JP3266899B2 - Method and apparatus for flaw detection of magnetic metal body - Google Patents

Method and apparatus for flaw detection of magnetic metal body

Info

Publication number
JP3266899B2
JP3266899B2 JP08350796A JP8350796A JP3266899B2 JP 3266899 B2 JP3266899 B2 JP 3266899B2 JP 08350796 A JP08350796 A JP 08350796A JP 8350796 A JP8350796 A JP 8350796A JP 3266899 B2 JP3266899 B2 JP 3266899B2
Authority
JP
Japan
Prior art keywords
signal
magnetic
metal body
signals
magnetic metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08350796A
Other languages
Japanese (ja)
Other versions
JPH09274016A (en
Inventor
宏晴 加藤
淳一 四辻
章生 長棟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP08350796A priority Critical patent/JP3266899B2/en
Publication of JPH09274016A publication Critical patent/JPH09274016A/en
Application granted granted Critical
Publication of JP3266899B2 publication Critical patent/JP3266899B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁性金属体の内部
又は表面に存在する介在物等の微小な欠陥を、漏洩磁束
探傷法により検出する方法および装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for detecting minute defects such as inclusions present inside or on a surface of a magnetic metal body by a magnetic flux leakage inspection method.

【0002】[0002]

【従来の技術】金属材料などでは、内部、表面に欠陥が
あると強度等その品質に問題が生じる可能性があるた
め、品質管理上あるいは品質保証上、X線透過法、超音
波探傷法など様々な非破壊的な検査が行われている。た
とえば、鋼管溶接部の割れなどの検出には、X線透過
法、超音波探傷法が用いられている。一方、表面近傍の
欠陥や薄い帯状材料に関しては、特にオンラインでは、
電磁気的な方法、すなわち漏洩磁束法や渦流探傷法がよ
く用いられる。
2. Description of the Related Art In the case of a metal material or the like, if there is a defect inside or on the surface, a problem such as strength or the like may occur. Therefore, for quality control or quality assurance, an X-ray transmission method, an ultrasonic inspection method, or the like. Various non-destructive tests have been performed. For example, an X-ray transmission method and an ultrasonic flaw detection method are used to detect a crack in a welded portion of a steel pipe. On the other hand, near-surface defects and thin strips, especially online,
An electromagnetic method, that is, a leakage magnetic flux method or an eddy current flaw detection method is often used.

【0003】製缶材料向けの極薄鋼板では、介在物など
の欠陥があると製缶時にフランジクラックが発生するな
どの問題が生じる可能性があるため、漏洩磁束法などを
用いたオンライン高速欠陥検出器が開発されてきた。た
とえば、特開平3ー175352号公報には、図5に示
すように、鋼板21を挟んで、一方の側に鋼板を磁化す
るための磁化器22を、そしてもう一方の側に欠陥によ
り生じる漏洩磁束を検出する磁気センサアレイ23を幅
方向に配し、それぞれを非磁性ロール24,25の中に
入れて探傷する方法が提案されている。このような方法
によれば、センサ23と被検査体21の距離を小さく安
定に保つことができ、鋼板中の微小な欠陥が、非接触で
高速に検出できる。
[0003] In ultra-thin steel sheets for can-making materials, if there are defects such as inclusions, problems such as the generation of flange cracks during can-making may occur. Detectors have been developed. For example, Japanese Patent Application Laid-Open No. Hei 3-175352 discloses that a magnetizer 22 for magnetizing a steel sheet is provided on one side of a steel sheet 21 and leakage caused by a defect is provided on the other side, as shown in FIG. A method has been proposed in which a magnetic sensor array 23 for detecting magnetic flux is arranged in the width direction, and each of the magnetic sensor arrays 23 is inserted into non-magnetic rolls 24 and 25 to perform flaw detection. According to such a method, the distance between the sensor 23 and the test object 21 can be kept small and stable, and a minute defect in the steel plate can be detected at high speed without contact.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、特開平
3ー175352号公報に記載される方法を含め従来の
技術においては、検出すべき内部や表面の欠陥が小さい
場合や、厚い金属帯の内部欠陥を検出する場合には、欠
陥信号が弱くなり、相対的にS/N比が劣化して欠陥が
検出しにくくなる。ノイズとしては特に、被検査体に起
因する地合ノイズが問題になることが多い。地合ノイズ
は、測定条件を最適化することで小さくすることはでき
るが、欠陥信号が小さくなってくるに連れて地合ノイズ
と欠陥信号は区別しにくくなり、欠陥検出が困難になっ
てくる。たとえば、製缶用極薄鋼板などで問題となる介
在物などの異物の検出の場合には、従来技術では充分な
検出能が得られないという問題点がある。
However, in the prior art including the method described in Japanese Patent Application Laid-Open No. 3-175352, when the internal or surface defect to be detected is small, or when the internal defect of a thick metal band is detected. Is detected, the defect signal is weakened, the S / N ratio is relatively deteriorated, and it becomes difficult to detect the defect. In particular, formation noise caused by the test object often becomes a problem. The formation noise can be reduced by optimizing the measurement conditions, but as the defect signal becomes smaller, it becomes more difficult to distinguish between the formation noise and the defect signal, and the defect detection becomes more difficult. . For example, in the case of detecting a foreign substance such as an inclusion, which is a problem in an ultra-thin steel plate for can making, there is a problem that a sufficient detection capability cannot be obtained with the conventional technology.

【0005】本発明はこのような問題点を解決するため
になされたもので、従来の漏洩磁束探傷法では十分に検
出できなかった微小な欠陥の検出ができるようにするこ
とを目的とする。
The present invention has been made to solve such a problem, and an object of the present invention is to make it possible to detect a minute defect that cannot be sufficiently detected by the conventional magnetic flux leakage inspection method.

