の開口径をパラメータとした欠陥信号強度幅
と欠陥深さの関係指標を求めておき、この関係指標を参
照して、前記推定された開口径と前記検出された欠陥信
号強度幅(Sh)とより欠陥深さを推定する配管の検査
方法。
1. A detection probe (2) equipped with a transmission coil (5) and a reception coil (6) at different positions in the longitudinal direction is moved in a conductor pipe (3), and the transmission coil (5) is moved. ), The magnetic field generated in the pipe portion for the receiving coil (6) is detected by the receiving coil (6) and the defect (4) existing in the pipe portion is detected. In the inspection method of the pipe to be detected, the defect signal width (S in the pipe axis direction of the defect corresponding signal portion in the flaw detection signal detected along the pipe axis direction of the pipe (3) (S
w) and the defect signal intensity width (Sh) are detected, the aperture diameter of the defect is estimated from the defect signal width (Sw), and the defect signal intensity width and the defect depth are set in advance using the aperture diameter of the defect as a parameter. A pipe inspection method for estimating a defect depth based on the estimated opening diameter and the detected defect signal intensity width (Sh) with reference to the relation index.
【請求項2】 長手方向の異なった位置に送信コイル
(5)と受信コイル(6)とを有する検知フローブ
(2)を備え、導電体の配管(3)内を移動されるとと
もに、前記送信コイル(5)に磁界を発生させ、前記受
信コイル(6)に対する配管部に形成される磁界を前記
受信コイル(6)により検出して、前記配管部に存在す
る欠陥(4)の状況を検出する配管の検査装置であっ
て、 欠陥の開口径をパラメータとした欠陥信号強度幅と欠陥
深さの関係指標を記憶した記憶手段(16a)を備える
とともに、 前記配管の管軸方向に沿って検出される探傷信号に於け
る欠陥対応信号部の管軸方向での欠陥信号幅(Sw)と
欠陥信号強度幅(Sh)とを検出する探傷信号処理手段
(16b)と、 前記欠陥信号幅(Sw)より前記欠陥の開口径を推定す
るとともに、前記関係指標を参照して、前記推定された
開口径と前記検出された欠陥信号強度幅(Sh)とより
欠陥深さを推定する推定手段(16c)とを備えた配管
の検査装置。
2. A detection probe (2) having a transmission coil (5) and a reception coil (6) at different positions in the longitudinal direction is provided, and the detection probe is moved in a conductor pipe (3) and the transmission is performed. A magnetic field is generated in the coil (5), and the magnetic field formed in the pipe portion for the receiving coil (6) is detected by the receiving coil (6) to detect the state of the defect (4) existing in the pipe portion. An inspection apparatus for a pipe, comprising: a storage unit (16a) that stores a relational index between a defect signal intensity width and a defect depth, in which a defect opening diameter is used as a parameter, and detects along the pipe axis direction of the pipe. Flaw detection signal processing means (16b) for detecting a defect signal width (Sw) and a defect signal intensity width (Sh) in the pipe axis direction of the defect corresponding signal portion in the flaw detection signal, and the defect signal width (Sw). ) From the above The inspection of the pipe provided with the estimated opening diameter, the detected defect signal intensity width (Sh), and the estimation means (16c) for estimating the defect depth by referring to the relation index. apparatus.
JP4060796A 1992-03-18 1992-03-18 Method and device for inspecting piping Pending JPH05264512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4060796A JPH05264512A (en) 1992-03-18 1992-03-18 Method and device for inspecting piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4060796A JPH05264512A (en) 1992-03-18 1992-03-18 Method and device for inspecting piping

Publications (1)

Publication Number Publication Date
JPH05264512A true JPH05264512A (en) 1993-10-12

Family

ID=13152636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4060796A Pending JPH05264512A (en) 1992-03-18 1992-03-18 Method and device for inspecting piping

Country Status (1)

Country Link
JP (1) JPH05264512A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208312A (en) * 2005-01-31 2006-08-10 Jfe Steel Kk Method and device for measuring internal defect
JP2007225564A (en) * 2006-02-27 2007-09-06 Mitsubishi Heavy Ind Ltd Method and apparatus for evaluating eddy-current flaw detecting signal
JP2010054292A (en) * 2008-08-27 2010-03-11 Jfe Steel Corp Method of measuring internal defect
JP2012013577A (en) * 2010-07-01 2012-01-19 Daido Steel Co Ltd Eddy current flaw detection method
JP2016153753A (en) * 2015-02-20 2016-08-25 三菱日立パワーシステムズ株式会社 Pipe flaw detector and pipe flaw detection method
CN114923133A (en) * 2022-06-06 2022-08-19 国家石油天然气管网集团有限公司 Internal detector positioning device, method, equipment and medium based on weak magnetic detection

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208312A (en) * 2005-01-31 2006-08-10 Jfe Steel Kk Method and device for measuring internal defect
JP2007225564A (en) * 2006-02-27 2007-09-06 Mitsubishi Heavy Ind Ltd Method and apparatus for evaluating eddy-current flaw detecting signal
JP2010054292A (en) * 2008-08-27 2010-03-11 Jfe Steel Corp Method of measuring internal defect
JP2012013577A (en) * 2010-07-01 2012-01-19 Daido Steel Co Ltd Eddy current flaw detection method
JP2016153753A (en) * 2015-02-20 2016-08-25 三菱日立パワーシステムズ株式会社 Pipe flaw detector and pipe flaw detection method
CN114923133A (en) * 2022-06-06 2022-08-19 国家石油天然气管网集团有限公司 Internal detector positioning device, method, equipment and medium based on weak magnetic detection

Similar Documents

Publication Publication Date Title
JP4829883B2 (en) Method and apparatus for non-destructive inspection of tubes
CN1898558B (en) Method and system for torsional wave inspection of heat exchanger tubes
JPS63133054A (en) Flux leakage probe used for nondestructive inspection
JP2001516053A (en) Eddy current pipeline inspection apparatus and method
JPH01123143A (en) Method and apparatus for detection of flaw by eddy current
JP5243175B2 (en) Pulse excitation type eddy current flaw detection method and flaw detection apparatus
JPH05264512A (en) Method and device for inspecting piping
JP3283324B2 (en) Tube inspection method and apparatus
JP2011012985A (en) Pulse excitation type eddy current flaw detection method and pulse excitation type eddy current flaw detector using the same
GB1591814A (en) Method and apparatus for continuous manufacture and non-destruction testing of tubes
JP2004251839A (en) Pipe inner surface flaw inspection device
CN109632943B (en) High-precision eddy current inductor suitable for wheel
JP2001272379A (en) Method and device for non destructive test for tube
CN108982659B (en) Full-automatic defect detection device based on low-frequency electromagnetism
CN103901099A (en) Automatic vortex detection device and method of ferromagnetic boiler steel pipe
JP2959395B2 (en) Metal residue detection method in metal tube
JPH03140861A (en) Remote field type probe for eddy-current flaw detection
CN217133389U (en) Petroleum pipe column online nondestructive testing device based on geomagnetic field
JP3076310B2 (en) Eddy current probe
JPH05126803A (en) Automatic ultrasonic flaw detecting apparatus
WO2015194428A1 (en) Non-destructive inspection device and non-destructive inspection method
RU2686866C1 (en) Method of magnetic monitoring of pipeline defects and device for its implementation
JP3223991U (en) Nondestructive inspection equipment
JPH08278289A (en) Flaw detection device and method for ferromagnetic tube
JP2650174B2 (en) Steel pipe laying equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040927

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20041124

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20041221

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041224

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100107

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20130107

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03