JPS60125560A - Method for inspecting metal surface - Google Patents

Method for inspecting metal surface

Info

Publication number
JPS60125560A
JPS60125560A JP58235881A JP23588183A JPS60125560A JP S60125560 A JPS60125560 A JP S60125560A JP 58235881 A JP58235881 A JP 58235881A JP 23588183 A JP23588183 A JP 23588183A JP S60125560 A JPS60125560 A JP S60125560A
Authority
JP
Japan
Prior art keywords
signal
metal surface
lift
flaw
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58235881A
Other languages
Japanese (ja)
Other versions
JPH0441303B2 (en
Inventor
Masaharu Yokoyama
横山 正晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP58235881A priority Critical patent/JPS60125560A/en
Publication of JPS60125560A publication Critical patent/JPS60125560A/en
Publication of JPH0441303B2 publication Critical patent/JPH0441303B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9046Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents by analysing electrical signals
    • G01N27/9053Compensating for probe to workpiece spacing

Abstract

PURPOSE:To output only a defect signal by removing a waveform caused by an external factor other than a defect on a metal surface from a detected signal. CONSTITUTION:An inspecting signal A of a detector outputs a signal X0 through an HPF15, an inspecting signal component Y0 for a direction phase shifted by 90 deg. against a phase of the signal X0 in a signal A is obtained. There is mixedly the waveform due to the external factor in addition to the waveform causes by an external factor in the signal X0. Thereupon, by taking a logical product by adding the signals X0, Y0 to a gate 19, the waveform due to the external factor is eliminated, and only the flaw signal X1 is obtained. The signal A forms a lift-off signal B through an LPF20, adds the signal B to a gate 21 to take a logical product with the signal Y0, and a lift-off correcting signal C is obtained. Next, by processing the signals C and X1 by a correcting circuit, an erroneous signal due to the external factor and the influence due to the lift-off variation are removed from the output signal, and only the flaw signal corresponding to the depth and length of the actual defect is obtained.

Description

【発明の詳細な説明】 本発明はオイルタンカーに設備されている貨油管、都市
の上下水道管の如(大口径管及び長尺金属板に対し、そ
の表面或は表面近傍のクラック、腐蝕等の欠陥を検出す
る検査方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is designed to prevent cracks, corrosion, etc. on the surface or near the surface of cargo oil pipes installed in oil tankers, urban water and sewage pipes (large diameter pipes, and long metal plates). The present invention relates to an inspection method for detecting defects in.

従来金属面の欠陥を渦流探傷法によって検査することが
行なわれている。その方法はコイルを具えた検出器を金
属面に接近させ、コイルの高周波変動磁界を金属面に加
えるものである。金属面に発生する渦電流が自己誘導或
は相互誘導によってコイルに影響して誘導起電力を生じ
させるから、これを検出することによって金属面の異常
を知ることが出来るのである。
Conventionally, defects in metal surfaces have been inspected by eddy current testing. The method involves bringing a detector equipped with a coil close to a metal surface, and applying the coil's high-frequency varying magnetic field to the metal surface. The eddy current generated on the metal surface affects the coil through self-induction or mutual induction and generates an induced electromotive force, so by detecting this, it is possible to know if there is an abnormality in the metal surface.

第3図は検出器を金属面に接近して移動させたとき、コ
イルに生じる誘導起電力による検出信号Aとその位相を
示している。検出信号Aは検出器と金属面のインピーダ
ンスによって、コイルに入力された基準電圧に対し位相
が角度θだけ移相してX軸の方向に出力される。
FIG. 3 shows the detection signal A and its phase due to the electromotive force induced in the coil when the detector is moved close to the metal surface. The detection signal A is output in the X-axis direction with its phase shifted by an angle θ with respect to the reference voltage input to the coil due to the impedance between the detector and the metal surface.