【0006】前記課題は、被検査磁性金属体に磁場を印
加して検査部を磁化し、磁性金属体の欠陥から発生する
漏洩磁束を、少なくとも測定条件の1項目を相互に異な
らせて、地合ノイズが異なった出方をするような複数の
条件で、複数の磁気センサにより検出して複数の漏洩磁
束探傷信号を得、これらの複数の漏洩磁束探傷信号の実
質的に同一の検査部位から得られた信号同士に対し、当
該複数の信号の内少なくとも二つの信号中に共通して存
在する欠陥信号をノイズ信号に対して相対的に強調する
ような演算を含む信号処理を行って得られる複合探傷信
号を用いて、磁性金属体の欠陥を検出することを特徴と
する磁性金属体の探傷方法により解決される。
[0006] The problem is that a magnetic field is applied to the magnetic metal body to be inspected to magnetize the inspection part, and that the leakage magnetic flux generated from the defect of the magnetic metal body must be at least one of the measurement conditions different from each other.
To make the formation noise appear differently.
Under the conditions, a plurality of leakage magnetic flux detection signals are detected by a plurality of magnetic sensors to obtain a plurality of leakage magnetic flux detection signals, and signals obtained from substantially the same inspection site of the plurality of leakage magnetic flux detection signals are compared with each other. Using a composite flaw detection signal obtained by performing a signal processing including an operation of relatively emphasizing a defect signal that is present in at least two signals relative to a noise signal, a defect of the magnetic metal body is determined. The problem is solved by a flaw detection method for a magnetic metal body characterized by detecting.

【0007】この方法は、(1) 被検査磁性金属体に磁場
を印加して検査部を磁化する磁化器と、(2) 磁性金属体
の欠陥から発生する漏洩磁束を、少なくとも測定条件の
1項目が相互に異なることにより、地合ノイズが異なっ
た出方をするような複数の条件で検出して漏洩磁束探傷
信号を得る複数の磁気センサと、(3) これらの複数の漏
洩磁束探傷信号の実質的に同一の検査部位から得られた
信号同士に対し、当該複数の信号の内少なくとも二つの
信号中に共通して存在する欠陥信号をノイズ信号に対し
て相対的に強調するような演算を含む信号処理を行う信
号処理装置とを有してなる磁性金属体探傷装置により実
施することができる。また、この方法は、(1) 磁性金属
体を磁化するための磁化器と、(2) E型形状の強磁性体
で作られ3個の磁極の列が磁性金属体の走行方向に沿う
ように配置したE型コアおよびE型コアの中央磁極に巻
いたコイルとからなり、被検査磁性金属体の同一個所を
挟むように両側に対となって配置されたE型磁気センサ
と、(3) これらの対となっているE型磁気センサにより
検出された2つの漏洩磁束探傷信号中に共通して存在す
る欠陥信号をノイズ信号に対して相対的に強調するよう
な演算を含む信号処理を行って得られる複合探傷信号を
得る演算器と、(4) その複合探傷信号から磁性金属体の
欠陥の有無または欠陥の等級を判断するための判定回路
とを有してなる磁性金属体探傷装置により実施すること
ができる。
This method involves the following steps: (1) A magnetic field is applied to a magnetic metal body to be inspected.
A magnetizer that magnetizes the inspection part by applying a magnetic field, and (2) a magnetic metal body
Leakage flux generated from the defect of at least
Formation noise is different because one item is different from each other
Flux leakage detection by detecting under multiple conditions
Multiple magnetic sensors to obtain signals and (3)
Leakage magnetic flux inspection signal obtained from substantially the same inspection site
For signals, at least two of the plurality of signals
Defect signals that are commonly present in the signal
Signal processing that includes calculations that emphasize
And a magnetic metal inspection device having a
Can be applied. In addition, this method comprises the steps of (1) a magnetizer for magnetizing a magnetic metal body, and (2) a row of three magnetic poles made of an E-shaped ferromagnetic body so as to be along the running direction of the magnetic metal body. An E-shaped magnetic sensor comprising an E-shaped core and a coil wound around the central magnetic pole of the E-shaped core, and arranged in pairs on both sides so as to sandwich the same portion of the magnetic metal body to be inspected; ) A signal processing including an operation of emphasizing a defect signal which is present in the two leaked magnetic flux detection signals detected by the paired E-type magnetic sensors relatively to a noise signal. A magnetic metal object flaw detector comprising: an arithmetic unit for obtaining a composite flaw detection signal obtained by performing the test; and (4) a determination circuit for determining the presence or absence or the class of the defect of the magnetic metal body from the composite flaw detection signal. Can be implemented.

【0008】複数の信号の内少なくとも二つの信号中に
共通して存在する欠陥信号をノイズ信号に対して相対的
に強調するような演算を含む信号処理を行っているの
で、S/N比が向上し、微小欠陥を精度良く検出するこ
とができる。
[0008] Since signal processing including an operation of emphasizing a defect signal that is present in at least two of a plurality of signals in common with a noise signal is performed, the S / N ratio is reduced. It is possible to detect minute defects with high accuracy.

【0009】[0009]

【発明の実施の形態】測定条件とは、漏洩磁束検出にお
いて一般的に考えられる条件を指しており、項目として
は、たとえば、フィルター、金属帯の測定面、センサと
検査対象との距離、磁化力、磁化方向、センサの種類な
どが考えられる。本発明においては、これらのうち少な
くともが相互に異なる複数の磁気センサにより複数の漏
洩磁束探傷信号を得ている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The measurement conditions refer to conditions generally considered in the detection of magnetic flux leakage, and include items such as a filter, a measurement surface of a metal strip, a distance between a sensor and an object to be inspected, and a magnetization. The force, magnetization direction, type of sensor, and the like can be considered. In the present invention, a plurality of leakage magnetic flux detection signals are obtained by a plurality of magnetic sensors at least different from each other.

