JPS63221239A - Leak magnetic flux flaw detecting method - Google Patents

Leak magnetic flux flaw detecting method

Info

Publication number
JPS63221239A
JPS63221239A JP62054699A JP5469987A JPS63221239A JP S63221239 A JPS63221239 A JP S63221239A JP 62054699 A JP62054699 A JP 62054699A JP 5469987 A JP5469987 A JP 5469987A JP S63221239 A JPS63221239 A JP S63221239A
Authority
JP
Japan
Prior art keywords
magnetic field
detection
magnetic flux
inspected
flaw detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62054699A
Other languages
Japanese (ja)
Other versions
JPH0711508B2 (en
Inventor
Michiaki Ishihara
道章 石原
Akito Nakanishi
中西 章人
Takahide Sakamoto
隆秀 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP62054699A priority Critical patent/JPH0711508B2/en
Publication of JPS63221239A publication Critical patent/JPS63221239A/en
Publication of JPH0711508B2 publication Critical patent/JPH0711508B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To improve the detection ability of surface flaw detection for an iron or steel product by applying simultaneously a horizontal and a vertical magnetic field to the surface of a steel material and comparing the amplitude of sensor output components based upon the magnetic fields with each other. CONSTITUTION:A horizontal magnetic field magnetizer 11 formed by arranging magnetic poles opposite each other in one diameter direction of a material 10 to be inspected such as a steel pipe magnetizes the surface of the material 10 to be inspected horizontally, i.e. in a peripheral direction and a vertical magnetic field magnetizer 12 which is arranged at a position shifting from the magnetic poles in the peripheral direction magnetizes the surface of the material 10 to be inspected vertically. The detection signal of a sensor 13 arranged in the vicinity of the vertical magnetic field magnetizer 12 is separated by synchronization detectors 23 and 24 of two systems into a signal component SV based upon the vertical magnetic field V and a signal component SH based upon the horizontal magnetic field H and a comparator 25 performs arithmetic processing to decide a scratch and abrasion when (2) SV>=SH or a crack when (2) SV<SH.

Description

【発明の詳細な説明】 利用産業分野 二の発明は、漏洩磁束探傷方法の改良に係り、被検査材
へ所要方向の2種磁場を印加し、カキ疵、スリ疵等の不
要信号と割れ疵等の有害欠陥信号との弁別を可能とし、
過検出率の低減、微少欠陥検出能の向上を図り、鉄鋼製
品の表面疵探傷の検出能向上と信頼性向上を同時に達成
した漏洩磁束探傷方法に関する。
[Detailed Description of the Invention] The second invention in the industrial field of application relates to the improvement of a leakage magnetic flux flaw detection method, which applies two kinds of magnetic fields in required directions to a material to be inspected, and detects unnecessary signals such as scratches and scratches and cracks. It enables discrimination from harmful defect signals such as
This invention relates to a leakage magnetic flux flaw detection method that reduces the overdetection rate and improves the ability to detect minute defects, thereby simultaneously improving the detection ability and reliability of surface flaw detection for steel products.

背景技術 各種の鉄鋼製品における品質保証を確保する上で、排除
すべき疵の発見を目的とした、超音波探傷、磁粉探傷、
漏洩磁束探傷、渦流探傷等の各種探傷法の適用は不可欠
であり、信頼性ある高検出能の探傷装置が必要である。
Background technology Ultrasonic flaw detection, magnetic particle flaw detection, and
Application of various flaw detection methods such as leakage magnetic flux flaw detection and eddy current flaw detection is essential, and reliable flaw detection equipment with high detection ability is required.

しかし、一般にいずれの探傷方法においても、検出能を
向上させることにより、本来検出すべき欠陥以外の信号
、すなわち雑音、不要信号の影響を受は易い傾向にある
However, in general, in any flaw detection method, by improving the detection ability, the defect tends to be easily influenced by signals other than the defects to be detected, that is, noise and unnecessary signals.

この発明の対象とする漏洩磁束探傷方法は、強磁性体を
磁化したとき、表面疵などから漏洩する磁束をホール素
子等の感磁素子にて検出するもので、例えば、第7図に
示す如く、被検査材(1)の周方向に交流磁場を印加し
、欠陥から漏洩する磁束をセンサ(2)で検出し、検出
した信号を同期検波することにより欠陥検出を行う。
The leakage magnetic flux flaw detection method that is the subject of this invention is a method in which when a ferromagnetic material is magnetized, the magnetic flux leaking from surface flaws is detected using a magnetic sensing element such as a Hall element. Defects are detected by applying an alternating magnetic field in the circumferential direction of the material to be inspected (1), detecting magnetic flux leaking from defects with a sensor (2), and synchronously detecting the detected signals.

