JPS612065A - Flaw detector using eddy current - Google Patents

Flaw detector using eddy current

Info

Publication number
JPS612065A
JPS612065A JP59124197A JP12419784A JPS612065A JP S612065 A JPS612065 A JP S612065A JP 59124197 A JP59124197 A JP 59124197A JP 12419784 A JP12419784 A JP 12419784A JP S612065 A JPS612065 A JP S612065A
Authority
JP
Japan
Prior art keywords
coil
signal
eddy current
phase
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59124197A
Other languages
Japanese (ja)
Inventor
Masaharu Yokoyama
横山 正晴
Yoshikatsu Kiyohara
清原 義勝
Hiroyuki Nitta
博之 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP59124197A priority Critical patent/JPS612065A/en
Publication of JPS612065A publication Critical patent/JPS612065A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9046Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents by analysing electrical signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9006Details, e.g. in the structure or functioning of sensors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To improve the accuracy of phase analysis by arranging concentrically a testing coil on the outside of an exciting coil to constitute a probe. CONSTITUTION:A flaw detecting probe using eddy current is constituted by arranging the exciting coil 2 having a small diameter concentrically with the testing coil 3 having a diameter larger than that of the coil 2. A high frequency current is supplied from an oscillator 31 to the coil 2, so that an eddy current is generated on a testing surface and a mutually induced voltage due to the eddy current is generated on the coil 3. The change of the induced voltage is amplified 32 and inputted to the 1st and 2nd synchronization detectors 5, 6. The detector 5 outputs a component directed to a control signal for an output signal V0 outputted from the coil 3 on the basis of the setting of a 90 deg. phase shifter 50. Consequently, a distance signal due to the variation of lift-off is erased and only a flaw signal due to the existence of a defect is obtained. On the other hand, the detector 6 outputs a component, i.e. a distance signal, directed to a control signal for the signal V0 of the coil 3 on the basis of a 360 deg. phase shifter 60. The flaw signal and the distance signal are inputted to a CRT54 respectively through filters 51, 61, amplifiers 52, 62 and signal processors 53, 63.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鋼管や帯鋼等の金属表面或は表面近傍に存在
するクラックや腐食等の欠陥を検出する渦流探傷装置の
改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in an eddy current flaw detection device for detecting defects such as cracks and corrosion existing on or near the surface of metals such as steel pipes and steel strips.

〔従来技術〕[Prior art]

従来、金属面の欠陥を電磁誘導コイルを用いた渦流探傷
装置によって検査することが行なわれている。これはコ
イルに高周波電流を通じ、該コイルを検査面上に接近さ
せると、コイルから生じる高周波交番磁界が金属壁に渦
電流を生起させ、この渦電流の影響によってコイルに生
じる誘導逆起電力をブリッジ回路等によって検出するも
のである。検査面の欠陥位置では渦電流が乱れてこれが
誘起電圧の変化となって現われるから検査面の欠陥を検
出することが出6来る。渦流探傷器のコイル構成には相
互誘導型と自己誘導型があり、自己誘導型のコイル構成
は、高周波交番磁界を発生すると同時に検査面に生じる
渦電流を自己誘導逆起電力として検出する単一コイルか
らなるのに対し、相互誘導型のコイル構成は、例えば第
6図に示す如く高周波交番磁界を発生する大径の励磁用
コイル(2)と検査面に生じる渦電流を検出する小径の
検査用コイル(3)を検査対象(8)に対し夫々同心に
配備してなる。
Conventionally, defects in metal surfaces have been inspected using an eddy current flaw detector using an electromagnetic induction coil. This involves passing a high-frequency current through a coil, and when the coil is brought close to the inspection surface, the high-frequency alternating magnetic field generated by the coil generates an eddy current on the metal wall, which bridges the induced back electromotive force generated in the coil due to the influence of this eddy current. It is detected by a circuit or the like. At the defect location on the inspection surface, the eddy current is disturbed and this appears as a change in the induced voltage, making it possible to detect the defect on the inspection surface. There are two types of coil configurations for eddy current flaw detectors: a mutual induction type and a self-induction type.The self-induction type coil configuration generates a high-frequency alternating magnetic field and at the same time detects the eddy current generated on the inspection surface as a self-induced back electromotive force. In contrast, a mutual induction type coil configuration consists of a large-diameter excitation coil (2) that generates a high-frequency alternating magnetic field and a small-diameter inspection coil (2) that detects eddy currents generated on the inspection surface, as shown in Figure 6, for example. The coils (3) are arranged concentrically with respect to the test object (8).