【0010】演算の対象となる信号として、非検査磁性
金属体の実質的に同一場所の表裏面から得られた信号の
対を用いることができる。欠陥信号は被検査磁性金属体
の表裏面で同じように得られるのに対し、ノイズ成分は
被検査磁性金属体の表面性状等の影響を受けるので表裏
面で異なった信号となる。よって、表裏面の信号同士を
演算することにより、欠陥信号成分をノイズ成分に対し
て相対的に高めることができる。
As a signal to be calculated, a pair of signals obtained from the front and back surfaces of the non-test magnetic metal body at substantially the same location can be used. While the defect signal is obtained in the same way on the front and back surfaces of the magnetic metal body to be inspected, the noise component is affected by the surface properties and the like of the magnetic metal body to be inspected. Therefore, by calculating the signals on the front and back surfaces, the defect signal component can be increased relative to the noise component.

【0011】演算の対象となる信号として、フィルタ定
数が相互に異なる複数のフィルタによりそれぞれ信号処
理された信号を用いることができる。即ち、例えば図3
に示すように、第1のバンドパスフィルターを欠陥周波
数を含む低めの周波数帯域とし、第2のバンドパスフィ
ルターを欠陥周波数を含む高めの周波数帯域とすると、
欠陥信号は両者で共通であるが、ノイズ成分は、両者の
周波数帯域が異なることから、必ずしも同じ位置に現れ
るとは限らない。よって、これらのバンドパスフィルタ
をそれぞれ通過した信号同士を演算することにより、欠
陥信号成分をノイズ成分に対して相対的に高めることが
できる。
As a signal to be operated, a signal processed by a plurality of filters having mutually different filter constants can be used. That is, for example, FIG.
As shown in the following, if the first band-pass filter is a lower frequency band including the defective frequency, and the second band-pass filter is a higher frequency band including the defective frequency,
Although the defect signal is common to both, the noise component does not always appear at the same position because the frequency bands of both are different. Therefore, by calculating the signals that have passed through these band-pass filters, the defect signal component can be increased relative to the noise component.

【0012】なお、この場合は複数のセンサを用いて、
それぞれの出力を周波数帯域の異なるフィルタに通して
も良いし、一つのセンサのみを用い、センサからの出力
を分岐して、周波数帯域の異なるフィルタを通してもよ
い。
In this case, using a plurality of sensors,
Each output may be passed through a filter having a different frequency band, or only one sensor may be used, and the output from the sensor may be branched and passed through a filter having a different frequency band.

【0013】演算の対象となる信号として、センサと金
属体探傷面との距離(リフトオフ)が相互に異なる複数
の磁気センサより得られた信号を用いることができる。
リフトオフが変わると、図4に示すように、センサが検
出する金属体上のカバー範囲が変化することから、検出
対象となるノイズ源が変化して、その結果センサが検出
するノイズが異なったものとなる。そのため、リフトオ
フが変わった場合、欠陥信号は同じように検出されるの
に対し、ノイズの方は異なったものとなる。よって、リ
フトオフの異なるセンサから得られた信号同士の演算に
より、欠陥信号成分をノイズ成分に対して相対的に高め
ることができる。
As signals to be calculated, signals obtained from a plurality of magnetic sensors having different distances (lift-offs) between the sensor and the metal body flaw detection surface can be used.
When the lift-off changes, as shown in FIG. 4, the cover range on the metal body detected by the sensor changes, so that the noise source to be detected changes, and as a result, the noise detected by the sensor differs. Becomes Therefore, when the lift-off is changed, the defect signal is detected in the same manner, but the noise is different. Therefore, the defect signal component can be increased relative to the noise component by calculating the signals obtained from the sensors having different lift-offs.

【0014】演算の対象となる信号として、種類の異な
る複数の磁気センサから得られた信号を用いることがで
きる。センサの種類によって、カバー範囲が異なった
り、あるいは、E型コアを用いたセンサの様に差分機能
があるものと一般のセンサのように差分機能の無いもの
という点で異なったりする。いずれのセンサも欠陥信号
を検出するように設計されているが、ノイズ信号はこれ
らの種類の違いに起因して異なっている。よって、種類
が相互に異なる複数のセンサから得られた信号同士を演
算することにより、欠陥信号成分をノイズ成分に対して
相対的に高めることができる。
Signals obtained from a plurality of different types of magnetic sensors can be used as signals to be calculated. Depending on the type of the sensor, the coverage range differs, or the sensor has a difference function such as a sensor using an E-type core and the sensor does not have a difference function like a general sensor. Both sensors are designed to detect defective signals, but the noise signals are different due to these types of differences. Therefore, by calculating signals obtained from a plurality of sensors of different types, it is possible to increase the defect signal component relative to the noise component.

【0015】また、ここで示した項目以外でも、欠陥か
らの信号が得られ、ノイズに関しては、それぞれの測定
条件で出方が相互に異なるものであれば、演算の対象と
なる信号として使用することができる。
In addition, other than the items shown here, a signal from a defect can be obtained, and noise is used as a signal to be calculated if the output is different under each measurement condition. be able to.

【0016】このように、複数のお互いに異なる測定条
件により得られた複数の漏洩磁束探傷信号の実質的に同
一の検査部位から得られた信号同士に対し、当該複数の
信号の内少なくとも二つの信号中に共通して存在する欠
陥信号をノイズ信号に対して相対的に強調するような演
算を含む信号処理を行って得られる複合探傷信号を用い
て、欠陥を検出する。
As described above, for a plurality of signals obtained from substantially the same inspection site among a plurality of leakage magnetic flux detection signals obtained under a plurality of different measurement conditions, at least two of the plurality of signals are used. A defect is detected using a composite flaw detection signal obtained by performing signal processing including an operation of emphasizing a defect signal commonly present in a signal relative to a noise signal.

【0017】漏洩磁束探傷信号を2種類用いる場合の演
算を式で一般的に表すと(1)式のようになる。
The operation in the case of using two types of leakage magnetic flux detection signals is generally expressed by the following equation (1).