かかる漏洩磁束探傷における不要信号、雑音の要因とし
ては、 ■透磁率の不均一性などの材質に起因するもの■スケー
ル、カキ疵等の表面性状に起因するもの の2種類に分けることができる。
The causes of unnecessary signals and noise in such leakage magnetic flux flaw detection can be divided into two types: (1) those caused by the material such as non-uniform magnetic permeability, and (2) those caused by surface properties such as scale and scratches.

漏洩磁束探傷は、材料表面の疵の存在により発生する漏
洩磁束を検出することから、検出能を向上させることに
より、特に上記表面性状に起因する信号を検出してしま
い、生産工程に導入した場合、所謂過検出率が増大する
Leakage magnetic flux flaw detection detects leakage magnetic flux caused by the presence of flaws on the material surface, so by improving the detection ability, it is possible to detect signals caused by the above-mentioned surface properties, and when introduced into the production process. , the so-called overdetection rate increases.

従って、検出能向上と過検出率低減のためには、被検査
材表面の性状を良好にする必要があり、スケール除去の
方策が取られている。
Therefore, in order to improve the detection ability and reduce the overdetection rate, it is necessary to improve the surface properties of the inspected material, and measures are being taken to remove scale.

しかし、被検査材の搬送時等に発生するスリ疵、カキ疵
は、製品品質上問題がないが、これを除去するのが困難
なため残存し、かかる漏洩磁束探傷における過検出の主
要因となっている。
However, although scratches and scratches that occur during the transportation of inspected materials do not pose a problem in terms of product quality, they remain because they are difficult to remove, and are the main cause of overdetection in magnetic flux leakage testing. It has become.

また、開口性疵の検出能向上に対しては、被検査材に複
数方向より磁場を印加し、開口性疵を検出する方法(特
開昭58−218644号公報)があるが、スリ疵等も
同時に検出するため、過検出は防止できなかった。
In addition, to improve the detection ability of open defects, there is a method of applying a magnetic field to the inspected material from multiple directions to detect open defects (Japanese Patent Application Laid-open No. 58-218644). Since both were detected at the same time, over-detection could not be prevented.

従来技術の問題点 要するに、漏洩磁束探傷において目的疵の検出感度を向
上させた場合、割れ、カブレ疵等の製品品質保証上問題
となる有害欠陥の外、搬送時のスリ疵、カキ疵等の製品
使用用問題とならない疵をも検出するため、過検出、誤
検出の原因となり、検出感度を下げて探傷する必要があ
った。
Problems with the conventional technology In short, if the detection sensitivity of target flaws is improved in leakage magnetic flux flaw detection, in addition to harmful defects such as cracks and burrs that pose problems in terms of product quality assurance, there will be problems such as abrasions during transportation and scratches. In order to detect flaws that do not pose a problem for product use, this can cause over-detection or false detection, and it is necessary to lower the detection sensitivity for flaw detection.

発明の目的 この発明は、漏洩磁束探傷において、カキ疵、スリ疵等
の不要信号と割れ疵等の有害欠陥信号との弁別を可能と
し、過検出率の低減、微少欠陥検出能の向上を図り、鉄
鋼製品の表面疵探傷の検出能向上と信頼性向上を同時に
達成した漏洩磁束探傷方法を目的とする。
Purpose of the Invention The present invention makes it possible to distinguish between unnecessary signals such as scratches and scratches and harmful defect signals such as cracks in magnetic flux leakage detection, thereby reducing the overdetection rate and improving the ability to detect minute defects. The purpose of this research is to develop a leakage magnetic flux flaw detection method that simultaneously improves the detection ability and reliability of surface flaw detection for steel products.