渦流探傷プローブを用いた探傷法では、検査面とコイル
との距離(リフトオフ)を一定に保つ必要があり、もし
リフトオフが変動するとコイルの誘起電圧は検査面の欠
陥とリフトオフの変動とによって同時に影響を受け、両
者の判別が出来なくなる。しかしながら実際の探傷検査
に於てはコイルを移動させなから探傷を行なっているか
ら、リフトオフを厳密に一定に保つことは甚だ困難であ
る。コイルの出力信号の中から、リフトオフ変化が出力
信号に及ぼす影響を除去し傷信号のみを分離すべく、従
来はコイルから得られる信号に対し同期検波器によって
位相解析を施し、傷信号のみを取り出す方法が用いられ
ている。
In the flaw detection method using an eddy current flaw detection probe, it is necessary to keep the distance (liftoff) between the inspection surface and the coil constant, and if the liftoff changes, the induced voltage in the coil will be simultaneously affected by the defect on the inspection surface and the variation in liftoff. As a result, it becomes impossible to distinguish between the two. However, in actual flaw detection inspection, the coil is not moved during flaw detection, so it is extremely difficult to keep the lift-off strictly constant. In order to eliminate the influence of lift-off changes on the output signal of the coil and separate only the flaw signal, conventionally the signal obtained from the coil is subjected to phase analysis using a synchronous detector to extract only the flaw signal. method is used.

この方法の原理を第5図で説明する。励磁用コイルの励
磁高周波信号を位相基準信号■xとしてX軸にとり、こ
れに直交する方向の信号vyをy軸とする電圧平面に於
て、欠陥のない検査面をプローブが走査しているときの
りフトオフの変動のみに起因するコイルの出力vI!は
、X軸から位相θだけずれた標準位相の方向に生じる。
The principle of this method will be explained with reference to FIG. When the probe is scanning a defect-free inspection surface on a voltage plane where the excitation high-frequency signal of the excitation coil is taken as the phase reference signal x on the X-axis, and the signal vy in the direction perpendicular to this is taken on the y-axis. Coil output vI due only to variations in lift-off! occurs in the standard phase direction shifted by phase θ from the X axis.

この標準位相θの方向は、プローブ或は検査面の振動、
金属壁の材質の不均一等の外的要因によっては変わらず
、コイル出力Vlは標準位相θの方向で増減するのみで
ある。しかし検査面に欠陥があるときのコイル出力vO
は位相が微小角度dθだけ偏倚する。従って標準位相の
方向を90゜移相した方向のa −a線へ投影される出
力VOの成分面を検出することにより欠陥を検査出来る
のである。
The direction of this standard phase θ is determined by the vibration of the probe or inspection surface,
It does not change due to external factors such as non-uniformity of the material of the metal wall, and the coil output Vl only increases or decreases in the direction of the standard phase θ. However, when there is a defect on the inspection surface, the coil output vO
The phase is shifted by a small angle dθ. Therefore, defects can be inspected by detecting the component plane of the output VO projected onto the a-a line in a direction phase-shifted by 90 degrees from the standard phase direction.

ところが、渦流探傷プローブとして自己誘導型、相互誘
導型の何れのコイル構成を用いた場合でも、欠陥位置で
の出力vOの偏倚角度dθは極めて小さい為、出力VO
の投影成分。−9は微小であり、位相解析の精度が悪く
、信頼性に欠ける問題があった。
However, regardless of whether a self-induction type or mutual induction type coil configuration is used as an eddy current flaw detection probe, the deviation angle dθ of the output vO at the defect location is extremely small, so the output VO
projection component of. -9 was minute, and there was a problem that the precision of phase analysis was poor and reliability was lacking.

〔目 的〕〔the purpose〕

本発明の目的は、相互誘導型のコイル構成を有する探傷
プローブについて前記問題を解決し、信頼性の高い検査
結果が得られる渦流探傷装置を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an eddy current flaw detection apparatus that solves the above-mentioned problems with a flaw detection probe having a mutual induction type coil configuration and that can provide highly reliable test results.