【0018】 A(x) =M1(x) *M2(x) …… (1) ここで、xは検査体上の位置、M1(x) は、ある測定条
件(測定条件1)で得られた位置xにおける漏洩磁束探
傷信号値、M2(x) は、別の測定条件(測定条件2)で
得られた位置xにおける漏洩磁束探傷信号値を示し、*
は演算子(たとえば、乗算、自乗和、M1(x) 、M2
(x) 両者の絶対値をとった後の足し算、M1(x) 、M2
(x) 両者の絶対値をとった後の小さい方をとる演算子な
ど)を示す。A(x)は位置xにおける演算の結果であ
る。
A (x) = M1 (x) * M2 (x) (1) where x is a position on the inspection object, and M1 (x) is obtained under a certain measurement condition (measurement condition 1). M2 (x) indicates the leakage magnetic flux detection signal value at the position x obtained under another measurement condition (measurement condition 2).
Are operators (eg, multiplication, sum of squares, M1 (x), M2
(x) Addition after taking absolute values of both, M1 (x), M2
(x) operator that takes the smaller value after taking the absolute value of both). A (x) is the result of the operation at position x.

【0019】その際、欠陥による信号の変化は、たと
えその大きさが違ったとしても、複数の異なる測定条件
全てにおいて検出でき、同じ位置にその変化が現れるよ
うに、そしてノイズが位置的にそれぞれ異なった出方
をするように、測定条件を選択すれば、その欠陥信号と
ノイズの性質の差を利用したS/N比の向上が可能であ
る。一方の漏洩磁束探傷信号で地合ノイズが大きい位置
では、もう一方の漏洩磁束探傷信号では地合ノイズが小
さいため、たとえば両者の同一の検査部位からの信号値
同士の乗算によって、両信号で共通に現れる欠陥信号に
比べ、ノイズ部が相対的に弱められるのである。自乗
和、M1(x) 、M2(x) 両者の絶対値をとった後の足し
算に関しても、同様の効果が期待できる。両者の絶対値
のうち小さい方を取る演算では、欠陥部では両漏洩磁束
探傷信号とも大きな値をとるため、小さい方を取るとい
う演算の結果もさほど小さくならないのに対し、ノイズ
部はどちらか一方が小さくなること場合があり、小さい
方を取ることで、演算結果はかなり小さくなる可能性が
ある。そのため、相対的には欠陥部がノイズ部に比べ、
強調される。
At this time, a change in the signal due to the defect can be detected under all of a plurality of different measurement conditions, even if the magnitude is different, so that the change appears at the same position, and the noise is locally detected. If the measurement conditions are selected so as to be different, it is possible to improve the S / N ratio using the difference between the defect signal and the noise. At a position where formation noise is large in one of the leakage magnetic flux detection signals, formation noise is small in the other leakage magnetic flux detection signal. The noise part is relatively weakened as compared with the defective signal appearing in (1). Similar effects can be expected for the sum after the sum of the squares, M1 (x), and M2 (x) after taking the absolute values of both. In the calculation that takes the smaller of the absolute values of both, the leakage flux detection signal takes a large value in the defective part, so the result of the calculation that takes the smaller one does not become so small, but the noise part is one of the two. May be small, and by taking the smaller one, the calculation result may be considerably smaller. Therefore, relatively defective parts are compared to noise parts.
Be emphasized.

【0020】演算の種類は、両漏洩磁束信号で似通った
欠陥信号が強められ、一方両者で必ずしも同じ位置に、
あるいは同じ波形として現れないノイズが相対的に弱め
られる演算であればよい。これはノイズや欠陥信号の性
質に応じて、また、装置化する上での制約などに応じ
て、選択することが可能である。
The type of operation is such that a defect signal similar between the two leakage magnetic flux signals is strengthened, while both are not necessarily at the same position,
Alternatively, any calculation may be used as long as noise that does not appear as the same waveform is relatively weakened. This can be selected according to the nature of the noise or the defect signal, or according to restrictions in realizing the device.

【0021】前記の例では、2種類の漏洩磁束探傷信号
間の演算を例に取り説明したが、2種類に限る必要はな
い。多くの測定条件の異なる信号を使用することで、欠
陥信号は強調され、ノイズは相対的に強調の程度が少な
くなるという効果が増すことが期待できる。たとえば、
M1(x) 、M2(x) 、M3(x) 、M4(x) を、それぞれ
異なる条件でとった漏洩磁束探傷信号データとすると、
以下の(2)式に示すB(x) を、欠陥の有無の判定に使
用できる。 B(x) =abs [M1(x) ×M2(x) ×M3(x)]+abs[M4(x)] …… (2) ここで、abs[Y] はYの絶対値をとる関数である。
In the above example, the calculation between the two kinds of leakage magnetic flux detection signals has been described as an example, but it is not necessary to limit to two kinds. By using signals having many different measurement conditions, it is expected that the effect of enhancing a defective signal and relatively reducing the degree of enhancement of noise will be increased. For example,
Assuming that M1 (x), M2 (x), M3 (x), and M4 (x) are leakage magnetic flux detection signal data taken under different conditions,
B (x) shown in the following equation (2) can be used for determining the presence or absence of a defect. B (x) = abs [M1 (x) × M2 (x) × M3 (x)] + abs [M4 (x)] (2) where abs [Y] is a function that takes the absolute value of Y is there.

