JP2001272379A - Method and device for non destructive test for tube - Google Patents

Method and device for non destructive test for tube

Info

Publication number
JP2001272379A
JP2001272379A JP2000084016A JP2000084016A JP2001272379A JP 2001272379 A JP2001272379 A JP 2001272379A JP 2000084016 A JP2000084016 A JP 2000084016A JP 2000084016 A JP2000084016 A JP 2000084016A JP 2001272379 A JP2001272379 A JP 2001272379A
Authority
JP
Japan
Prior art keywords
tube
frequency
flaw
flaw detection
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000084016A
Other languages
Japanese (ja)
Inventor
Shigenori Kamimura
繁憲 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2000084016A priority Critical patent/JP2001272379A/en
Publication of JP2001272379A publication Critical patent/JP2001272379A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0234Metals, e.g. steel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Abstract

PROBLEM TO BE SOLVED: To improve accuracy for establishing a high quality securing system over the entire circumference, the entire length and the entire surface of a steel tube by sharing flaw detection operation between an ultrasonic flaw detection technique, a magnetic flux leakage flaw detection technique, and an eddy current flaw detection technique for making full use of their features. SOLUTION: A surface flaw is detected by high-frequency magnetization at 8 kHz, then an internal flaw is detected by ultrasonic flaw detection, subsequently an inside surface flaw of the tube is detected by low-frequency magnetic excitation at 0.1-1 kHz, and lastly, magnetic particle inspection in the tube end part is carried out. These processes are carried out in series in one round.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、管の非破壊検査方
法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for nondestructively inspecting a pipe.

【0002】[0002]

【従来の技術】造管用材料には割れ、押し疵、穴明き、
内ピット、外ピット、外カブレ、外噛み込み、外打傷な
ど種々の疵があり、造管工場では、各種の検出装置を用
いて管の傷を非破壊検査により検出し、不良品を除外し
品質確保、品質保証を図る必要がある。
2. Description of the Related Art Cracks, press flaws, holes,
There are various flaws such as inner pit, outer pit, outer fog, outer bite, outer bruise, etc.At pipe making factories, pipes are detected by non-destructive inspection using various detection devices and defective products are excluded. Quality assurance and quality assurance.

【0003】このため、従来、非破壊検査技術として超
音波探傷技術、漏洩磁束探傷技術、過電流探傷技術など
が知られており、これらの1又は2種以上の技術を用い
て造管ラインの途中又はオフラインで非破壊検査が行わ
れていた。これらの各方式は、それぞれ特徴的特性があ
る。
For this reason, ultrasonic inspection technology, magnetic flux leakage inspection technology, overcurrent inspection technology and the like are conventionally known as non-destructive inspection technologies, and one or more of these technologies are used for pipe production lines. Non-destructive inspection was performed on the way or offline. Each of these methods has characteristic characteristics.

【0004】超音波探傷技術では斜角探傷による検出が
主体であり、ダルや緩慢な形状の欠陥では反射エコーが
散乱するため検出することができない。また、鋭利な形
状の疵や、管表面に平行した欠陥などでは超音波が収束
散乱し、反射エコーを得ることができないので検出が困
難である。
The ultrasonic flaw detection technique mainly performs detection by oblique flaw detection, and cannot detect a dull shape or a defect having a slow shape due to scattering of a reflected echo. Further, a sharp flaw, a defect parallel to the tube surface, and the like converge and scatter the ultrasonic waves, making it difficult to detect a reflected echo since it cannot be obtained.

【0005】漏洩磁束方式の技術は高周波磁化を利用す
るため、比透磁率が1であるオーステナイト系ステンレ
ス鋼の欠陥を検出することができない。また、磁気特
性、高周波電流の表皮効果により管外面の欠陥検出に限
定される。また、渦流電流による検出技術では磁気特
性、高周波電流の表皮効果により管外表面の欠陥検出に
限定される。
Since the leakage magnetic flux technique utilizes high-frequency magnetization, it is not possible to detect defects in austenitic stainless steel having a relative magnetic permeability of 1. In addition, the detection is limited to the defect on the outer surface of the tube due to the magnetic properties and the skin effect of the high-frequency current. Further, in the detection technique using the eddy current, the detection is limited to the defect detection on the outer surface of the tube due to the magnetic properties and the skin effect of the high frequency current.