〔原 理] 本発明は、渦流探傷プローブのコイル構成を相互誘導型
としたうえで、励磁用コイルと検出用コイルの寸法及び
配設位置を種々に変えて実験を繰り返したところ、励磁
用コイルの外側に検査用コイルを同心に配備してプロー
ブを構成すれば、大径の励磁用コイルと小径の検出用コ
イルの組み合せからなるプローブよりも、金属面の欠陥
箇所での位相の偏倚dθが大きくなることを見出した。
[Principle] In the present invention, the coil configuration of the eddy current flaw detection probe is a mutual induction type, and after repeated experiments with various dimensions and placement positions of the excitation coil and detection coil, it was found that the excitation coil If the probe is constructed by placing an inspection coil concentrically outside the probe, the phase deviation dθ at the defective location on the metal surface will be smaller than a probe consisting of a combination of a large-diameter excitation coil and a small-diameter detection coil. I found out that it grows.

そこでこの現象を利用して、欠陥に起因する信号と外的
要因による信号を高精度で分離することに成功したので
ある。
By utilizing this phenomenon, they succeeded in separating signals caused by defects and signals caused by external factors with high precision.

〔構 成〕〔composition〕

本発明の構成は、高周波交番磁界を発生する励磁用コイ
ルと該励磁用コイルの外側へ同心に配備した検査用コイ
ルによって渦流探傷プローブを形成し、励磁用コイルに
は高周波電源が接続され、検査用コイルには同期検波器
が接続されると共に、該同期検波器には前記高周波・信
号の位相を検査用コイルの標準出力位相に移した制御信
号を入力する移相器を接続し、前記同期検波器は検査用
コイルからの出力信号中の標準出力位相に対し900移
相した成分(傷信号〕を出力することを特徴とする。
The configuration of the present invention is that an eddy current flaw detection probe is formed by an excitation coil that generates a high-frequency alternating magnetic field and an inspection coil that is placed concentrically outside the excitation coil, and a high-frequency power source is connected to the excitation coil for inspection. A synchronous detector is connected to the test coil, and a phase shifter is connected to the synchronous detector to input a control signal in which the phase of the high frequency signal is shifted to the standard output phase of the test coil. The detector is characterized in that it outputs a component (flaw signal) whose phase is shifted by 900 with respect to the standard output phase in the output signal from the test coil.

〔作 用〕[For production]

励磁用コイルは高周波電源からの通電によって高周波交
番磁界を発生し、検査面に渦電流を発生させつつ検査面
上に所定の高さで保持されて検査面を走査する。検査面
の欠陥箇所上方をプローブが通過すると渦電流に乱れと
低下が生じ、検査用コイルの相互誘起電圧に変動を起た
す。同期検波器は移相器の設定により、検査用コイルの
出力信号に位相解析を施して傷信号のみを取り出して出
力する。
The excitation coil generates a high-frequency alternating magnetic field by being energized by a high-frequency power source, and is held at a predetermined height above the test surface while generating eddy currents on the test surface and scans the test surface. When the probe passes over a defective spot on the inspection surface, disturbances and drops occur in the eddy current, causing fluctuations in the mutually induced voltage in the inspection coil. The synchronous detector performs phase analysis on the output signal of the test coil by setting the phase shifter, and extracts and outputs only the flaw signal.

〔特有の効果〕[Special effects]

渦流探傷装置のプローブを、小径の励磁用コイルと該コ
イルよりも大径の検査用コイルから構成し、相互誘導型
としたことにより、大径の励磁用コイルと小径の検査用
コイルからなるプローブに比べて、検査用コイルの出力
信号がリフトオフの変動のみによる標準出力位相に対し
て大きな偏倚角度方向に生じた。従って検査用コイルの
出力信号に対し移相器と同期検波器からなる位相解析回
路を用いて傷信号を取り出すとき、誤差が少な(、位相
解析の精度が向上する。
The probe of the eddy current flaw detection device consists of a small-diameter excitation coil and a larger-diameter inspection coil than the coil, and is made into a mutual induction type.The probe consists of a large-diameter excitation coil and a small-diameter inspection coil. Compared to the above, the output signal of the test coil was generated in the direction of a large deviation angle with respect to the standard output phase due only to lift-off fluctuations. Therefore, when a flaw signal is extracted from the output signal of the test coil using a phase analysis circuit consisting of a phase shifter and a synchronous detector, the error is small (and the accuracy of phase analysis is improved).