【0022】また、ここではある一種類の演算結果を欠
陥の有無の判定に使用する場合について述べているが、
これは一つに限らず、2つ以上を使うことも可能であ
る。たとえば、上記A(x) とB(x) それぞれの判定結果
を組み合わせて最終的な判定をくだすことも可能であ
る。また、従来の漏洩磁束探傷信号単体での判定をも加
えることができる。このような場合、判定回路は、単に
ある一つの信号に対してだけではなく、複数の信号につ
いて、それぞれの閾値を越えているかどうかを調べ、さ
らに、その結果を組み合わせて、欠陥の有無、等級に関
する最終的な判定を行うことになる。
In this case, a case is described in which one type of calculation result is used to determine the presence or absence of a defect.
This is not limited to one, and it is also possible to use two or more. For example, a final determination can be made by combining the determination results of A (x) and B (x). In addition, it is possible to add a judgment using only the conventional leakage magnetic flux detection signal. In such a case, the determination circuit checks whether or not each of the thresholds has been exceeded for not only one signal but also a plurality of signals, and further combines the results to determine whether or not there is a defect, a class. The final decision regarding

【0023】これらにより、単純な従来の漏洩磁束法の
みでは、S/Nが悪く検出できないような微小な欠陥の
検出が可能になる。
As a result, it is possible to detect a minute defect that cannot be detected by a simple conventional magnetic flux leakage method due to poor S / N.

【0024】[0024]

【実施例】以下、本発明の1実施例を図を用いて説明す
る。図1は、本発明にかかる装置の例を示す図である。
図1において、11は鋼板、12、13はE型磁気セン
サ、14はコイル、15は直流磁化装置、16、17は
バンドパスフィルタ、18は乗算器、19は判定回路で
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an example of an apparatus according to the present invention.
In FIG. 1, 11 is a steel plate, 12 and 13 are E-type magnetic sensors, 14 is a coil, 15 is a DC magnetizing device, 16 and 17 are band pass filters, 18 is a multiplier, and 19 is a judgment circuit.

【0025】鋼板11を挟んで、一方の側にE型センサ
12を、もう一方の側に直流磁化装置15ともう一つの
E型センサ13を配置する。この直流磁化装置15によ
り、鋼板11の被検査部位は飽和域まで磁化される。鋼
板11は、E型センサ12、磁化器15とE型センサ1
3の間を移動するが、その移動方向に沿ってセンサコア
の3本の足(磁極)12a,12b,12cが並んでい
る。その3本のうち、E型センサの中心の足12bに巻
いてあるコイル14は、磁気検出部として使用されてお
り、そのコイルに鎖交する磁束の時間微分値が計測され
る。
On one side of the steel plate 11, an E-type sensor 12 is arranged, and on the other side, a DC magnetizing device 15 and another E-type sensor 13 are arranged. The DC magnetizing device 15 magnetizes the inspected portion of the steel plate 11 to the saturation region. The steel plate 11 includes an E-type sensor 12, a magnetizer 15, and an E-type sensor 1.
3, the three legs (magnetic poles) 12a, 12b, and 12c of the sensor core are arranged along the moving direction. Among these three coils, the coil 14 wound around the foot 12b at the center of the E-type sensor is used as a magnetic detection unit, and the time differential value of the magnetic flux linked to the coil is measured.

【0026】コアがE型であるという構造上の特徴か
ら、そのコイルに鎖交する磁束は、一方の端部の足12
aと真中の足12bを含む磁気的なループを通る磁束
と、もう一方の端部の足12cと真中の足12bを含む
磁気的なループを通る磁束との差分となる。そのため、
両ループに共通のノイズ成分などはキャンセルされ、両
ループで共通でない欠陥信号成分が選択的に検出される
ことになる。E型センサ13の作用も上記E型センサ1
2の作用と同様である。
Due to the structural feature of the core being E-shaped, the magnetic flux linked to the coil is not affected by the foot 12 at one end.
a and the magnetic flux passing through a magnetic loop including the middle foot 12b and the other end of the magnetic loop including the foot 12c and the middle foot 12b. for that reason,
Noise components common to both loops are canceled, and defective signal components not common to both loops are selectively detected. The operation of the E-type sensor 13 is also
The operation is the same as that of the second operation.

【0027】センサ出力を、適当なバンドパスフィルタ
16、17に通すことで、漏洩磁束探傷信号(微分値)
を得ることができる。
By passing the sensor output through appropriate band-pass filters 16 and 17, a leakage magnetic flux detection signal (differential value) is obtained.
Can be obtained.

【0028】ここでは演算として、鋼板の場所を挟むよ
うに両側に配置した2つのセンサにより得られた2つの
漏洩磁束探傷信号の同じ検査位置からの信号同士の乗算
を使用した例について述べる。鋼板中深さ方向の感度
は、センサのある表面側近くでは相対的に高く、センサ
のない裏面側近くでは相対的に低くなる。そのため、セ
ンサ12とセンサ13では、信号やノイズ源の深さ方向
の位置によって、信号の出方が異なることになる。
Here, an example will be described in which multiplication of signals from the same inspection position of two leakage magnetic flux detection signals obtained by two sensors arranged on both sides of the steel plate so as to sandwich the position of the steel plate is used as the calculation. The sensitivity in the depth direction in the steel sheet is relatively high near the front side with the sensor, and relatively low near the back side without the sensor. Therefore, the sensor 12 and the sensor 13 generate signals differently depending on the position of the signal or noise source in the depth direction.