発明の構成 この発明は、漏洩磁束探傷方法において、被検査材の表
面に沿う方向と表面に垂直な方向を有する2種の磁場を
同時に印加し、 該被検査材の表面の疵の存在によって発生する漏洩磁束
を検出するセンサの出力を、 表面に沿う方向の印加磁場による漏洩磁束成分と表面垂
直方向の印加磁場による漏洩磁束成分に分離し、 前記2種の疵信号振幅の比を求めることにより、該被検
金材性能に無関係な疵あるいは表面性状異常部の影響を
弁別・排除して、 該被検金材性能に有害な影響を与える目的疵を検出する
ことを特徴とする漏洩磁束探傷方法である。
Composition of the Invention The present invention is a leakage magnetic flux flaw detection method in which two types of magnetic fields are applied simultaneously, one along the surface of a material to be inspected and the other in a direction perpendicular to the surface, to detect defects caused by the presence of flaws on the surface of the material to be inspected. By separating the output of the sensor that detects the leakage magnetic flux into a leakage magnetic flux component due to the magnetic field applied in the direction along the surface and a leakage magnetic flux component due to the applied magnetic field in the direction perpendicular to the surface, and calculating the ratio of the amplitudes of the two types of flaw signals. , leakage magnetic flux flaw detection characterized by detecting target flaws that have a detrimental effect on the performance of the metal material to be tested by distinguishing and eliminating the effects of flaws or abnormal surface properties that are unrelated to the performance of the metal material to be tested. It's a method.

すなわち、この発明は、鋼材表面に水平方向の磁場と垂
直方向の磁場を同時に印加し、水平方向の磁場によるセ
ンサ出力信号成分(SH)と垂直方向の磁場によるセン
サ出力信号成分(SV)との振幅を比較することによっ
て、カキ疵・スリ疵信号(SV≧SH)を除去し、過検
出せずに微少割れ欠陥検出を可能とにし、鉄鋼製品の表
面疵探傷の検出能向上と信頼性向上を同時に達成できる
That is, this invention simultaneously applies a horizontal magnetic field and a vertical magnetic field to the steel surface, and separates the sensor output signal component (SH) due to the horizontal magnetic field and the sensor output signal component (SV) due to the vertical magnetic field. By comparing the amplitudes, it is possible to remove the crack/scratch signal (SV≧SH) and detect minute cracks without over-detecting, improving the detection ability and reliability of surface flaw detection for steel products. can be achieved at the same time.

図面に基づ〈発明の開示 第1図はこの発明の探傷方法を実施するため探傷装置の
ブロック図である。第2図はこの発明による2系統の検
波回路を有する探傷装置のブロック図である。第3図は
この発明の探傷方法を実施するため探傷装置における磁
化器とセンサを示す説明図である。第4図は疵の開口角
と検出能との関係を示すグラフである。第5図は欠陥検
出能の検波位相角依存性を示す検波位相角と信号出力の
グラフである。
Based on the Drawings (Disclosure of the Invention) FIG. 1 is a block diagram of a flaw detection apparatus for carrying out the flaw detection method of the present invention. FIG. 2 is a block diagram of a flaw detection device having two systems of detection circuits according to the present invention. FIG. 3 is an explanatory diagram showing a magnetizer and a sensor in a flaw detection apparatus for carrying out the flaw detection method of the present invention. FIG. 4 is a graph showing the relationship between the opening angle of a flaw and the detectability. FIG. 5 is a graph of detection phase angle and signal output showing the dependence of defect detection ability on detection phase angle.

この発明方法では、第3図に示す如く、鋼管等の被検査
材(10)の−直径方向に磁極を対向配置してなる水平
磁場用磁化器(11)にて、被検査材(工0)表面に平
行方向、すなわち周方向磁化を与えるほか、前記水平磁
場用磁化器(11)の磁極とは周方向にずれた位置に配
置される垂直磁場用磁化器(12)にて被検査材(10
)の表面垂直方向磁化を加える。
In the method of this invention, as shown in FIG. ) In addition to imparting magnetization in the parallel direction, that is, in the circumferential direction, to the surface, the material to be inspected is (10
) is added to the surface perpendicular magnetization.

このとき、被検査材(10)表面近傍の磁場分布は、垂
直方向の磁場(V)と水平方向の磁場(H)が複合した
磁場となる。
At this time, the magnetic field distribution near the surface of the material to be inspected (10) becomes a magnetic field that is a combination of a vertical magnetic field (V) and a horizontal magnetic field (H).

垂直磁場用磁化器(12)の近傍に配置したセンサ(1
3)にて、欠陥からの漏洩磁束を検出した場合、第4図
に示す如く、底幅、すなわち、疵開口角が犬の場合、水
平磁場(H)は有効でなく、逆に垂直磁場(V)はこの
とき検出能が大となる。
A sensor (1) placed near the vertical magnetic field magnetizer (12)
3), when leakage magnetic flux from the defect is detected, as shown in Figure 4, if the bottom width, that is, the flaw opening angle is small, the horizontal magnetic field (H) is not effective, and on the contrary, the vertical magnetic field (H) is not effective. V) has a large detectability at this time.