〔実施例〕〔Example〕

以下図面に従って、本発明の効果を示す実施例を詳述す
る。
Examples illustrating the effects of the present invention will be described in detail below with reference to the drawings.

第1図は大口径の鋼管(預の内面を検査する為、本発明
の渦流探傷装置を自走車(11)上に装備して実施した
状況を示している。自走車(11)はモータ、変速機等
を積載し、両側に設けた走行機構(12)を駆動してお
り、鋼管(70)中へ配置されて遠隔操縦により前後進
、停止するものである。自走車(11)の前部にはアー
ム(10)が揺動往復可能に取り付けられており、該ア
ームの先端には渦流探傷プローブ(1)が装備されてい
る。
Figure 1 shows a situation in which the eddy current flaw detection device of the present invention was installed on a self-propelled vehicle (11) in order to inspect the inner surface of a large-diameter steel pipe. The self-propelled vehicle (11) is loaded with a motor, transmission, etc. and drives the traveling mechanism (12) installed on both sides. ) An arm (10) is attached to the front part of the apparatus so as to be able to swing back and forth, and an eddy current flaw detection probe (1) is equipped at the tip of the arm.

プローブ(1)は検査面(7)から一定高さく約3 r
an )に保持されつつ管周方向に毎分略200乃至4
00回の速い揺動を行ない、同時に自走車(11)が毎
分的4mの速度で進行することにより検査面(7)を走
査する。プローブ(1)はケーブル(13)を介してモ
ニター室に配置された信号処理装置(141と電気的に
接続されている。該信号処理装置は、プローブ(1)に
高周波電流を供給すると共に該プローブの出力信号から
傷信号を取り出す信号処理回路を具えている。
The probe (1) is placed at a constant height of approximately 3 r from the inspection surface (7).
approximately 200 to 4 per minute in the tube circumferential direction while being held at
At the same time, the self-propelled vehicle (11) scans the inspection surface (7) by moving at a speed of 4 m/min. The probe (1) is electrically connected to a signal processing device (141) placed in the monitoring room via a cable (13).The signal processing device supplies high frequency current to the probe (1) and It is equipped with a signal processing circuit that extracts a flaw signal from the output signal of the probe.

渦流探傷プローブ(1)は第2図に示す如く、小径の励
磁用コイル(2)と、該コイルよりも大径の検査用コイ
ル(3)を同心に配備し、夫々ホルダーCI!0) (
30)に固定して一体化し、アーム(10)の下端に取
り付けたものである。
As shown in Fig. 2, the eddy current flaw detection probe (1) has a small-diameter excitation coil (2) and a larger-diameter inspection coil (3) arranged concentrically, each with a holder CI! 0) (
30) and attached to the lower end of the arm (10).

第3図は信号処理装置(14)に具えられた信号処理回
路のブロック図を示す。励磁用コイル(2)には発振器
(31)から高周波電流が供給される。これによって検
査面(7)に渦電流が生じ、検査用コイル(3)にはこ
の渦電流による相互誘起電圧が発生する。この誘起電圧
の変化は差動増幅器(32)によって増幅されて第1同
期検波器(5)及び第2同期検波器(6)に入力される
。発振器(31)からの高周波信号は360度移相器(
ω)及び90度移相器(50)に導かれる。360度移
相器tintは、発振器(31)からの高周波信号を第
5図に示す基準信号Vxとして、該信号から位相θだけ
ずれた方向の信号、即ちリフトオフの変動のみによるコ
イル出力(距離信号)Vlと一致する方向の信号を制御
信号として出力する様に予め設定されている。又、90
度移相器(50)は360度移相器(60)の出力より
も更に90度移相した方向(第5図中a −a線の方向
)の信号を制御信号として出力する様に予め設定されて
いる。第1同期検波器(5)は90度移相器(50)の
設定によって検査用コイル(3)からの出力信号Voの
制御信号方向の成分、即ち第5図に示すvoの成分面を
出力する。この結果、リフトオフの変動による距離信号
は消去され、欠陥の存在に起因する傷信号のみが得られ
る。
FIG. 3 shows a block diagram of a signal processing circuit included in the signal processing device (14). A high frequency current is supplied to the excitation coil (2) from an oscillator (31). As a result, an eddy current is generated on the inspection surface (7), and a mutually induced voltage due to this eddy current is generated in the inspection coil (3). This change in induced voltage is amplified by the differential amplifier (32) and input to the first synchronous detector (5) and the second synchronous detector (6). The high frequency signal from the oscillator (31) is passed through a 360 degree phase shifter (
ω) and a 90 degree phase shifter (50). The 360 degree phase shifter tint uses the high frequency signal from the oscillator (31) as the reference signal Vx shown in FIG. ) It is set in advance so that a signal in the direction matching Vl is output as a control signal. Also, 90
The 360 degree phase shifter (50) is designed in advance to output a signal in a direction further 90 degrees phase shifted from the output of the 360 degree phase shifter (60) (in the direction of line a-a in FIG. 5) as a control signal. It is set. The first synchronous detector (5) outputs the component of the output signal Vo from the test coil (3) in the control signal direction, that is, the component plane of vo shown in FIG. 5, by setting the 90-degree phase shifter (50). do. As a result, distance signals due to lift-off fluctuations are eliminated, and only flaw signals due to the presence of defects are obtained.