【0006】貫通コイル方式の技術では、管軸方向に延
びた欠陥の検出が困難である。また回転コイル方式では
小さい欠陥の検出が困難である。
In the penetrating coil technique, it is difficult to detect a defect extending in the tube axis direction. Further, it is difficult to detect a small defect in the rotating coil system.

【0007】[0007]

【発明が解決しようとする課題】本発明は、従来の超音
波探傷技術、漏洩磁束探傷技術、渦電流探傷技術のそれ
ぞれに各技術の特徴を生かした探傷を分担させて精度を
向上させると共に、これらを直列にすべて用いることに
より、管の全周、全長、全面にわたる高度な品質保証体
制を確立することにある。
SUMMARY OF THE INVENTION The present invention improves the accuracy by sharing the flaw detection utilizing the characteristics of each of the conventional ultrasonic flaw detection technology, leakage magnetic flux flaw detection technology, and eddy current flaw detection technology, By using them all in series, it is necessary to establish a high quality assurance system over the entire circumference, length, and entire surface of the pipe.

【0008】[0008]

【課題を解決するための手段】本発明は、上記問題点を
解決するためになされたもので、その技術手段はこれら
の技術を組合せた効率のよいシステムを構築することに
ある。すなわち、本発明は、管の非破壊検査に当たり、
まず8kHzの高周波磁化による表皮疵を検出し、次い
で超音波探傷による内質疵を検出し、次に0.1〜1k
Hzの低周波励磁による管の内表面疵の検査を行い、最
後に管端部の磁粉探傷を行うことを特徴とする管の非破
壊検査方法である。本発明はそれぞれの探傷技術の特徴
を生かしてそれぞれの検出精度を向上させると共に、精
度の低い部分は他の探傷技術の測定に任せることによっ
て全体として管の全周・全面・全長に亘る高度な品質保
証体制を確立する。高周波磁化検出の周波数を8kHz
に限定したのは、管の外表面の表皮部分の疵を精度よく
検出するように性能を向上させるためである。従来周波
数1〜6kHzでは、0.3〜0.5mmの深さ部分の
検出が主であったが、これを0.1mm深さまで検出可
能とした。一方従来のように16kHz以上の周波数で
は磁化装置の発熱のため実用化できないので、適切な周
波数を試験により選択し8kHzとした。次に、低周波
励磁の周波数は0.1kHz未満では、検出精度が悪
く、1kHzを越えると交流の表皮効果により管内面の
検出精度が低下するので、0.1〜1kHzとした。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and its technical means is to construct an efficient system combining these techniques. That is, the present invention relates to nondestructive inspection of pipes,
First, skin flaws due to high frequency magnetization of 8 kHz are detected, then internal flaws are detected by ultrasonic flaw detection, and then 0.1 to 1 k
This is a non-destructive inspection method for a pipe, wherein an inner surface flaw of the pipe is inspected by excitation at a low frequency of Hz, and a magnetic particle flaw is detected at the end of the pipe. The present invention makes use of the characteristics of each flaw detection technology to improve the detection accuracy of each, while leaving the low precision parts to be measured by other flaw detection technologies, as a whole, it is an advanced pipe that covers the entire circumference, the entire surface, and the entire length of the pipe. Establish a quality assurance system. 8kHz high frequency magnetization detection frequency
The reason for this is to improve the performance so as to accurately detect flaws in the skin portion on the outer surface of the tube. Conventionally, at a frequency of 1 to 6 kHz, detection of a depth portion of 0.3 to 0.5 mm has been mainly performed, but this can be detected to a depth of 0.1 mm. On the other hand, since a frequency of 16 kHz or more cannot be put to practical use due to heat generation of the magnetizing device as in the prior art, an appropriate frequency was selected by a test and set to 8 kHz. Next, if the frequency of the low-frequency excitation is less than 0.1 kHz, the detection accuracy is poor, and if it exceeds 1 kHz, the detection accuracy of the inner surface of the tube is reduced due to the skin effect of an alternating current.