一般に、鉄鋼製品で発生するカキ疵、スリ疵は疵深さが
浅いが、底幅が大であり、一方、有害欠陥である割れ疵
は底幅が小で密着している、すなわち、開口角森0の場
合が多い。
In general, scratches and scratches that occur on steel products have a shallow depth but a large base width, while cracks, which are harmful defects, have a small base width and close contact, i.e., the opening angle In many cases, the forest is 0.

従って、検出した信号のうち、垂直磁場(V)による信
号成分(Sv)と水平磁場(H)による信号成分(SH
)とを分離し、 ■Sv≧SR・・・・・・カキ疵、スリ疵■SV < 
SH・・・・・・割れ疵 とする演算処理を行えば、 カキ疵、スリ疵等の不要信号と割れ疵等の有害欠陥信号
との弁別が可能となり、過検出率の低減、微少欠陥検出
能の向上が可能となる。
Therefore, among the detected signals, there is a signal component (Sv) due to the vertical magnetic field (V) and a signal component (SH) due to the horizontal magnetic field (H).
), and ■Sv≧SR・・・・Oyster scratches, scratches ■SV<
SH...If arithmetic processing is performed for cracks, it becomes possible to distinguish unnecessary signals such as scratches and scratches from harmful defect signals such as cracks, reducing the overdetection rate and detecting minute defects. This makes it possible to improve performance.

そこで、複合磁場からの検知信号を、垂直磁場(v)に
よる信号成分(SV)と水平磁場(H)による信号成分
(SH)とに分離するために、以下のような方法を行う
Therefore, in order to separate the detection signal from the composite magnetic field into a signal component (SV) due to the vertical magnetic field (v) and a signal component (SH) due to the horizontal magnetic field (H), the following method is performed.

第2図に示す如く、センサ(12)出力信号を、2系統
の同期検波器(23X24)に通過させ、各々の信号成
分(SHXSV)を検出する。前記の同期検波器(23
X24)には、水平磁場用磁化器(11)と垂直磁場用
磁化器(12)への電源(20)からの所要周波数信号
が移相器(21X22)を介して入力される。
As shown in FIG. 2, the sensor (12) output signal is passed through two systems of synchronous detectors (23×24) to detect each signal component (SHXSV). The synchronous detector (23
A required frequency signal from the power supply (20) to the horizontal magnetic field magnetizer (11) and the vertical magnetic field magnetizer (12) is input to X24) via a phase shifter (21X22).

詳述すれば、前記の同期検波器(23X24)において
、センサ(13)出力信号を検波する際、検波位相角を
変えた場合、−例として第5図に示す如く、欠陥検出能
が変化する。
To be more specific, when the above-mentioned synchronous detector (23x24) detects the output signal of the sensor (13), if the detection phase angle is changed, the defect detection ability changes as shown in FIG. 5, for example. .

すなわち、水平磁場(H)で検出能最大となる位相角と
垂直磁場(V)での検出能最大となる位相角が異なる。
That is, the phase angle at which the detectability is maximum in the horizontal magnetic field (H) and the phase angle at which the detectability is maximum in the vertical magnetic field (V) are different.

割れ疵検出に着目した場合、第5図における0印の検出
能最大位相角は150°であり、一方、スリ疵、カキ疵
に着目した場合、・印の検出能最大位相角は90°とな
る。
When focusing on detecting cracks, the maximum detectability phase angle of the 0 mark in Fig. 5 is 150°, while when focusing on scratches and scratches, the maximum detectability phase angle of the mark is 90°. Become.

従って、同期検波器(23)は水平磁場(H)を有効に
検出するチャンネルであり、検波位相角を150°とし
、一方、同期検波器(24)は垂直磁場(V)を有効に
検出するチャンネルであり、検波位相角を90°と設定
する。
Therefore, the synchronous detector (23) is a channel that effectively detects the horizontal magnetic field (H), with a detection phase angle of 150°, while the synchronous detector (24) effectively detects the vertical magnetic field (V). channel, and the detection phase angle is set to 90°.