一方、第2同期検波器(6)は360度移相器(60)
の設定によって検査用コイル(3)の出力信号Voの制
御信号方向の成分、即ち距離信号を出力する。傷信号及
び距離信号は夫々、フィルタ+51+ +61+ 、増
幅器(52)((至)、及び信号処理器(531(63
1によってノイズリダクション、ゲインコントロール及
びリニアライス等を施された後、cRT(54)にY軸
信号vy及びX軸信号yxとして入力される。
On the other hand, the second synchronous detector (6) is a 360 degree phase shifter (60)
By setting , a component of the output signal Vo of the inspection coil (3) in the control signal direction, that is, a distance signal is output. The flaw signal and the distance signal are transmitted through filters +51+ +61+, amplifiers (52) ((towards), and signal processors (531 (63)), respectively.
1, the signals are subjected to noise reduction, gain control, linear rice, etc., and then inputted to the cRT (54) as a Y-axis signal vy and an X-axis signal yx.

第4図は、上記の渦流探傷装置を用いて、検査面に形成
された人工欠陥の上方を走査して得られたCRT−(5
111の画面を示し、横軸をVx1縦軸をvyとしたと
きの出力信号の軌跡を表わしている。
Figure 4 shows a CRT-(5) obtained by scanning above an artificial defect formed on the inspection surface using the above-mentioned eddy current flaw detection device.
111, and represents the locus of the output signal when the horizontal axis is Vx and the vertical axis is vy.

使用した励磁用コイル(2)は、インピーダンスが66
.30Ω、抵抗値が34370、巻数が70回であり、
一方検査用コイル(3)は、インピーダンスが81.2
7Ω、抵抗値が265Ω、巻数が50回である。励磁用
コイル(2)には周波数が32 KH2の高周波電流が
供給される。又、検査面(7)の材質は鋼鉄5S41で
、検出の対象とする欠陥(71)の寸法は直径aが10
mm、深さbが7.3 mn+である。図中に於て、実
線aは第3図に示す信号処理回路を用いて得られた結果
であり、一方破線すは、第3図に示す信号処理回路に対
する励磁用コイル(2)と検査用コイル(3)との接続
を逆にして走査を行なった結果である。
The excitation coil (2) used has an impedance of 66
.. 30Ω, resistance value is 34370, number of turns is 70,
On the other hand, the test coil (3) has an impedance of 81.2.
The resistance value is 7Ω, the resistance value is 265Ω, and the number of turns is 50. A high frequency current having a frequency of 32 KH2 is supplied to the excitation coil (2). The material of the inspection surface (7) is steel 5S41, and the size of the defect (71) to be detected is a diameter a of 10
mm, and the depth b is 7.3 mn+. In the figure, the solid line a shows the results obtained using the signal processing circuit shown in Fig. 3, while the broken line a shows the results obtained using the excitation coil (2) and the testing coil for the signal processing circuit shown in Fig. 3. This is the result of scanning with the connection to the coil (3) reversed.

即ち、破線すは大径の励磁用コイルと小径の検査用コイ
ルからなるプローブを用いて得られた検査結果である。
That is, the broken line indicates the test results obtained using a probe consisting of a large-diameter excitation coil and a small-diameter test coil.