【0009】上記本発明方法を好適に実施することがで
きる本発明の装置は、製管ラインの終端部に高周波漏洩
磁束探傷装置、超音波探傷装置、低周波過電流探傷装
置、磁粉探傷装置をタンデムに順次配設したことを特徴
とする管の非破壊検査装置である。
The apparatus of the present invention which can suitably carry out the above-mentioned method of the present invention includes a high-frequency leakage magnetic flux flaw detector, an ultrasonic flaw detector, a low frequency overcurrent flaw detector, and a magnetic particle flaw detector at the end of a pipe production line. A pipe non-destructive inspection device which is sequentially arranged in tandem.

【0010】この配列に限定した理由は次の通りであ
る。高周波漏洩磁束では漏電事故防止の観点から水を用
いることができないが、超音波探傷では超音波の伝導を
確実にするため媒体として水を用いる。従って高周波漏
洩磁束検出の後に超音波探勝を行うことが適切である。
また、渦流検出技術は、磁場の影響が漏洩磁束検出技術
にノイズを与え悪影響を及ぼすので、両者間は、なるべ
く間隔をあけて設置する必要がある。従って、上記漏洩
磁束探傷装置、超音波検査装置、渦流電流探傷装置の順
に配列し、その尾端に管端部欠陥検出装置を配設する。
The reason for limiting to this arrangement is as follows. Water cannot be used for high-frequency leakage magnetic flux from the viewpoint of preventing electrical leakage accidents, but in ultrasonic flaw detection, water is used as a medium to ensure conduction of ultrasonic waves. Therefore, it is appropriate to perform the ultrasonic search after detecting the high-frequency leakage magnetic flux.
In the eddy current detection technology, since the influence of the magnetic field gives a noise to the leakage magnetic flux detection technology and adversely affects the technology, it is necessary to provide a space between the two as much as possible. Therefore, the leakage magnetic flux inspection device, the ultrasonic inspection device, and the eddy current inspection device are arranged in this order, and a tube end defect detection device is provided at the tail end.

【0011】[0011]

【発明の実施の形態】以下図面を参照して本発明の実施
の形態を説明する。図1は本発明の実施例の管の非破壊
検査装置1の全体システムを示す図である。この非破壊
検査装置1は、高周波漏洩磁束探傷装置2、超音波探傷
装置3、低周波過電流探傷装置4、磁粉探傷装置5を順
番に管が通過するようになっている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an entire system of a pipe nondestructive inspection apparatus 1 according to an embodiment of the present invention. In this non-destructive inspection device 1, a pipe passes through a high-frequency leakage magnetic flux inspection device 2, an ultrasonic inspection device 3, a low frequency overcurrent inspection device 4, and a magnetic particle inspection device 5 in this order.

【0012】図2は高周波漏洩磁束探傷装置2の原理図
である。管10に正負のヨーク11、12を対向させて
高周波電圧を負荷し高周波磁束13を発生させると、疵
14の部分で漏洩磁束15を生ずる。この漏洩磁束15
をホール素子などのプローブ16で検出する。この高周
波漏洩磁束探傷装置2は、管10の外周に存在する管長
手方向の疵を高精度で検出するように、高周波磁束の周
波数を選択する。高周波磁束13は図5に示すように管
10の外面側の表皮近傍に集中的に発生する。従ってこ
の表皮効果により管の外表面近傍に疵14があると磁束
の乱れが生ずるので、これを精度よく検出する。高周波
漏洩磁束探傷装置2の表面からの疵検出深さδは、次の
式で示される。
FIG. 2 is a diagram showing the principle of the high-frequency leakage magnetic flux detection device 2. When a high frequency voltage is applied to the tube 10 with the positive and negative yokes 11 and 12 facing each other to generate a high frequency magnetic flux 13, a leakage magnetic flux 15 is generated at the flaw 14. This leakage magnetic flux 15
Is detected by a probe 16 such as a Hall element. The high frequency magnetic flux leakage flaw detector 2 selects the frequency of the high frequency magnetic flux so as to detect a flaw in the longitudinal direction of the tube existing on the outer periphery of the tube 10 with high accuracy. The high-frequency magnetic flux 13 is intensively generated near the outer skin on the outer surface side of the tube 10 as shown in FIG. Therefore, if there is a flaw 14 near the outer surface of the tube due to the skin effect, the magnetic flux is disturbed, and this is detected with high accuracy. The flaw detection depth δ from the surface of the high frequency magnetic flux leakage flaw detector 2 is represented by the following equation.