検出器或は金属面の移動、周囲の環境から受ける振動、
金属面の材質不均一等によって検出信号Aのベクトル値
は変動するが、これ等の原因によっては出力信号の位相
θ(標準位相とする)は変は金属面に生起している渦電
流が乱れて検出信号Aのベクトル方向が影響され、検出
信号Aの位相が微小角Δθ偏った方向にパルス状の波形
を出方する。Δθは微小量であるがら、通常は信号Aを
以て管の検査信号としている。従って、第7図の如く検
出器と金属面との相対移動中に何等がの原因によって、
欠陥表示の波形Pと同じ形状の波形Qが検査信号Aに生
じたとき、それは金属面の欠陥によるものか、或は外界
の影響によるものか区別がつき難い問題があった。
Movement of the detector or metal surface, vibrations received from the surrounding environment,
The vector value of the detection signal A fluctuates due to non-uniformity in the material of the metal surface, etc., but depending on these factors, the phase θ of the output signal (assumed to be the standard phase) may change, or the eddy current occurring on the metal surface may be disturbed. As a result, the vector direction of the detection signal A is influenced, and a pulse-like waveform is produced in a direction in which the phase of the detection signal A is shifted by a small angle Δθ. Although Δθ is a very small amount, signal A is normally used as a tube inspection signal. Therefore, as shown in Figure 7, due to some reasons during the relative movement between the detector and the metal surface,
When a waveform Q having the same shape as the defect display waveform P occurs in the inspection signal A, it is difficult to distinguish whether it is due to a defect in the metal surface or due to the influence of the outside world.

又、検査は検出器と金属面との間の距14m (!jソ
フトフ)を一定に保って、両者を相対移動すべきである
が、金属面のうねり、移動装置の不完全によってリフト
オフが検査中に変動することが多い。
In addition, during inspection, the distance between the detector and the metal surface should be kept constant at 14 m (!j software), and the two should be moved relative to each other, but lift-off may occur due to waviness of the metal surface or imperfections in the moving device. It often fluctuates between

検出器が金属面に近付いてリフトオフが小さくなると、
金属面の欠陥による出力信号が実際より大きく出力され
、逆に検出器が金属面より離れてリフトオフが大きくな
ると、欠陥検出信号が実際の欠陥に対するものより小さ
く出力され、検査データに基づいた金属面の評価を下す
際に判断を誤らせる虞れがある。
As the detector approaches the metal surface and the lift-off decreases,
The output signal due to a defect on the metal surface is output larger than the actual one, and conversely, if the detector is separated from the metal surface and the lift-off becomes large, the defect detection signal is output smaller than the one for the actual defect, and the metal surface based on the inspection data There is a risk of misjudgment when making an evaluation.

本発明は検出信号Aから、金属面の欠陥以外の外的要因
から生じる波形Qを除去し、金属面の欠陥による信号x
Oのみを出力する検査方法を明らかにすることを目的と
する。
The present invention removes the waveform Q caused by external factors other than defects on the metal surface from the detection signal A, and
The purpose of this study is to clarify an inspection method that outputs only O.

更に本発明は検出器のりフトオフが検査中に変動しても
、検査信号を補正してリフトオフによる影響を無くして
同一条件の検査信号を出力する検査方法を明らかにする
ことを目的とする。
A further object of the present invention is to clarify an inspection method that corrects the inspection signal to eliminate the influence of liftoff and output a inspection signal under the same conditions even if the detector liftoff varies during inspection.

本発明は検出器の検査信号Aをバイパスフィルターを通
して傷信号xOを出力すると共に、検査信号Aの中、傷
信号XOの位相に対し90’移相した方向の検査信号成
分yoを出力し、90’移相方向の該成分Yoと前記傷
信号Xoとを論理積して金属面の欠陥による傷信号X1
を検出することを特徴とする。
The present invention outputs the flaw signal xO by passing the test signal A of the detector through a bypass filter, and outputs the test signal component yo in the direction shifted by 90' from the phase of the flaw signal XO in the test signal A. 'The component Yo in the phase shift direction and the flaw signal Xo are ANDed to generate a flaw signal X1 due to a defect on the metal surface.
It is characterized by detecting.

本発明は又、検査信号Aをローパスフィルターを通して
、検査信号A中の低周波数のリフトオフ信号Bを出力し
、検査信号Aの中、上述の90’移相方向の成分Yoと
リフトオフ信号Bとを論理積してリフトオフ補正信号C
を出方し、前記金属面欠陥による傷信号x1をリフトオ
フ補正信号Cによって補正し、リフトオフ変動の影響が
修正された金属面欠陥による傷信号Xを出方することを
特徴とするものである。
The present invention also passes the test signal A through a low-pass filter, outputs the low-frequency lift-off signal B in the test signal A, and separates the component Yo in the 90' phase shift direction and the lift-off signal B in the test signal A. AND lift-off correction signal C
The present invention is characterized in that the flaw signal x1 due to the metal surface defect is corrected by a lift-off correction signal C, and a flaw signal X due to the metal surface defect in which the influence of lift-off fluctuation is corrected is output.