これによって、本発明に係る渦流探傷装置は、第3図の
接続を逆にした渦流探傷装置に比べて、欠陥に対して得
られる出力信号がより鮮鋭なピークとなって現われ、然
もそのピークは標準出力位相に対して図示のψなる角度
(本実施例では約6°)だけ大きな偏倚角度方向に生じ
ることが明らかとなった。励磁用コイル(2)と検査用
コイル(3)の夫々の形状寸法を種々に変えても、検査
用コイル(3)を励磁用コイルの外側に配備する限り、
前記同様の効果があることが確認されている。
As a result, in the eddy current flaw detection device according to the present invention, compared to the eddy current flaw detection device in which the connections shown in FIG. 3 are reversed, the output signal obtained for defects appears as a sharper peak, and It has become clear that this occurs in the direction of the deviation angle that is larger by the angle ψ shown in the figure (approximately 6° in this example) with respect to the standard output phase. Even if the shapes and dimensions of the excitation coil (2) and the inspection coil (3) are varied, as long as the inspection coil (3) is placed outside the excitation coil,
It has been confirmed that there is an effect similar to that described above.

尚、第2図に示すプローブ(1)の励磁用コイル(2)
の内側に、更に小径の検査用コイルを設け、大小2つの
検査用コイルによって欠陥を検出することも出来る。こ
の場合、小径の検査用コイルによってクランクやピンホ
ール等の微細な欠陥の検出が可能となる。
In addition, the excitation coil (2) of the probe (1) shown in Figure 2
It is also possible to provide an inspection coil with a smaller diameter inside the holder, and detect defects using the two inspection coils, large and small. In this case, small diameter inspection coils can detect minute defects such as cranks and pinholes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を鋼管内面の探傷検査に実施した例の斜
視図、第2図は渦流探傷プローブの拡大断面図、第3図
は相互誘導型探傷装置の信号処理回路のブロック図、第
4図は本発明の効果を示した出力信号のCRT画面、第
5図は位相解析の原理を説明する出力信号のベクトル図
、第6図は従来の渦流探傷プローブの一部破断図である
。 (1)・・・渦流探傷プローブ (2)・・・励磁用コ
イル(3)・・・検査用コイル  (31)・・・発振
器(51[6)・・同期検波器  (50)(lliO
)・・・移相器(7)・・・検査面
Fig. 1 is a perspective view of an example in which the present invention is implemented for flaw detection on the inner surface of a steel pipe, Fig. 2 is an enlarged sectional view of an eddy current flaw detection probe, Fig. 3 is a block diagram of a signal processing circuit of a mutual induction flaw detection device, and Fig. 3 is a block diagram of a signal processing circuit of a mutual induction flaw detection device. FIG. 4 is a CRT screen of output signals showing the effects of the present invention, FIG. 5 is a vector diagram of output signals explaining the principle of phase analysis, and FIG. 6 is a partially cutaway view of a conventional eddy current flaw detection probe. (1)... Eddy current flaw detection probe (2)... Excitation coil (3)... Inspection coil (31)... Oscillator (51 [6)... Synchronous detector (50) (lliO
)...Phase shifter (7)...Inspection surface

Claims (1)

【特許請求の範囲】[Claims] (1)高周波交番磁界を発生する励磁用コイルと該励磁
用コイルの外側へ同心に配備した検査用コイルによって
渦流探傷プローブを形成し、励磁用コイルには高周波電
源が接続され、検査用コイルには同期検波器が接続され
ると共に、該同期検波器には前記高周波信号の位相を検
査用コイルの標準出力位相に移した制御信号を入力する
移相器を接続し、前記同期検波器は検査用コイルからの
出力信号中の標準出力位相に対し90°移相した成分(
傷信号)を出力することを特徴とする渦流探傷装置。
(1) An eddy current flaw detection probe is formed by an excitation coil that generates a high-frequency alternating magnetic field and an inspection coil placed concentrically outside the excitation coil.A high-frequency power source is connected to the excitation coil, and the inspection coil is connected to a synchronous detector, and to the synchronous detector is connected a phase shifter that inputs a control signal in which the phase of the high frequency signal is shifted to the standard output phase of the test coil, and the synchronous detector is connected to the test coil. component (90° phase shifted from the standard output phase in the output signal from the coil)
An eddy current flaw detection device characterized by outputting a flaw signal.
JP59124197A 1984-06-14 1984-06-14 Flaw detector using eddy current Pending JPS612065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59124197A JPS612065A (en) 1984-06-14 1984-06-14 Flaw detector using eddy current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59124197A JPS612065A (en) 1984-06-14 1984-06-14 Flaw detector using eddy current