【0013】[0013]

【数1】 (Equation 1)

【0014】ただし、f:周波数 μ:材料の透磁率 σ:導電率 である。周波数f=8kHzとすると、δ=0.2mm
となる。
Where f: frequency μ: magnetic permeability of the material σ: electrical conductivity If the frequency f = 8 kHz, δ = 0.2 mm
Becomes

【0015】図8は自然欠陥の深さと相対信号強度との
関係を、欠陥タイプAの疵(表面に露出した割れなど)
と欠陥タイプBの疵(表面に露出しない表面近傍の疵)
について調査した結果を示すものである。図中黒丸で示
したデータは欠陥タイプA、白四角で示したデータは欠
陥タイプBのものである。相対信号強度はべーすノイズ
レベルを1とした指数で表示してある。自然欠陥の深さ
が0.2mm以下の欠陥は精度よく検出される。
FIG. 8 shows the relationship between the depth of a natural defect and the relative signal intensity by using a defect of defect type A (such as a crack exposed on the surface).
And defect type B flaw (flaw near the surface that is not exposed on the surface)
It shows the result of an investigation for. In the figure, data indicated by a black circle is for defect type A, and data indicated by a white square is for defect type B. The relative signal strength is indicated by an index when the base noise level is 1. Defects with a natural defect depth of 0.2 mm or less are accurately detected.

【0016】図9は従来の高周波漏洩磁束探傷装置の検
出力の分布を示すグラフ、図10は実施例の短い疵用の
高周波漏洩磁束探傷装置の検出力の分布を示すグラフで
ある。X軸は検出レベル%、Y軸は欠陥長さmm、Z軸
は検出確率%を示す。従来の装置では、欠陥長さ8mm
以上を100%検出することができたが、本発明では欠
陥長さ4mm以上を100%検出することが可能となっ
た。
FIG. 9 is a graph showing the distribution of detection power of the conventional high-frequency leakage magnetic flux flaw detector, and FIG. 10 is a graph showing the distribution of detection power of the high-frequency leakage magnetic flux flaw detector for short flaws according to the embodiment. The X axis indicates the detection level%, the Y axis indicates the defect length mm, and the Z axis indicates the detection probability%. In the conventional device, the defect length is 8mm
Although 100% of the above could be detected, in the present invention, it was possible to detect 100% of a defect having a length of 4 mm or more.

【0017】超音波探傷装置3は図3に示すように管1
0の外表面にシュー21を取付け、超音波トランスデュ
ーサ22を管10の外表面に接触させて送信波23を発
射させ、その反射波24を検出することによって、管1
0の肉厚内の内質の疵を検出する。超音波探傷装置3は
管10の外周及び内周の管長手方向の疵、管を横切る方
向の疵及びラミネーションを精度よく検出する。また、
管10の肉厚の測定に用いる。送信波23の管10内へ
の伝達を確実にするために、トランスデューサ22と管
10の表面との間に水などの媒体を介在させてトランス
デューサ22を管10の外表面に密着させ、超音波の良
好な伝達性を確保する。高周波磁化探傷装置2は水など
の存在によって検出精度が害されるので、超音波探傷装
置3は高周波磁化探傷装置2の後流に置く。
As shown in FIG. 3, the ultrasonic flaw detector 3
The shoe 21 is attached to the outer surface of the tube 1, the ultrasonic transducer 22 is brought into contact with the outer surface of the tube 10 to emit a transmission wave 23, and the reflected wave 24 is detected.
Detects internal flaws within a thickness of 0. The ultrasonic flaw detector 3 accurately detects flaws in the pipe longitudinal direction on the outer circumference and inner circumference of the pipe 10, flaws in the direction crossing the pipe, and lamination. Also,
Used for measuring the wall thickness of the tube 10. In order to ensure transmission of the transmission wave 23 into the tube 10, a medium such as water is interposed between the transducer 22 and the surface of the tube 10 so that the transducer 22 is brought into close contact with the outer surface of the tube 10, To ensure good transmissibility. Since the detection accuracy of the high-frequency magnetization inspection device 2 is impaired by the presence of water or the like, the ultrasonic inspection device 3 is placed downstream of the high-frequency magnetization inspection device 2.