検査信号Aには金属面の欠陥による波形Pの外に、外的
要因による波形。が混入している。しかし2つの信号X
oとYOを論理積することによって、検査信号A中のパ
ルス状波形が金属面の欠陥によるものであれば、Xoと
Yoの信号中の波形Pが揃って、金属面欠陥による傷信
号X1を出ヵする。又、検査信号A中のパルス状波形が
外的要因によるものであれば、信号xOにはパルス状波
形Qが存在しても、信号YOにはそれに相当する波形が
存在せず、従って2つの信号xOとyoを論理積すると
、出力を生じず外的要因によるパルスは除去されて、金
属面の欠陥による傷信号xlのみが出力出来るのである
In addition to the waveform P caused by defects on the metal surface, the inspection signal A includes waveforms caused by external factors. is mixed in. But two signals
By logically multiplying o and YO, if the pulse-like waveform in the inspection signal A is due to a defect on the metal surface, the waveforms P in the signals Xo and Yo are aligned, and the flaw signal X1 due to the metal surface defect is obtained. Go out. Furthermore, if the pulse-like waveform in test signal A is due to an external factor, even if pulse-like waveform Q exists in signal xO, there is no corresponding waveform in signal YO, and therefore two When the signals xO and yo are ANDed, pulses that do not produce an output and are caused by external factors are removed, and only the flaw signal xl due to defects on the metal surface can be output.

又、検査信号Aをローパスフィルターによってt波する
ことによって、金属表面欠陥及び外的要因による周期の
短かいパルス状波形P、Qは除去され、リフトオフ変動
による長周期の波形Bのみが出力される。
In addition, by applying a t-wave to the inspection signal A using a low-pass filter, the short-period pulsed waveforms P and Q caused by metal surface defects and external factors are removed, and only the long-period waveform B caused by lift-off fluctuations is output. .

上記リフトオフ信号Bは検査中の各瞬間のリフトオフを
略忠実に表現しているから、yo倍信号論理積であるリ
フトオフ補正信号Cとリフトオフの増減に対し反比例す
る適当な補正係数aを乗じてE=aGを形成して、金属
面欠陥による傷信号X1に対し補正回路によって信号処
理を行ない、Xi −aC或はX 1 / a Cの如
く、リフトオフ補正信号Cの大なるとき即ち検出器が金
属面に接近して感度の上っているときは、傷信号x1の
値を下げ、又リフトオフ信号Bが小なるとき即ち検出器
が金属面から離れて感度の下っているときは、傷信号X
1の値を上げる修正を行ない、リフトオフ変動による影
響を修正して可及的に同一リフトオフ条件に近づけた傷
信号Xを出力出来るのである。
Since the above lift-off signal B almost faithfully represents the lift-off at each instant during the inspection, it is multiplied by the lift-off correction signal C, which is the AND of the yo-fold signal, and an appropriate correction coefficient a, which is inversely proportional to the increase/decrease in lift-off. =aG is formed, and the correction circuit performs signal processing on the flaw signal X1 due to the metal surface defect, and when the lift-off correction signal C is large, as in Xi -aC or X1/aC, that is, when the detector is metal When the sensitivity increases as the detector approaches the metal surface, lower the value of the flaw signal
By increasing the value of 1 and correcting the influence of lift-off fluctuations, it is possible to output a flaw signal X that is as close to the same lift-off condition as possible.

第1図は本発明の方法を実施して、管の金属表面を検査
する状況を示している。これはキャタピラ、エンドレス
ベルト、車輪等の走行M 411(11を具えた台車(
2)の前部に検出アーム(3)の上端を揺動可能に軸受
し、検出アーム(3)の下端に検出器(4)を具え、検
出7−ム(3)(7)回転軸(5)ニ揺!ItlI機−
ts(6)ヲ連繋して、台車(2)を毎分4mの低速で
管中を走行させつつ、検出アーム(3)を走行方向とは
直交して管周方向へ毎分250〜400回の速度で往復
揺動させ、管壁を検出器(4)の移行範囲で検査するも
のである。尚、本発明の検査対象は管壁に限られず、移
動する金属板に対し検出アームを往復揺動させることに
よって、金属板にも実施出来る。
FIG. 1 shows a situation in which the method of the invention is implemented to inspect the metal surface of a tube. This is a trolley equipped with M411 (11) running tracks, endless belts, wheels, etc.
The upper end of the detection arm (3) is swingably supported on the front part of the detection arm (3), and the lower end of the detection arm (3) is equipped with a detector (4). 5) Ni-yo! ItlI machine-
TS (6) is connected, and while the trolley (2) is traveling through the pipe at a low speed of 4 m/min, the detection arm (3) is moved perpendicularly to the traveling direction in the circumferential direction of the pipe 250 to 400 times per minute. The tube wall is inspected within the transition range of the detector (4) by reciprocating the tube at a speed of . The object to be inspected according to the present invention is not limited to pipe walls, but can also be applied to metal plates by swinging the detection arm back and forth with respect to a moving metal plate.