このとき、同期検波器(23)で検出した信号の振幅を
SH1同期検波器(24)で検出した信号の振幅をSV
とすれば、比較器(25)にて、前述の弁別式に従って
両種の疵信号が弁別可能となり、カキ疵・スリ疵信号(
Sv≧SH)を除去し、過検出せずに微少割れ欠陥検出
ができ、かかる検知信号を、例えば、マーキング装置(
26)へ出力できる。
At this time, the amplitude of the signal detected by the synchronous detector (23) is changed to the amplitude of the signal detected by the SH1 synchronous detector (24).
Then, the comparator (25) can discriminate between the two types of flaw signals according to the above-mentioned discrimination formula, and the oyster flaw/scratch flaw signal (
By removing Sv≧SH), micro crack defects can be detected without over-detection, and such detection signals can be used, for example, with a marking device (
26).

上述の第1図の装置例では、同一周波数の励磁にて2磁
場を印加する場合を示したが、異なる周波数で励磁する
方法もある。
In the example of the apparatus shown in FIG. 1 described above, a case is shown in which two magnetic fields are applied with excitation at the same frequency, but there is also a method of excitation at different frequencies.

例えば、水平磁場10KHz、垂直磁場20KHzで励
磁する場合を説明すると、第2図に示す如く、センサ出
力をフィルタにより分離した後、同期検波を行う。
For example, in the case of excitation with a horizontal magnetic field of 10 KHz and a vertical magnetic field of 20 KHz, as shown in FIG. 2, the sensor output is separated by a filter and then synchronous detection is performed.

すなわち、センサ(13)の検知信号は、バイパスフィ
ルター(34)とローパスフィルターC35)全通過、
分離されたのち、同期検波器(36X37)に入力され
る。
That is, the detection signal of the sensor (13) is completely passed through the bypass filter (34) and the low-pass filter C35;
After being separated, it is input to a synchronous detector (36x37).

バイパスフィルター(34)、同期検波器(36)で検
出した信号の振幅をSvl ローパスフィルター(35
)、同期検波器(37)で検出した信号の振幅をSHと
すれば、比較器(39)にて、前述の弁別式に従って両
種の疵信号が弁別可能となり、例えば、マーキング装置
(40)へ出力できる。
The amplitude of the signal detected by the bypass filter (34) and the synchronous detector (36) is
), and if the amplitude of the signal detected by the synchronous detector (37) is SH, then the comparator (39) can discriminate between the two types of flaw signals according to the above-mentioned discrimination formula. It can be output to.

但し、センサ(13)にコイルを利用した場合、SVの
出力は2倍となるため、前述の弁別条件は、■5v12
≧SH・・・カキ疵、スリ疵■SV/2 < SH・・
・割れ疵 となる。
However, if a coil is used for the sensor (13), the SV output will be doubled, so the above-mentioned discrimination condition is
≧SH...Oyster scratches, scratches ■SV/2 <SH...
・Cracks occur.

従って、同期検波器(36)で検出した信号成分(SV
)は、演算機(38)に入力され、除算されて比較器(
39)に入力される。
Therefore, the signal component (SV
) is input to the calculator (38), divided and sent to the comparator (
39).

また、センサ(13)が誘導型でない場合にも、センサ
個々の周波数特性の相違を考慮する必要があるため、 弁別条件としては、所要定数kを設定し、■Sv≧ks
H・・・カキ疵、スーり疵■SV < ksH・・・割
れ疵 としてもよい。
In addition, even if the sensor (13) is not an inductive type, it is necessary to consider the difference in frequency characteristics of each sensor, so as a discrimination condition, a required constant k is set, and ■Sv≧ks
H...Oyster cracks, scratches ■SV<ksH...May be cracks.

発明の効果 この発明は、鋼材表面に水平方向の磁場と垂直方向の磁
場を同時に印加し、水平方向の磁場によるセンサ出力信
号成分(SH)と垂直方向の磁場によるセンサ出力信号
成分(SV)との振幅を比較することによって、カキ疵
・スリ疵信号(Sv≧SH)を除去し、過検出せずに微
少割れ欠陥検出を可能とにし、鉄鋼製品の表面疵探傷の
検出能向上と信頼性向上を同時に達成できる。
Effects of the Invention This invention simultaneously applies a horizontal magnetic field and a vertical magnetic field to the surface of a steel material, and separates the sensor output signal component (SH) due to the horizontal magnetic field and the sensor output signal component (SV) due to the vertical magnetic field. By comparing the amplitudes of the signals, it is possible to remove the crack/scratch signal (Sv≧SH) and detect minute cracks without over-detecting, improving the detection ability and reliability of surface flaw detection for steel products. Improvements can be achieved at the same time.