【0018】図6は超音波探傷装置3の特性の説明図で
ある。超音波探傷装置3は管10の肉厚方向に対して傾
いた方向に送信波23を発信するいわゆる斜角探傷が主
である。例えば管半径方向に対して30〜50度の角度
で送信波23を入射させる。このため、ダルや緩慢な形
状の疵25は反射波の散乱を生じ、検出することができ
ない。また鋭利な形状の疵も検出が困難である。さら
に、管表面に平行な疵26は反射波24が乱反射収れん
されて減衰するので検出が困難である。
FIG. 6 is an explanatory diagram of characteristics of the ultrasonic flaw detector 3. The ultrasonic flaw detector 3 mainly performs a so-called oblique flaw detection that transmits a transmission wave 23 in a direction inclined with respect to the thickness direction of the tube 10. For example, the transmission wave 23 is incident at an angle of 30 to 50 degrees with respect to the tube radial direction. For this reason, dull or flaws 25 having a slow shape cause scattering of the reflected wave and cannot be detected. Also, it is difficult to detect a sharp shaped flaw. Further, the flaw 26 parallel to the tube surface is difficult to detect because the reflected wave 24 is attenuated due to irregular reflection and convergence.

【0019】図4は、低周波過電流探傷装置4の原理説
明図である。低周波過電流探傷装置4は励磁コイル31
に低周波電流を流して管10に渦流電流を生じさせ、欠
陥の存在によって生ずる電流、電圧の乱れを差動コイル
32で検出し、塊状の疵や穴あきなどの欠陥を精度よく
検出する。低周波過電流探傷装置4は、磁気特性、表皮
効果により管10の外面及び内面の欠陥検出に限定され
る。周波数が0.1kHz未満ではノイズ発生に伴うS
/N比の低下により検出精度が不足し、1kHzを越え
ると表皮効果により管内面の微小な疵の検出が困難とな
る。従って、管内外面の疵を精度よく検出するための周
波数を0.1〜1kHzとする。
FIG. 4 is a view for explaining the principle of the low-frequency overcurrent flaw detector 4. The low-frequency overcurrent flaw detector 4 includes an exciting coil 31
An eddy current is generated in the tube 10 by passing a low-frequency current through the differential coil 32. The current and voltage disturbances caused by the presence of defects are detected by the differential coil 32, and defects such as massive flaws and holes are accurately detected. The low-frequency overcurrent flaw detector 4 is limited to detecting defects on the outer and inner surfaces of the tube 10 due to its magnetic properties and skin effect. If the frequency is less than 0.1 kHz, S
The detection accuracy is insufficient due to the decrease in the / N ratio, and if it exceeds 1 kHz, it becomes difficult to detect minute flaws on the inner surface of the tube due to the skin effect. Therefore, the frequency for accurately detecting the flaws on the inner and outer surfaces of the pipe is set to 0.1 to 1 kHz.

【0020】貫通コイル方式の装置では、管軸方向に延
びた欠陥の検出が困難であり、回転コイル方式では小さ
な欠陥検出が困難である。
In the penetrating coil system, it is difficult to detect a defect extending in the tube axis direction, and in the rotating coil system, it is difficult to detect a small defect.

【0021】磁粉探傷装置5は、管の端部近傍の疵を精
度よく検出することができる。例えば管端部を400m
m程度磁化し磁粉又は磁粉液を散布すると欠陥部に磁粉
が凝集吸着し、模様を形成するので、欠陥を検出するこ
とができる。
The magnetic particle flaw detector 5 can accurately detect flaws near the end of the tube. For example, 400m pipe end
When magnetized by about m and the magnetic powder or the magnetic powder liquid is sprayed, the magnetic powder is aggregated and adsorbed on the defective portion to form a pattern, so that the defect can be detected.