検出器(4)は高周波の交番磁界を発生する大径の励磁
用コイル(7)と、該コイル(7)の中央へ同軸に配置
され、鉄心(8)を何する小径の検出用コイル(9)に
よって構成され、夫々ホルダー(io)中に固定されて
いる。検出器(4)は金属面の腐蝕による凹凸を考慮し
てリフトオフは5〜101111に設定されており、励
磁用コイル(7)がそのコイル直径内の金属面に高周波
交番磁界を加えて渦電流を発生させる。検出器(4)と
金属面のリフトオフを一定に保って相対移動させるとき
、金属面に欠陥がなく渦電流が均一分布しておれば検出
用コイル(9)の出力は一定である。しかし金属面に欠
陥(11)が生じていると、この部分では渦電流に乱れ
を起し、検出用コイル(9)の出力には位相及び出力値
に変動を生じる。
The detector (4) includes a large-diameter excitation coil (7) that generates a high-frequency alternating magnetic field, and a small-diameter detection coil ( 9), each of which is fixed in a holder (io). The lift-off of the detector (4) is set to 5 to 101111 in consideration of unevenness caused by corrosion on the metal surface, and the excitation coil (7) applies a high-frequency alternating magnetic field to the metal surface within the coil diameter to generate eddy currents. to occur. When the detector (4) and the metal surface are moved relative to each other while keeping the lift-off constant, the output of the detection coil (9) is constant if the metal surface has no defects and the eddy current is uniformly distributed. However, if a defect (11) occurs on the metal surface, disturbances occur in the eddy current in this portion, causing fluctuations in the phase and output value of the output of the detection coil (9).

第6図は検査信号Aを発生させる構成の一例を示してい
る。発振器112)によって約5 Q KH2の高周波
電圧を発生させ、これを増幅して励磁用コイル(7)に
印加している。励磁用コイル(7)と同軸上に配置され
た小径の検出用コイル(9)には、金属面の渦電流から
の相互誘導によって誘動起電力が生じるから、これを増
幅して検査信号Aを得ることが出来る。
FIG. 6 shows an example of a configuration for generating the test signal A. A high frequency voltage of approximately 5 Q KH2 is generated by an oscillator 112), amplified, and applied to the excitation coil (7). In the small-diameter detection coil (9) arranged coaxially with the excitation coil (7), induced electromotive force is generated due to mutual induction from eddy currents on the metal surface, so this is amplified and the test signal A is generated. can be obtained.

尚、本発明の実施に際しては、励磁用コイル(7)を省
略して、検出用コイ゛ル(9)自体に高周波電流を加え
て励磁し、自己誘導によって該コイル自体に生じる誘導
起電力をブリッジ回路を用いて検出し、それを増幅する
ことによっても検査信号Aを得ることが出来る。
In addition, when implementing the present invention, the excitation coil (7) is omitted, and the detection coil (9) itself is excited by applying a high-frequency current, and the induced electromotive force generated in the coil itself due to self-induction is eliminated. The test signal A can also be obtained by detecting it using a bridge circuit and amplifying it.

検査信号Aに対しては、移相器(13)からの基準信号
DXの位相を正常金属面に対する検査信号の標準位相(
リフトオフ電圧位相)角θに設定して、’7’ −) 
(141によって論理積し、バイパスフィルター(18
を通すことによって、検査信号Aの中、標準位相角θの
方向の成分XOを出力することが出来る。
For the test signal A, the phase of the reference signal DX from the phase shifter (13) is changed to the standard phase of the test signal for a normal metal surface (
Lift-off voltage phase) set to angle θ, '7' -)
(and by 141, bypass filter (18
By passing it through, it is possible to output the component XO of the test signal A in the direction of the standard phase angle θ.