実施例 前述の第1図の構成からなる装置にて、200mmΦ、
継目無鋼管、スケール付着ままの被検査材に対し、ホー
ル素子センサーを用い、2kHzの同一周波数にて、垂
直及び水平磁場を印加し、検波位相角による分離を行な
った結果、第6図に示す如く、スリ疵、カキ疵の信号の
磁場強度依存性と割れ疵の磁場強度依存性とが異なり、
この発明による弁別が可能となり、過検出率10%、微
少割れ欠陥検出率90%の結果を得た。
Example 200mmΦ,
Vertical and horizontal magnetic fields were applied at the same frequency of 2 kHz using a Hall element sensor to the seamless steel pipe and the inspected material with scale attached, and the results were separated by the detection phase angle. The results are shown in Figure 6. As shown, the magnetic field strength dependence of the signal for scratches and oyster scratches is different from the magnetic field strength dependence for cracks.
Discrimination according to the present invention became possible, and results were obtained with an overdetection rate of 10% and a micro crack defect detection rate of 90%.

これに対し、同一鋼管、同一周波数、センサーの条件で
、第7図に示す、従来装置による水平磁場のみの探傷の
結果、過検出率30%、微少割れ欠陥検出率70%の結
果を得た。
On the other hand, under the same steel pipe, same frequency, and sensor conditions, as shown in Figure 7, flaw detection using only the horizontal magnetic field using conventional equipment resulted in an overdetection rate of 30% and a micro crack detection rate of 70%. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の探傷方法を実施するため探傷装置の
ブロック図である。第2図はこの発明による2系統の検
波回路を有する探傷装置のブロック図である。第3図は
この発明の探傷方法を実施するため探傷装置における磁
化器とセンサを示す説明図である。第4図は疵の開口角
と検出能との関係を示すグラフである。第5図は欠陥検
出能の検波位相角依存性を示す検波位相角と信号出力の
グラフである。第6図a、b図はスリ疵、カキ疵の信号
の磁場強度依存性と割れ疵の磁場強度依存性を示す磁場
強度と信号出力とのグラフである。第7図は従来の探傷
方法を実施するため探傷装置における磁化器とセンサを
示す説明図である。 10・・・被検査材、11.12・・・磁化器、13・
・・センサ、20.30,3i・・・電源、 21,2
2,32,33・・・移相器、23.24,36,37
・・・同期検波器、25.39・・・比較器、26.4
0・・・マーキング装置、34.35・・・フィルター
、38・・・演算器。 特許出願人  住友金属工業株式会社 出願人代理人 押  1) 良  久tmjK第4図 れ       キリ 疵       疵疵 検波位相角(0) 弗6図 (α)(b) 磁場強度(Oe)       磁場強度(Oe)第7
FIG. 1 is a block diagram of a flaw detection apparatus for carrying out the flaw detection method of the present invention. FIG. 2 is a block diagram of a flaw detection device having two systems of detection circuits according to the present invention. FIG. 3 is an explanatory diagram showing a magnetizer and a sensor in a flaw detection apparatus for carrying out the flaw detection method of the present invention. FIG. 4 is a graph showing the relationship between the opening angle of a flaw and the detectability. FIG. 5 is a graph of detection phase angle and signal output showing the dependence of defect detection ability on detection phase angle. FIGS. 6a and 6b are graphs of magnetic field strength and signal output showing the magnetic field strength dependence of the signals of scratches and scratches, and the magnetic field strength dependence of cracks. FIG. 7 is an explanatory diagram showing a magnetizer and a sensor in a flaw detection apparatus for carrying out a conventional flaw detection method. 10... Material to be inspected, 11.12... Magnetizer, 13.
...Sensor, 20.30,3i...Power supply, 21,2
2, 32, 33...phase shifter, 23.24, 36, 37
... Synchronous detector, 25.39 ... Comparator, 26.4
0...Marking device, 34.35...Filter, 38...Arithmetic unit. Patent applicant Sumitomo Metal Industries Co., Ltd. Applicant's agent Press 1) Yoshihisa tmjK Figure 4 Scratch Defect detection phase angle (0) Figure 6 (α) (b) Magnetic field strength (Oe) Magnetic field strength (Oe) 7th
figure

Claims (1)