【0029】図2(a)は、検査体上の位置xを横軸と
し、縦軸にバンドパスフィルタ等の処理後のセンサ12
aよる漏洩磁束探傷信号Ma(x) を示したものである。
欠陥部で信号が大きくなっているだけでなく、検査体に
起因する地合ノイズが大きく出ているため、S/N比で
は1.8 程度である。図2(b) は、同様にバンドパスフィ
ルタ等の処理後のセンサ13による漏洩磁束探傷信号M
b(x) である。この場合もMa(x) と同じ位置に欠陥信
号が出ているが、検査体に起因する地合ノイズがあるた
め、S/N比はやはり1.9 程度である。ここで同じ位置
からの信号値毎に、乗算を行う。演算結果A(x) を式で
表すと、 A(x) =Ma(x) ×Mb(x) …… (3) という演算を行うことになる。
FIG. 2A shows the position x on the test object as the horizontal axis, and the vertical axis as the sensor 12 after processing such as a band-pass filter.
6 shows a leakage magnetic flux detection signal Ma (x) by a.
The S / N ratio is about 1.8 because not only the signal is large at the defective part but also the formation noise caused by the inspection object is large. FIG. 2B shows a leakage magnetic flux detection signal M by the sensor 13 similarly processed by a band-pass filter or the like.
b (x). In this case as well, a defect signal is output at the same position as Ma (x). However, since there is formation noise due to the inspection object, the S / N ratio is also about 1.9. Here, multiplication is performed for each signal value from the same position. When the operation result A (x) is expressed by an equation, the following operation is performed: A (x) = Ma (x) × Mb (x) (3)

【0030】この場合欠陥の大きさがある程度あるた
め、欠陥信号は、両信号で現れ、その位置がほぼ同じで
あるため、乗算をすることで、演算後の信号A(x) の欠
陥対応部は大きくなる。一方、地合ノイズの出方は、両
センサでの深さ方向の感度分布の違いに起因して、両者
の信号が、必ずしも同じ位置で大きくなるとは限らな
い。たとえば、表面近傍のノイズ源によるノイズは、一
方のセンサでは検出されるが、もう一方のセンサではあ
まり検出されないと言うことが起こる。その場合、両者
の乗算をすると、演算後の信号A(x) のノイズ対応部
は、欠陥信号部同士の場合に比べると、一般に大きくな
らない。つまり、欠陥信号部は、地合ノイズ部に比べ強
調されるので、演算結果A(x) を使うことで欠陥の有無
を判定することが容易になり、欠陥検出能が上がるので
ある。この例では、S/N比は5.2 に向上している。
In this case, since the size of the defect is to some extent, the defect signal appears in both signals and their positions are almost the same. Therefore, by multiplication, the defect corresponding portion of the signal A (x) after the calculation is obtained. Becomes larger. On the other hand, the formation noise is not always the same at the same position due to the difference in the sensitivity distribution in the depth direction between the two sensors. For example, noise from a noise source near the surface may be detected by one sensor, but less detected by the other sensor. In that case, when both are multiplied, the noise-corresponding portion of the signal A (x) after the operation is generally not larger than that of the defective signal portions. In other words, the defect signal portion is emphasized as compared with the formation noise portion, so that it is easy to determine the presence or absence of a defect by using the operation result A (x), and the defect detection ability is improved. In this example, the S / N ratio has increased to 5.2.

【0031】判定回路19は、このようにして得られた
S/N比の良い信号を用いて、欠陥信号値とあらかじめ
決められた閾値を比べることで、欠陥の有無の判定、欠
陥等級の判定を行う。
The judgment circuit 19 compares the defect signal value with a predetermined threshold value by using the signal having a good S / N ratio obtained in this way, thereby judging the presence or absence of a defect and judging the defect class. I do.

【0032】[0032]

【発明の効果】本発明においては、測定条件の相互に異
なる複数の渦流探傷信号の実質的に同一の検査部位から
得られた信号波形同士を演算して得られる複合探傷信号
を用いて、欠陥の有無や有害度を判定することで、従来
の方法ではS/N比が十分取れず、検出しにくかった欠
陥を検出することができる。
According to the present invention, the defect detection is performed by using a composite flaw detection signal obtained by calculating signal waveforms of a plurality of eddy current flaw detection signals having different measurement conditions obtained from substantially the same inspection site. By judging the presence or absence and the degree of harm, it is possible to detect a defect that cannot be sufficiently obtained with the conventional method and is difficult to detect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明にかかる装置の1実施例を示す図であ
る。
FIG. 1 is a diagram showing one embodiment of an apparatus according to the present invention.

【図2】 漏洩磁束探傷信号と、その演算結果の信号を
示す図である。
FIG. 2 is a diagram showing a leakage magnetic flux detection signal and a signal of a calculation result thereof.

【図3】 欠陥とノイズの周波数と、バンドパスフィル
タの帯域の関係を示す図である。
FIG. 3 is a diagram illustrating a relationship between a frequency of a defect and a noise and a band of a band-pass filter.

【図4】 センサのリフトオフと検出範囲、ノイズ源の
範囲を示す図である。
FIG. 4 is a diagram showing a lift-off of a sensor, a detection range, and a range of a noise source.

【図5】 従来技術の例を示す図である。FIG. 5 is a diagram showing an example of the related art.

【符号の説明】[Explanation of symbols]

11 鋼板 12、13 E型センサ 12a、12b、12c E型センサの足 14 コイル 15 直流磁化装置 16、17 バンドパスフィルタ 18 乗算器 19 判定回路 DESCRIPTION OF SYMBOLS 11 Steel plate 12, 13 E type sensor 12a, 12b, 12c Foot of E type sensor 14 Coil 15 DC magnetizing device 16, 17 Band pass filter 18 Multiplier 19 Judgment circuit

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−108656(JP,A) 特開 昭63−133054(JP,A) 特開 昭58−83253(JP,A) 実開 昭61−119760(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01N 27/72 - 27/90 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-57-108656 (JP, A) JP-A-63-133054 (JP, A) JP-A-58-83253 (JP, A) 119760 (JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) G01N 27/72-27/90