又、移相器(131からの基準信号Dxの位相を移相回
路+lBによって90°移相して他の基準信号Dyを作
り、これをゲー) +1?)によって論理積し、バイパ
スフィルター(181を通すことによって、検査信号A
の中、標準位相θの方向に対し90°移相方向の成分Y
Oを出力することが出来る。
Also, a phase shifter (shifts the phase of the reference signal Dx from 131 by 90° using a phase shift circuit +1B to create another reference signal Dy, which is then gated) +1? ) and passing it through the bypass filter (181), the test signal A
, component Y in the direction of 90° phase shift with respect to the direction of standard phase θ
It is possible to output O.

xO倍信号は金属面の欠陥による/N6 tレス状の波
形Pと外的要因による波形Qが混合しているから、第4
図に示す第1実施例の装置に於てはこれをゲ−) (1
91を加え標準位相θに対し90°移相方向の信号YO
と論理積することによって、外的要因による波形Qを消
去した傷信号X1を出力出来るのである。
The xO times signal is a mixture of the /N6tless waveform P due to defects on the metal surface and the waveform Q due to external factors, so the 4th
In the device of the first embodiment shown in the figure, this is a game) (1
91 and the signal YO in the direction of 90° phase shift with respect to the standard phase θ
By performing the AND operation, it is possible to output the flaw signal X1 from which the waveform Q caused by external factors has been eliminated.

更に第5図に示す第2実施例の検査装置の如(、検査信
号Aをローパスフィルター(割を通してリフトオフ信号
Bを形成し、これをゲートC1)に加えてYo傷信号論
理積し、リフトオフ補正信号Cを作って、前記傷信号x
1と一緒に補正回路(22)にて信号処理することによ
って、傷信号Xlはリフトオフ変動の影響が修正されて
、欠陥の実際の大きさに近い傷信号Xを出力することが
出来る。
Furthermore, as shown in the inspection apparatus of the second embodiment shown in FIG. Create a signal C and receive the flaw signal x
By processing the signal in the correction circuit (22) together with the flaw signal X1, the influence of lift-off variation is corrected in the flaw signal X1, and a flaw signal X close to the actual size of the defect can be output.

傷信号Xは外的要因による誤信号及びリフトオフ変動の
影響が除去されて、実際の欠陥の深さ及び長さに略近い
状況を表示しているから、データに基づいて金属面を評
価するに際して、傷信号Xの値は十分に信頼出来、判断
の正確性を向上出来る利点がある。
The flaw signal , the value of the flaw signal X is sufficiently reliable, which has the advantage of improving the accuracy of judgment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施状況を示す説明図、第2図は検査
器の拡大断面図、第3図は検査信号の位相解析図、第4
図は検査装置の第1実施例のブロック図、第5図は検査
装置の第2実施例のブロック図、第6図は検査器の信号
処理を示すブロック図、第7図は信号処理の各工程に於
ける波形図である。 A・・・検査信号 B・・・リフトオフ信号C・・・リ
フトオフ補正信号 DX、Dy・・・基準信号P・・・
欠陥波形 Q・・・誤波形 XO・・・検査信号A中の、標準位相方向に沿う成分即
ち傷信号 YO・・・検査信号A中の、標準位相方向に対し90゜
移相した方向の成分 xl・・金属面欠陥による傷信号 X・・・リフトオフの影響を修正した傷信号(4)・・
・検出器 (7)・・・励磁用コイル(9)・・・検出
用コイル (13)・・・移相器(15) (181・
・・バイパスフィルター(20)・・・ローパスフィル
ター (22)・・補正回路 出願人 久保田鉄工株式会社
FIG. 1 is an explanatory diagram showing the implementation status of the present invention, FIG. 2 is an enlarged sectional view of the tester, FIG. 3 is a phase analysis diagram of the test signal, and FIG.
The figure is a block diagram of the first embodiment of the inspection device, FIG. 5 is a block diagram of the second embodiment of the inspection device, FIG. 6 is a block diagram showing signal processing of the inspection device, and FIG. 7 is a block diagram of the signal processing of the inspection device. It is a waveform diagram in a process. A...Test signal B...Lift-off signal C...Lift-off correction signal DX, Dy...Reference signal P...
Defect waveform Q: False waveform xl...Flaw signal due to metal surface defect X...Flaw signal corrected for the influence of lift-off (4)...
・Detector (7)... Excitation coil (9)... Detection coil (13)... Phase shifter (15) (181.
... Bypass filter (20) ... Low pass filter (22) ... Correction circuit Applicant Kubota Iron Works Co., Ltd.