【特許請求の範囲】 1 漏洩磁束探傷方法において、 被検査材の表面に沿う方向と表面に垂直な方向を有する
2種の磁場を同時に印加し、 該被検査材の表面の疵の存在によって発生する漏洩磁束
を検出するセンサの出力を、 表面に沿う方向の印加磁場による漏洩磁束成分と表面垂
直方向の印加磁場による漏洩磁束成分に分離し、 前記2種の疵信号振幅の比を求めることにより、該被検
査材性能に無関係な疵あるいは表面性状異常部の影響を
弁別排除して、 目的疵を検出することを特徴とする漏洩磁束探傷方法。
[Claims] 1. In a leakage magnetic flux flaw detection method, two types of magnetic fields are applied simultaneously, one along the surface of a material to be inspected and the other in a direction perpendicular to the surface, to detect defects caused by the presence of flaws on the surface of the material to be inspected. By separating the output of the sensor that detects the leakage magnetic flux into a leakage magnetic flux component due to the magnetic field applied in the direction along the surface and a leakage magnetic flux component due to the applied magnetic field in the direction perpendicular to the surface, and calculating the ratio of the amplitudes of the two types of flaw signals. A leakage magnetic flux flaw detection method, characterized in that the target flaw is detected by distinguishing and eliminating the effects of flaws or abnormal surface properties that are unrelated to the performance of the inspected material.
JP62054699A 1987-03-10 1987-03-10 Leakage magnetic flux flaw detection method Expired - Lifetime JPH0711508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62054699A JPH0711508B2 (en) 1987-03-10 1987-03-10 Leakage magnetic flux flaw detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62054699A JPH0711508B2 (en) 1987-03-10 1987-03-10 Leakage magnetic flux flaw detection method

Publications (2)

Publication Number Publication Date
JPS63221239A true JPS63221239A (en) 1988-09-14
JPH0711508B2 JPH0711508B2 (en) 1995-02-08

Family

ID=12978050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62054699A Expired - Lifetime JPH0711508B2 (en) 1987-03-10 1987-03-10 Leakage magnetic flux flaw detection method

Country Status (1)

Country Link
JP (1) JPH0711508B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119757A (en) * 1987-11-04 1989-05-11 Nkk Corp Magnetic method of flaw detection
JP2005345157A (en) * 2004-05-31 2005-12-15 Toshiba Corp Crack depth inspection method of metallic material
JP2006220526A (en) * 2005-02-10 2006-08-24 Jfe Steel Kk Surface layer part property measuring method, surface layer defect determination method using the same, and metallic band manufacturing method
JP2014503069A (en) * 2011-01-06 2014-02-06 コリア リサーチ インスティチュート オブ スタンダーズ アンド サイエンス Nondestructive flaw detector for pressure vessels by measuring leakage magnetic flux
JP2016506523A (en) * 2012-12-27 2016-03-03 ポスコ Apparatus and method for detecting internal defects in steel sheet
JP2017501401A (en) * 2013-12-11 2017-01-12 ポスコPosco Steel plate defect inspection apparatus and method
CN108941357A (en) * 2018-06-12 2018-12-07 四川大学 A kind of steel pipe seam recognition positioning method based on magnetic flux leakage
US11307173B1 (en) 2019-08-20 2022-04-19 Scan Systems Corp. Apparatus, systems, and methods for inspection of tubular goods
CN114829922A (en) * 2019-12-20 2022-07-29 杰富意钢铁株式会社 Magnetic flux leakage inspection device and defect inspection method
US11402351B1 (en) 2019-08-20 2022-08-02 Scan Systems Corp. Apparatus, systems, and methods for discriminate high-speed inspection of tubulars
US11402352B1 (en) 2019-08-20 2022-08-02 Scan Systems Corp. Apparatus, systems, and methods for inspecting tubulars employing flexible inspection shoes
US12031945B1 (en) 2019-08-20 2024-07-09 Scan Systems Corp. Apparatus, systems, and methods for inspecting tubulars of different sizes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58218644A (en) * 1982-06-14 1983-12-19 Sumitomo Metal Ind Ltd Method and apparatus for testing surface flaw of metallic material
JPS59214757A (en) * 1983-05-20 1984-12-04 Sumitomo Metal Ind Ltd Flaw detector
JPS59226858A (en) * 1983-06-07 1984-12-20 Sumitomo Metal Ind Ltd Flaw detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58218644A (en) * 1982-06-14 1983-12-19 Sumitomo Metal Ind Ltd Method and apparatus for testing surface flaw of metallic material
JPS59214757A (en) * 1983-05-20 1984-12-04 Sumitomo Metal Ind Ltd Flaw detector
JPS59226858A (en) * 1983-06-07 1984-12-20 Sumitomo Metal Ind Ltd Flaw detector