Publications (1)

Publication Number Publication Date
JPS612065A true JPS612065A (en) 1986-01-08

Family

ID=14879383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59124197A Pending JPS612065A (en) 1984-06-14 1984-06-14 Flaw detector using eddy current

Country Status (1)

Country Link
JP (1) JPS612065A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005201779A (en) * 2004-01-16 2005-07-28 Japan Techno Mate Corp Jig for eddy current flaw detector
JP2006189347A (en) * 2005-01-06 2006-07-20 Tatsuo Hiroshima Flaw detection probe and flaw detector
JP2007147525A (en) * 2005-11-30 2007-06-14 Hitachi Ltd Method of evaluating lift-off amount between eddy current flaw detecting probe and inspected object, and evaluation device therefor, eddy current flaw detection method, and eddy current flaw detector
JP2011191324A (en) * 2011-07-04 2011-09-29 Tatsuo Hiroshima Flaw detection probe
GB2524588A (en) * 2014-03-28 2015-09-30 Technical Software Consultants Ltd A.C. Field measurement system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005201779A (en) * 2004-01-16 2005-07-28 Japan Techno Mate Corp Jig for eddy current flaw detector
JP2006189347A (en) * 2005-01-06 2006-07-20 Tatsuo Hiroshima Flaw detection probe and flaw detector
JP2007147525A (en) * 2005-11-30 2007-06-14 Hitachi Ltd Method of evaluating lift-off amount between eddy current flaw detecting probe and inspected object, and evaluation device therefor, eddy current flaw detection method, and eddy current flaw detector
JP4736753B2 (en) * 2005-11-30 2011-07-27 株式会社日立製作所 Eddy current flaw detection probe and lift-off amount evaluation method of test object, its evaluation apparatus, eddy current flaw detection method and eddy current flaw detection apparatus
JP2011191324A (en) * 2011-07-04 2011-09-29 Tatsuo Hiroshima Flaw detection probe
GB2524588A (en) * 2014-03-28 2015-09-30 Technical Software Consultants Ltd A.C. Field measurement system
GB2524588B (en) * 2014-03-28 2016-09-21 Technical Software Consultants Ltd A.C. Field measurement system

Similar Documents

Publication Publication Date Title
US4107605A (en) Eddy current flaw detector utilizing plural sets of four planar coils, with the plural sets disposed in a common bridge
JPS62500683A (en) Method and device for detecting surface defects using eddy currents
US4303883A (en) Apparatus for detecting the center of a welded seam in accordance with fundamental harmonic component suppression
JPH0854375A (en) Electromagnetic induction-type inspecting apparatus
US5592078A (en) Method and apparatus for moving along a boundary between electromagnetically different materials
JPH0338542B2 (en)
JPS612065A (en) Flaw detector using eddy current
JP3245057B2 (en) Eddy current flaw detector
JP3266899B2 (en) Method and apparatus for flaw detection of magnetic metal body
JP2798199B2 (en) Noise Removal Method in Eddy Current Testing
US4488114A (en) Device for non-destructive testing by eddy currents comprising air-gap correction means
JP2005164516A (en) Method for detecting defect
JPS60125560A (en) Method for inspecting metal surface
JPH06242076A (en) Electromagnetic flaw detecting equipment
JPH03105245A (en) Remote field type probe for eddy current flaw detection
JP4674416B2 (en) Self-comparing eddy current flaw detector
JPS6011493Y2 (en) Electromagnetic induction detection device
JPS60249051A (en) Flaw detecting device of surface of metal
JPS62239050A (en) Eddy current test equipment
JPH0565820B2 (en)
JPH11160285A (en) Magnetic flaw detector
KR102283396B1 (en) Sensor Probe tesing System for Eddy Current Nondestructive Testing
JP2610424B2 (en) Eddy current flaw detector
JPH09178710A (en) Flaw detecting element for eddy current flaw detection device
JPH10170481A (en) Eddy current flaw detector