Claims (1)

【特許請求の範囲】 ■ 高周波変動磁界を金属面に加え、コイルに生起する
誘導起電力による検査信号Aをバイパスフィルターを通
して傷信号XOを出力すると共に、検査信号Aの中、傷
信号xOの位相に対し90°移相した方向の成分YOを
検出し、90°移相方向の該成分YOと前記傷信号XO
とを論理積して、金属面の欠陥による傷信号x1を検出
することを特徴とする金属面の検査方法。 ■ コイルは管中を走行する自走車上に配備され、自走
車の走行方向に移行すると同時に走行方向に対し直交す
る方向に往復揺動されて管の金属面を検査する特許請求
の範囲第1項の検査方法。 ■ 高周波変動磁界を金属面に加え、コイルに生起する
誘導起電力による検査信号Aをバイパスフィルターを通
して傷信号XOを出力すると共に、検査信号Aの中、傷
信号XOの位相に対し90°移相した方向の成分yoを
検出し、9o0移相方向の該成分YOと前記傷信号Xo
とを論理積して、金属面の欠陥による傷信号X1を出力
し、同時に前記検査信号Aはローパスフィルターを通し
てリフトオフ信号Bを出力し、前記9′0°移相方向成
分YOとリフトオフ信号Bとを論理積してリフトオフ補
正信号Cを出力し、前記金属面欠陥による傷信号X1を
リフトオフ補正信号Cによって修正し、リフトオフ信号
の影響が消去された金属面欠陥による傷信号Xを出力す
ることを特徴とする金属面検査方法。 ■ コイルは管中を走行する自走車上に配備され、自走
車の走行方向に移行すると同時に、走行方向に対し直交
する方向に往復揺動されて管の金属面を検査する特許請
求の範囲第1項の検査方法。 ■ 金属面欠陥による傷信号X1は、 X=X1 −aC 但し Cはリフトオフ補正信号 aは補正係数(定数) の条件式によって補正され、リフトオフ変動の影響が修
正された金属面欠陥による傷信号Xを出力する特許請求
の範囲第3項の検査方法。
[Claims] ■ A high frequency varying magnetic field is applied to the metal surface, and the inspection signal A due to the induced electromotive force generated in the coil is passed through a bypass filter to output a flaw signal XO, and the phase of the flaw signal xO in the inspection signal A is A component YO in a direction phase-shifted by 90° is detected, and the component YO in the 90° phase-shifted direction and the flaw signal
A method for inspecting a metal surface, characterized in that a flaw signal x1 due to a defect on the metal surface is detected by ANDing the following. ■ Claims in which the coil is installed on a self-propelled vehicle running in the pipe, and is simultaneously moved in the direction of travel of the self-propelled vehicle and swung back and forth in a direction perpendicular to the traveling direction to inspect the metal surface of the pipe. Inspection method in Section 1. ■ A high-frequency varying magnetic field is applied to the metal surface, and the inspection signal A due to the induced electromotive force generated in the coil is passed through a bypass filter to output the flaw signal XO, and the phase of the inspection signal A is shifted by 90 degrees with respect to the phase of the flaw signal XO. The component YO in the direction of the phase shift is detected, and the component YO in the 9o0 phase shift direction and the flaw signal Xo are detected.
and outputs a flaw signal X1 due to a defect on the metal surface, and at the same time, the inspection signal A passes through a low-pass filter and outputs a lift-off signal B, and the 9'0° phase shift direction component YO and the lift-off signal B and outputs a lift-off correction signal C, corrects the flaw signal X1 due to the metal surface defect with the lift-off correction signal C, and outputs a flaw signal X due to the metal surface defect in which the influence of the lift-off signal has been eliminated. Characteristic metal surface inspection method. ■ The coil is placed on a self-propelled vehicle running in a pipe, and at the same time as it moves in the direction of travel of the self-propelled vehicle, it is swung back and forth in a direction perpendicular to the traveling direction to inspect the metal surface of the pipe. Inspection method in scope 1. ■ The flaw signal X1 due to a metal surface defect is X = X1 - aC where C is the lift-off correction signal a is a correction coefficient (constant). The inspection method according to claim 3, which outputs the following.
JP58235881A 1983-12-12 1983-12-12 Method for inspecting metal surface Granted JPS60125560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58235881A JPS60125560A (en) 1983-12-12 1983-12-12 Method for inspecting metal surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58235881A JPS60125560A (en) 1983-12-12 1983-12-12 Method for inspecting metal surface