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119757A (en) * 1987-11-04 1989-05-11 Nkk Corp Magnetic method of flaw detection
JP2005345157A (en) * 2004-05-31 2005-12-15 Toshiba Corp Crack depth inspection method of metallic material
JP2006220526A (en) * 2005-02-10 2006-08-24 Jfe Steel Kk Surface layer part property measuring method, surface layer defect determination method using the same, and metallic band manufacturing method
JP4586556B2 (en) * 2005-02-10 2010-11-24 Jfeスチール株式会社 Surface layer property measurement method, surface layer defect determination method using the same, and metal strip manufacturing method
JP2014503069A (en) * 2011-01-06 2014-02-06 コリア リサーチ インスティチュート オブ スタンダーズ アンド サイエンス Nondestructive flaw detector for pressure vessels by measuring leakage magnetic flux
US10677755B2 (en) 2012-12-27 2020-06-09 Posco Apparatus and method for detecting inner defects of steel plate
JP2016506523A (en) * 2012-12-27 2016-03-03 ポスコ Apparatus and method for detecting internal defects in steel sheet
JP2017501401A (en) * 2013-12-11 2017-01-12 ポスコPosco Steel plate defect inspection apparatus and method
US10088453B2 (en) 2013-12-11 2018-10-02 Posco Apparatus and method of detecting defect of steel plate
CN108941357A (en) * 2018-06-12 2018-12-07 四川大学 A kind of steel pipe seam recognition positioning method based on magnetic flux leakage
US11307173B1 (en) 2019-08-20 2022-04-19 Scan Systems Corp. Apparatus, systems, and methods for inspection of tubular goods
US11402351B1 (en) 2019-08-20 2022-08-02 Scan Systems Corp. Apparatus, systems, and methods for discriminate high-speed inspection of tubulars
US11402352B1 (en) 2019-08-20 2022-08-02 Scan Systems Corp. Apparatus, systems, and methods for inspecting tubulars employing flexible inspection shoes
US11874253B1 (en) 2019-08-20 2024-01-16 Scan Systems Corp. Apparatus, systems, and methods for discriminate high-speed inspection of tubulars
US12031945B1 (en) 2019-08-20 2024-07-09 Scan Systems Corp. Apparatus, systems, and methods for inspecting tubulars of different sizes
US12092610B2 (en) 2019-08-20 2024-09-17 Scan Systems, Corp Apparatus, systems, and methods for inspecting tubulars employing flexible inspection shoes
CN114829922A (en) * 2019-12-20 2022-07-29 杰富意钢铁株式会社 Magnetic flux leakage inspection device and defect inspection method

Also Published As

Publication number Publication date
JPH0711508B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
CN110308200B (en) Differential magnetic leakage and eddy current composite high-speed rail flaw detection method
US4602212A (en) Method and apparatus including a flux leakage and eddy current sensor for detecting surface flaws in metal products
JPH01203965A (en) Inspector for material to be inspected made of non-ferromagnetic metal
JPS63221239A (en) Leak magnetic flux flaw detecting method
CN102759567A (en) Eddy current testing recognition and evaluation method for defects of inner wall and outer wall of steel pipe under direct current magnetization
CN113866259B (en) Electromagnetic detection method and system for stainless steel pipeline weld defects
JP3266899B2 (en) Method and apparatus for flaw detection of magnetic metal body
JPS58218644A (en) Method and apparatus for testing surface flaw of metallic material
JP3309702B2 (en) Metal body flaw detection method and apparatus
JP3307220B2 (en) Method and apparatus for flaw detection of magnetic metal body
RU2133032C1 (en) Process of magnetic field testing and device to implement it
JPH01212352A (en) Method and apparatus for electromagnetic flaw detection
JPS61264251A (en) Eddy current flaw inspecting method and its device
JP2006084225A (en) Eddy current flaw detection method
JPH04296648A (en) Method and device for magnetic crack detection
JPH09166582A (en) Electromagnetic flaw detection method
JPS60125560A (en) Method for inspecting metal surface
JP2697467B2 (en) Leakage magnetic flux detection method
JP2959395B2 (en) Metal residue detection method in metal tube
KR860000965B1 (en) The measuring method for magnetic property by measuring barkhausen noise
JPH01248050A (en) Leakage flux flaw detector
JPH05203629A (en) Electromagnetic flaw detection and device
JPH02247556A (en) Method and device for detecting decarburized layer
JPH0843358A (en) Eddy-current flaw detecting method for steel pipe
RU2032898C1 (en) Method of magnetic inspection of defects of long-length ferromagnetic articles