【0022】以上の各装置のそれぞれの長短所を相補う
ように、それぞれの装置の持つ優れた特性を利用し、全
体として高い精度の欠陥検出を達成する。図7は検出す
べき材料に存在する疵の種類を模式的に示したもので、
管10の一部を示すもので、管外面41、管内質42、
管内面43に分布する疵を示している。疵の種類として
は、割れ51、管厚52、穴あき53、内ピット54、
外ピット55、外カブレ56、外噛み込み又は外打ち傷
57などが挙げられる。これらの傷の種類と検出装置と
の組合わせを表1に示した。
In order to complement the advantages and disadvantages of each of the above-described devices, defect detection with high accuracy is achieved as a whole by utilizing the excellent characteristics of each device. FIG. 7 schematically shows the types of flaws present in the material to be detected.
It shows a part of the tube 10, the tube outer surface 41, the tube inner material 42,
This shows a flaw distributed on the inner surface 43 of the pipe. The types of flaws include crack 51, pipe thickness 52, perforated 53, inner pit 54,
An outer pit 55, an outer rash 56, an outer bite or an outer hit 57, and the like. Table 1 shows combinations of these types of flaws and detection devices.

【0023】[0023]

【表1】 [Table 1]

【0024】表1中に示した記号◎は好適な検出特性を
示し、△は不安定な検出特性を示す。装置がコンパクト
になり、検査のために鋼管を保持するピンチロールも最
小限ですみ、それぞれ得意な分野を担当させて、全体を
総合すると、すべての種類の疵に対して、本発明の管の
非破壊検査方法によれば、完全に対応している。
The symbol ◎ shown in Table 1 indicates suitable detection characteristics, and the symbol △ indicates unstable detection characteristics. The equipment is compact, the pinch rolls for holding steel pipes for inspection are minimal, and they are assigned to their respective specialty fields. According to the nondestructive inspection method, it is completely supported.

【0025】[0025]

【発明の効果】本発明の管の非破壊検査方法及びその装
置は複合検査システムを構成し、従来の超音波探傷技
術、漏洩磁束探傷技術、渦電流探傷技術のそれぞれに各
技術の特徴を生かした探傷を分担させて精度を向上させ
ると共に、これらを直列にすべて用いることにより、管
の全周、全長、全面にわたる高度な品質保証体制を確立
することができ、1回のオンライン検査ですべての欠陥
を洩れなく検査することが可能となった。また、全体装
置がコンパクトになり、従来検査のために鋼管を保持す
るピンチロールが各検査位置ごとに複数必要であった
が、これを最小限に留めることができ、スペース、コス
ト低減に寄与する。
The method and apparatus for non-destructive inspection of a pipe according to the present invention constitute a combined inspection system, and utilize the features of each of the conventional ultrasonic inspection technology, leakage magnetic flux inspection technology, and eddy current inspection technology. In addition to improving the accuracy by sharing the inspections, the use of all of them in series makes it possible to establish an advanced quality assurance system over the entire circumference, the entire length, and the entire surface of the pipe. Defects can be inspected without leakage. In addition, the whole apparatus becomes compact, and conventionally, a plurality of pinch rolls for holding the steel pipe for each inspection were required for each inspection position, but this can be minimized, which contributes to space and cost reduction. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の管の非破壊検査装置の全体シ
ステムを示す図である。
FIG. 1 is a diagram showing an entire system of a pipe nondestructive inspection apparatus according to an embodiment of the present invention.

【図2】高周波漏洩磁束探傷装置の原理図である。FIG. 2 is a diagram illustrating the principle of a high-frequency leakage magnetic flux flaw detector.

【図3】超音波探傷装置の原理図である。FIG. 3 is a principle diagram of the ultrasonic flaw detector.

【図4】低周波過電流探傷装置の原理説明図である。FIG. 4 is a diagram illustrating the principle of a low-frequency overcurrent flaw detector.

【図5】高周波探傷の原理説明図である。FIG. 5 is a diagram illustrating the principle of high-frequency flaw detection.

【図6】超音波探傷装置の特性の説明図である。FIG. 6 is an explanatory diagram of characteristics of the ultrasonic flaw detector.

【図7】管の内外面に生ずる疵の模式図である。FIG. 7 is a schematic view of a flaw generated on the inner and outer surfaces of the tube.

【図8】自然欠陥の深さと相対信号強度との関係を示す
図である。
FIG. 8 is a diagram illustrating the relationship between the depth of a natural defect and the relative signal intensity.

【図9】従来の高周波漏洩磁束探傷装置の検出力の分布
を示すグラフである。
FIG. 9 is a graph showing a distribution of detection power of a conventional high-frequency leakage magnetic flux flaw detector.

【図10】実施例の高周波漏洩磁束探傷装置の検出力の
分布を示すグラフである。
FIG. 10 is a graph showing a distribution of detection power of the high-frequency magnetic flux leakage inspection apparatus according to the embodiment.

【符号の説明】[Explanation of symbols]

1 非破壊検査装置 2 高周波漏洩磁束探傷装置 3 超音波探傷装置 4 低周波過電流探傷装置 5 磁粉探傷装置 10 管 11、12 正負のヨーク 13 高周波磁束 14 疵 15 漏洩磁束 16 プローブ 21 シュー 22 トランスデューサ 23 送信波 24 反射波 25 ダルや緩慢な疵 26 管表面に平行な疵 31 励磁コイル 32 差動コイル 41 管外面 42 管内質 43 管内面 51 割れ 52 管厚 53 穴あき 54 内ピット 55 外ピット 56 外カブレ 57 外噛み込み又は外打ち傷 REFERENCE SIGNS LIST 1 Non-destructive inspection device 2 High-frequency leakage magnetic flux inspection device 3 Ultrasonic inspection device 4 Low-frequency overcurrent inspection device 5 Magnetic particle inspection device 10 Tube 11, 12 Positive and negative yoke 13 High-frequency magnetic flux 14 Defect 15 Leakage magnetic flux 16 Probe 21 Shoe 22 Transducer 23 Transmitted wave 24 Reflected wave 25 Dull or slow flaw 26 Flaw parallel to tube surface 31 Excitation coil 32 Differential coil 41 Tube outer surface 42 Tube inner material 43 Tube inner surface 51 Crack 52 Tube thickness 53 Perforated 54 Inner pit 55 Outer pit 56 Outer Irritation 57 External biting or external bruising

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 管の非破壊検査に当たり、まず8kHz
の高周波磁化による表皮疵を検出し、次いで超音波探傷
による内質疵を検出し、次に0.1〜1kHzの低周波
励磁による管の内表面疵の検査を行い、最後に管端部の
磁粉探傷を行うことを特徴とする管の非破壊検査方法。
1. In non-destructive inspection of a pipe, first, 8 kHz
Skin defects due to high-frequency magnetization, then detect internal flaws by ultrasonic flaw detection, then inspect the inner surface flaws of the tube by low frequency excitation of 0.1-1 kHz, and finally inspect the end of the tube. Non-destructive inspection method for pipes, characterized by conducting magnetic particle flaw detection.
【請求項2】 製管ラインの終端部に高周波漏洩磁束探
傷装置、超音波探傷装置、低周波過電流探傷装置、磁粉
探傷装置をタンデムに順次配設したことを特徴とする管
の非破壊検査装置。
2. A non-destructive inspection of a pipe, characterized in that a high frequency leakage magnetic flux inspection device, an ultrasonic inspection device, a low frequency overcurrent inspection device, and a magnetic particle inspection device are sequentially arranged in a tandem at the end of a pipe production line. apparatus.
JP2000084016A 2000-03-24 2000-03-24 Method and device for non destructive test for tube Withdrawn JP2001272379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000084016A JP2001272379A (en) 2000-03-24 2000-03-24 Method and device for non destructive test for tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000084016A JP2001272379A (en) 2000-03-24 2000-03-24 Method and device for non destructive test for tube

Publications (1)

Publication Number Publication Date
JP2001272379A true JP2001272379A (en) 2001-10-05

Family

ID=18600558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000084016A Withdrawn JP2001272379A (en) 2000-03-24 2000-03-24 Method and device for non destructive test for tube

Country Status (1)