Publications (2)

Publication Number Publication Date
JPS60125560A true JPS60125560A (en) 1985-07-04
JPH0441303B2 JPH0441303B2 (en) 1992-07-07

Family

ID=16992621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58235881A Granted JPS60125560A (en) 1983-12-12 1983-12-12 Method for inspecting metal surface

Country Status (1)

Country Link
JP (1) JPS60125560A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274858A (en) * 1987-05-07 1988-11-11 Nkk Corp In-tube magnetic flaw detecting
JP2007147525A (en) * 2005-11-30 2007-06-14 Hitachi Ltd Method of evaluating lift-off amount between eddy current flaw detecting probe and inspected object, and evaluation device therefor, eddy current flaw detection method, and eddy current flaw detector
JP2021165668A (en) * 2020-04-07 2021-10-14 電子磁気工業株式会社 Eddy current flaw inspection method and eddy current flaw inspection device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4697593B2 (en) * 2005-10-31 2011-06-08 住友金属工業株式会社 S / N ratio measurement method for eddy current flaw detection on the inner surface of a tube
JP5492004B2 (en) * 2010-07-28 2014-05-14 株式会社東芝 Eddy current flaw detector, method, and program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274858A (en) * 1987-05-07 1988-11-11 Nkk Corp In-tube magnetic flaw detecting
JP2007147525A (en) * 2005-11-30 2007-06-14 Hitachi Ltd Method of evaluating lift-off amount between eddy current flaw detecting probe and inspected object, and evaluation device therefor, eddy current flaw detection method, and eddy current flaw detector
JP4736753B2 (en) * 2005-11-30 2011-07-27 株式会社日立製作所 Eddy current flaw detection probe and lift-off amount evaluation method of test object, its evaluation apparatus, eddy current flaw detection method and eddy current flaw detection apparatus
JP2021165668A (en) * 2020-04-07 2021-10-14 電子磁気工業株式会社 Eddy current flaw inspection method and eddy current flaw inspection device

Also Published As

Publication number Publication date
JPH0441303B2 (en) 1992-07-07

Similar Documents

Publication Publication Date Title
CN110308200B (en) Differential magnetic leakage and eddy current composite high-speed rail flaw detection method
US6239593B1 (en) Method and system for detecting and characterizing mechanical damage in pipelines using nonlinear harmonics techniques
US7518359B2 (en) Inspection of non-planar parts using multifrequency eddy current with phase analysis
JPH02147950A (en) Ac leakage magnetic flux detector for plane flaw
JP5544962B2 (en) Magnetic flux leakage flaw detection method and magnetic flux leakage inspection device
US4528506A (en) Ferromagnetic resonance probe liftoff suppression apparatus
JPS60125560A (en) Method for inspecting metal surface
JP2003232776A (en) Eddy current flaw detecting apparatus and method
JP3245057B2 (en) Eddy current flaw detector
JP3266899B2 (en) Method and apparatus for flaw detection of magnetic metal body
JPH0711508B2 (en) Leakage magnetic flux flaw detection method
JPH08248004A (en) Apparatus for measuring extent of fatigue
JPS58218644A (en) Method and apparatus for testing surface flaw of metallic material
JP2798199B2 (en) Noise Removal Method in Eddy Current Testing
JP3307220B2 (en) Method and apparatus for flaw detection of magnetic metal body
RU2587695C1 (en) Magnetic flaw detector for detecting defects in welds
JPS612065A (en) Flaw detector using eddy current
JPH06242076A (en) Electromagnetic flaw detecting equipment
JPH0149899B2 (en)
JPH09166582A (en) Electromagnetic flaw detection method
SU682813A2 (en) Ferroprobe detector
JP4674416B2 (en) Self-comparing eddy current flaw detector
JPH0599901A (en) Eddy-current flaw detecting apparatus
JPH11271278A (en) Defect detecting method for steel
Hayashi et al. Detection method using a dual-channel magnetic sensor for steel cracks in complicated structures