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被検査磁性金属体に磁場を印加して検査
部を磁化し、磁性金属体の欠陥から発生する漏洩磁束
を、少なくとも測定条件の1項目を相互に異ならせて、
地合ノイズが異なった出方をするような複数の条件で、
複数の磁気センサにより検出して複数の漏洩磁束探傷信
号を得、これらの複数の漏洩磁束探傷信号の実質的に同
一の検査部位から得られた信号同士に対し、当該複数の
信号の内少なくとも二つの信号中に共通して存在する欠
陥信号をノイズ信号に対して相対的に強調するような演
算を含む信号処理を行って得られる複合探傷信号を用い
て、磁性金属体の欠陥を検出することを特徴とする磁性
金属体の探傷方法。
1. A magnetic field is applied to a magnetic metal body to be inspected to magnetize an inspection part, and a leakage magnetic flux generated from a defect of the magnetic metal body is made different from at least one item of measurement conditions .
Under multiple conditions where formation noise appears differently,
Detected by a plurality of magnetic sensors to obtain a plurality of leakage magnetic flux detection signals, and at least two of the plurality of leakage magnetic flux detection signals are obtained from signals obtained from substantially the same inspection site. Detecting a defect in a magnetic metal body using a composite flaw detection signal obtained by performing signal processing including an operation that emphasizes a defect signal that is commonly present in two signals relative to a noise signal A flaw detection method for a magnetic metal body, characterized in that:
【請求項2】 前記少なくとも二つの信号が、非検査磁
性金属体の実質的に同一場所の表裏面から得られた信号
の対を含むことを特徴とする請求項1に記載の磁性金属
体の探傷方法。
2. The magnetic metal body of claim 1, wherein the at least two signals include pairs of signals obtained from substantially the same front and back surfaces of the untested magnetic metal body. Flaw detection method.
【請求項3】 前記少なくとも二つの信号が、フィルタ
定数が相互に異なる複数のフィルタによりそれぞれ信号
処理された信号を含むことを特徴とする請求項1又は請
求項2に記載の磁性金属体の探傷方法。
3. The flaw detection method according to claim 1, wherein the at least two signals include signals processed by a plurality of filters having different filter constants. Method.
【請求項4】 前記少なくとも二つの信号が、センサと
被検査金属体探傷面との距離が相互に異なる複数の磁気
センサより得られた信号を含むことを特徴とする請求項
1ないし請求項3のいずれか1項に記載の磁性金属体の
探傷方法。
4. The apparatus according to claim 1, wherein the at least two signals include signals obtained from a plurality of magnetic sensors having different distances between the sensor and the inspection surface of the metal object to be inspected. The method for flaw detection of a magnetic metal body according to any one of the above items.
【請求項5】 前記少なくとも二つの信号が、種類の異
なる複数の磁気センサから得られた信号を含むことを特
徴とする請求項1ないし請求項4の内いずれか1項に記
載の磁性金属体の探傷方法。
5. The magnetic metal body according to claim 1, wherein the at least two signals include signals obtained from a plurality of different types of magnetic sensors. Flaw detection method.
【請求項6】 信号中に共通して存在する欠陥信号をノ
イズ信号に対して相対的に強調するような演算が乗算
自乗和、又は各信号の絶対値をとった後の小さい方をと
る演算のいずれかであることを特徴とする請求項1ない
し請求項5の内いずれか1項に記載の磁性金属体の探傷
方法。
6. An arithmetic operation for emphasizing a defect signal commonly present in a signal relative to a noise signal is multiplied ,
Sum of squares or the smaller of the absolute values of each signal
Testing method of a magnetic metal body according to any one of claims 1 to 5, characterized in that either of the operation that.
【請求項7】 (1) 磁性金属体を磁化するための磁化器
と、 (2) E型形状の強磁性体で作られ3個の磁極の列が磁性
金属体の走行方向に沿うように配置したE型コアおよび
E型コアの中央磁極に巻いたコイルとからなり、被検査
磁性金属体の同一個所を挟むように両側に対となって配
置されたE型磁気センサと、 (3) これらの対となっているE型磁気センサにより検出
された2つの漏洩磁束探傷信号中に共通して存在する欠
陥信号をノイズ信号に対して相対的に強調するような演
算を含む信号処理を行って得られる複合探傷信号を得る
演算器と、 (4) その複合探傷信号から磁性金属体の欠陥の有無また
は欠陥の等級を判断するための判定回路とを有してなる
磁性金属体探傷装置。
7. A magnetizer for magnetizing a magnetic metal body, and (2) an array of three magnetic poles made of an E-shaped ferromagnetic material so that a row of three magnetic poles is along a running direction of the magnetic metal body. (3) an E-shaped magnetic sensor comprising an E-shaped core arranged and a coil wound around the central magnetic pole of the E-shaped core, and arranged in pairs on both sides so as to sandwich the same portion of the magnetic metal body to be inspected; A signal processing including an operation of emphasizing a defect signal which is present in the two leakage magnetic flux detection signals detected by the paired E-type magnetic sensors relatively to a noise signal is performed. (4) A magnetic metal object flaw detection device comprising: an arithmetic unit for obtaining a composite flaw detection signal obtained by the above; and (4) a judgment circuit for judging the presence or absence or the class of the defect of the magnetic metal body from the composite flaw detection signal.
【請求項8】 2つの漏洩磁束探傷信号中に共通して存
在する欠陥信号をノイズ信号に対して相対的に強調する
ような演算を行って得られる複合探傷信号を得る演算器
が乗算器である請求項7に記載の磁性金属体探傷装置。
8. An arithmetic unit for obtaining a composite flaw detection signal obtained by performing an operation for emphasizing a defect signal which is present in common between two leakage magnetic flux flaw detection signals relative to a noise signal is a multiplier. A magnetic metal body flaw detector according to claim 7.
【請求項9】 (1) 被検査磁性金属体に磁場を印加して9. Applying a magnetic field to a magnetic metal body to be inspected
検査部を磁化する磁化器と、A magnetizer for magnetizing the inspection unit; (2) 磁性金属体の欠陥から発生する漏洩磁束を、少なく(2) Reduce leakage magnetic flux generated from defects in magnetic metal
とも測定条件の1項目が相互に異なることにより、地合And one of the measurement conditions differs from each other,
ノイズが異なった出方をするような複数の条件で検出しDetect under multiple conditions where noise comes out differently
て漏洩磁束探傷信号を得る複数の磁気センサと、A plurality of magnetic sensors for obtaining a leakage magnetic flux detection signal by (3) これらの複数の漏洩磁束探傷信号の実質的に同一の(3) Substantially the same of these plurality of leakage magnetic flux detection signals
検査部位から得られた信号同士に対し、当該複数の信号The signals obtained from the inspection site are compared with each other,
の内少なくとも二つの信号中に共通して存在する欠陥信Defect signals common to at least two of the signals
号をノイズ信号に対して相対的に強調するような演算をOperation that emphasizes the signal relative to the noise signal
含む信号処理を行う信号処理装置とを有してなる磁性金Including a signal processing device for performing signal processing
属体探傷装置。Genital flaw detector.
【請求項10】 信号中に共通して存在する欠陥信号を10. A defect signal which is commonly present in a signal is detected.
ノイズ信号に対して相対的に強調するような演算が乗An operation that emphasizes the noise signal relatively
算、自乗和、又は各信号の絶対値をとった後の小さい方Arithmetic, sum of squares, or smaller value after taking the absolute value of each signal
をとる演算のいずれかであることを特徴とする請求項910. An operation which takes any one of the following:
に記載の磁性金属体探傷装置。3. A magnetic metal body flaw detector according to claim 1.
JP08350796A 1996-04-05 1996-04-05 Method and apparatus for flaw detection of magnetic metal body Expired - Fee Related JP3266899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08350796A JP3266899B2 (en) 1996-04-05 1996-04-05 Method and apparatus for flaw detection of magnetic metal body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08350796A JP3266899B2 (en) 1996-04-05 1996-04-05 Method and apparatus for flaw detection of magnetic metal body