Country Link
JP (1) JP2001272379A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011039019A (en) * 2009-08-14 2011-02-24 International Institute Of Universality Superconductive sensor for electromagnetic diagnostic apparatus
JP2013064668A (en) * 2011-09-20 2013-04-11 Ihi Inspection & Instrumentation Co Ltd Method for analyzing defect detection probability by ultrasonic test
KR101443503B1 (en) 2013-02-27 2014-09-24 현대제철 주식회사 Apparatus for testing parts
JP2015114127A (en) * 2013-12-09 2015-06-22 株式会社神戸製鋼所 Discrimination method of surface detect depth of object to be inspected and device thereof
JP2016038270A (en) * 2014-08-07 2016-03-22 高島産業株式会社 Eddy curent inspection device
WO2021189717A1 (en) * 2020-03-27 2021-09-30 南京航空航天大学 Defect type evaluation method based on fusion of eddy current testing signal and magnetic flux leakage testing signal
CN114791460A (en) * 2022-04-08 2022-07-26 清华大学 Crack detection method and detection device based on data fusion and storage medium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011039019A (en) * 2009-08-14 2011-02-24 International Institute Of Universality Superconductive sensor for electromagnetic diagnostic apparatus
JP2013064668A (en) * 2011-09-20 2013-04-11 Ihi Inspection & Instrumentation Co Ltd Method for analyzing defect detection probability by ultrasonic test
KR101443503B1 (en) 2013-02-27 2014-09-24 현대제철 주식회사 Apparatus for testing parts
JP2015114127A (en) * 2013-12-09 2015-06-22 株式会社神戸製鋼所 Discrimination method of surface detect depth of object to be inspected and device thereof
JP2016038270A (en) * 2014-08-07 2016-03-22 高島産業株式会社 Eddy curent inspection device
WO2021189717A1 (en) * 2020-03-27 2021-09-30 南京航空航天大学 Defect type evaluation method based on fusion of eddy current testing signal and magnetic flux leakage testing signal
CN114791460A (en) * 2022-04-08 2022-07-26 清华大学 Crack detection method and detection device based on data fusion and storage medium
CN114791460B (en) * 2022-04-08 2023-12-29 清华大学 Crack detection method and device based on data fusion and storage medium

Similar Documents

Publication Publication Date Title
Song et al. Detection of damage and crack in railhead by using eddy current testing
US6424150B2 (en) Magnetostrictive sensor rail inspection system
CN110308200B (en) Differential magnetic leakage and eddy current composite high-speed rail flaw detection method
JP3428734B2 (en) Metal tube flaw detector and metal tube flaw detection method
US6373245B1 (en) Method for inspecting electric resistance welds using magnetostrictive sensors
CN108037181A (en) A kind of high-tension cable lead sealing eddy-current crack detector and method
JP2009036516A (en) Nondestructive inspection device using guide wave and nondestructive inspection method
CN104407044A (en) Method for detecting defects of furnace tube based on low-frequency electromagnetic technology
Tu et al. An external through type RA-EMAT for steel pipe inspection
Yu et al. Defect measurement using the laser ultrasonic technique based on power spectral density analysis and wavelet packet energy
JPH04230846A (en) Method and apparatus for inspecting metal tube using eddy current
CN202159035U (en) Defect quantitative nondestructive inspecting equipment for oil casing
JP2001272379A (en) Method and device for non destructive test for tube
Song et al. A composite approach of electromagnetic acoustic transducer and eddy current for inner and outer corrosion defects detection
Piao et al. High-speed inspection method fusing pulsed eddy current and magnetic flux leakage
JP3266899B2 (en) Method and apparatus for flaw detection of magnetic metal body
Xie et al. Investigation of remote field eddy current defect detection for pipeline welds
CN105738465B (en) The defect detection equipment and method of boiler water-wall tube based on low frequency electromagnetic technology
CN102901771B (en) A kind of defect quantitative nondestructive inspecting equipment for oil casing
CN104407052B (en) Method for detecting defects of furnace tube based on magnetostrictive ultrasonic guided wave detection technology
CN103115958B (en) Method and device for detecting welded joint defects of dissimilar steel flash welding
JPH0552816A (en) Internally inserted probe for pulse-type eddy current examination
JP2010048817A (en) Nondestructive inspection device and method using guide wave
AU2017345361B2 (en) Method for automatically inspecting a weld bead deposited in a chamfer formed between two metal pieces to be assembled
JPH04276547A (en) Ultrasonic testing method for surface layer part of cylindrical body

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605