Publications (2)

Publication Number Publication Date
JPH09274016A JPH09274016A (en) 1997-10-21
JP3266899B2 true JP3266899B2 (en) 2002-03-18

Family

ID=13804406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08350796A Expired - Fee Related JP3266899B2 (en) 1996-04-05 1996-04-05 Method and apparatus for flaw detection of magnetic metal body

Country Status (1)

Country Link
JP (1) JP3266899B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7660714B2 (en) 2001-03-28 2010-02-09 Mitsubishi Denki Kabushiki Kaisha Noise suppression device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6633159B1 (en) * 1999-03-29 2003-10-14 Otis Elevator Company Method and apparatus for magnetic detection of degradation of jacketed elevator rope
JP3690580B2 (en) * 2000-04-13 2005-08-31 Jfeスチール株式会社 Magnetic flaw detection method
KR100487737B1 (en) 2000-07-12 2005-05-03 제이에프이 스틸 가부시키가이샤 Leakage flux flaw detecting method and method for manufacturing hot rolled steel sheet using the same
KR101249168B1 (en) 2009-12-18 2013-03-29 주식회사 포스코 The method and system to control quality in cold rolling system
JP5614312B2 (en) * 2011-02-01 2014-10-29 Jfeスチール株式会社 Periodic defect detection method and periodic defect detection apparatus
KR101309966B1 (en) * 2011-12-15 2013-09-17 주식회사 포스코 Apparatus for detecting defect of steel plate
KR101482346B1 (en) * 2012-12-27 2015-01-13 주식회사 포스코 Apparatus and method of detecting surface defect of steel plate
CN104316594B (en) * 2014-11-16 2017-03-29 吉林大学 A kind of electromagnetic nondestructive device of steel part defect

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7660714B2 (en) 2001-03-28 2010-02-09 Mitsubishi Denki Kabushiki Kaisha Noise suppression device
US7788093B2 (en) 2001-03-28 2010-08-31 Mitsubishi Denki Kabushiki Kaisha Noise suppression device
US8412520B2 (en) 2001-03-28 2013-04-02 Mitsubishi Denki Kabushiki Kaisha Noise reduction device and noise reduction method

Also Published As

Publication number Publication date
JPH09274016A (en) 1997-10-21

Similar Documents

Publication Publication Date Title
CN110308200B (en) Differential magnetic leakage and eddy current composite high-speed rail flaw detection method
JP4756409B1 (en) Nondestructive inspection apparatus and nondestructive inspection method using alternating magnetic field
JPS62500683A (en) Method and device for detecting surface defects using eddy currents
JP3266899B2 (en) Method and apparatus for flaw detection of magnetic metal body
JP2003240761A (en) Method and apparatus for detecting surface layer defect or surface defect in magnetic metal specimen
JP3266128B2 (en) Leakage magnetic flux inspection method and magnetic flux leakage inspection equipment
Dobmann et al. Magnetic leakage flux testing with probes: physical principles and restrictions for application
JP3309702B2 (en) Metal body flaw detection method and apparatus
JP3307220B2 (en) Method and apparatus for flaw detection of magnetic metal body
JPS63221239A (en) Leak magnetic flux flaw detecting method
JPH1183808A (en) Leakage flux flaw detecting method
JP2666301B2 (en) Magnetic flaw detection
JP3743191B2 (en) Eddy current testing
JP2000227422A (en) Eddy current examination
JP2003025017A (en) Hot-rolled steel sheet to which information of flaw detection result is appended and its manufacturing method
JP2013068465A (en) Eddy current detector and phase control circuit
JP3271246B2 (en) Magnetic flux leakage inspection method, magnetic flux leakage inspection apparatus, and steelmaking plant
JP2001194344A (en) Magnetic leakage flux method of flaw detection
JP2000275219A (en) Leakage flux flaw detecting method
JPH04296648A (en) Method and device for magnetic crack detection
JPH06242076A (en) Electromagnetic flaw detecting equipment
JPH09166582A (en) Electromagnetic flaw detection method
JPH10293122A (en) Equipment and method for detecting flaw of metallic body
JP3690580B2 (en) Magnetic flaw detection method
JPS6128938B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees