JPH09178710A - Flaw detecting element for eddy current flaw detection device - Google Patents

Flaw detecting element for eddy current flaw detection device

Info

Publication number
JPH09178710A
JPH09178710A JP7335092A JP33509295A JPH09178710A JP H09178710 A JPH09178710 A JP H09178710A JP 7335092 A JP7335092 A JP 7335092A JP 33509295 A JP33509295 A JP 33509295A JP H09178710 A JPH09178710 A JP H09178710A
Authority
JP
Japan
Prior art keywords
defect
eddy current
flaw detector
detection coil
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7335092A
Other languages
Japanese (ja)
Inventor
Yasuo Araki
保夫 荒木
Masaru Taniguchi
優 谷口
Yoshikatsu Takeda
義勝 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7335092A priority Critical patent/JPH09178710A/en
Publication of JPH09178710A publication Critical patent/JPH09178710A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily detect the direction of a detect being present in a metal to-be-tested and obtain much information on the defect for accurately repairing and drastically reducing period. SOLUTION: In a flaw detecting element, two square coils 2 and 3 which cross at right angle are provided inside an excitation coil 103. By constituting the flaw detecting element as in the above, eddy current in the metal to-be-tested 110 is generated concentrically with the excitation coil 103 and the influence of eddy current which changes depending on the direction of defect can occur only in either detection coil 2 or 3 determined by the direction of defect. Therefore, by configuring two detection coils so that each outputs the difference each other, the direction where a signal is generated becomes opposite to the direction of defect, thus judging the direction of defect from that (polarity) of the detected signal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば金属の平板
等の健全性を確認する渦電流探傷装置用探傷子に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flaw detector for an eddy current flaw detector which confirms the soundness of, for example, a metal flat plate.

【0002】[0002]

【従来の技術】金属の平板等の健全性を確認する装置と
して、一般に渦電流探傷装置が使用されている。この従
来の渦電流探傷装置は、図5に示すように検出コイル1
01、ダミーコイル102、励磁コイル103からなる
探傷子と、表示画面121を有する探傷器120及び両
者間を接続する接続ケーブル130により構成されてい
る。
2. Description of the Related Art An eddy current flaw detector is generally used as a device for confirming the soundness of a metal flat plate or the like. This conventional eddy current flaw detector has a detection coil 1 as shown in FIG.
01, a dummy coil 102, an exciting coil 103, a flaw detector 120 having a display screen 121, and a connection cable 130 connecting the two.

【0003】このような構成を有する渦電流探傷装置の
電気的な接続状態を図6に示す。図5及び図6におい
て、110は対象とする被検体金属、111は被検体金
属の表面近くにある欠陥、131は励磁コイル103が
発生する磁界、132は励磁コイル103が発生する磁
界131によって金属体中を流れる渦電流、133は渦
電流132によって発生する磁界、141は探傷器12
0が内蔵する発振器である。
FIG. 6 shows an electrical connection state of the eddy current flaw detector having such a structure. In FIG. 5 and FIG. 6, 110 is a target metal to be inspected, 111 is a defect near the surface of the metal to be inspected, 131 is a magnetic field generated by the exciting coil 103, and 132 is metal due to the magnetic field 131 generated by the exciting coil 103. Eddy current flowing in the body, 133 is a magnetic field generated by the eddy current 132, 141 is the flaw detector 12
0 is an internal oscillator.

【0004】励磁コイル103には接続ケーブル130
を通じて、発振器141から一定の振幅、一定周波数の
交流の電流が流される。励磁コイル103に交流の電流
が流れることによって、励磁コイル103から磁界13
1が発生する。この磁界131は、検出コイル101、
ダミーコイル102及び被検体金属110と鎖交し、被
検体金属110に渦電流132が発生する。この渦電流
132は被検体金属110が健全な場合、励磁コイル1
03と同心円状に発生する。この渦電流132によって
も磁界133が発生し、この磁界133も検出コイル1
01と鎖交する。
A connection cable 130 is connected to the exciting coil 103.
, An alternating current having a constant amplitude and a constant frequency flows from the oscillator 141. When an alternating current flows through the exciting coil 103, the magnetic field 13
1 occurs. This magnetic field 131 is applied to the detection coil 101,
An eddy current 132 is generated in the subject metal 110 by interlinking with the dummy coil 102 and the subject metal 110. This eddy current 132 is generated when the metal 110 is healthy.
It occurs concentrically with 03. The eddy current 132 also generates a magnetic field 133, and this magnetic field 133 is also generated by the detection coil 1
Link with 01.

【0005】これらの交流の磁界131,133が検出
コイル101と鎖交することによって、検出コイル10
1に交流の電圧が誘起する。ダミーコイル102と交流
の磁界131が鎖交するので、ダミーコイル102にも
交流の電圧が誘起する。検出コイル101及びダミーコ
イル102は、探傷器120の内部でブリッジ回路を構
成し、探傷子が被検体金属110の健全部にあるとき、
検出コイル101及びダミーコイル102に誘起する電
圧が互いに相殺され、出力が発生しないように調整され
る。
By interlinking these alternating magnetic fields 131 and 133 with the detection coil 101, the detection coil 10
An alternating voltage is induced in 1. Since the alternating magnetic field 131 interlinks with the dummy coil 102, an alternating voltage is also induced in the dummy coil 102. The detection coil 101 and the dummy coil 102 form a bridge circuit inside the flaw detector 120, and when the flaw detector is located in the sound portion of the object metal 110,
The voltages induced in the detection coil 101 and the dummy coil 102 cancel each other out and are adjusted so that no output is generated.

【0006】図5における矢印151は探傷子の走査方
向X、矢印152は探傷子の走査方向Yを示しており、
探傷子を被検体表面で、これらの矢印X,Yの方向に走
査して、被検体金属110を探傷する。
In FIG. 5, an arrow 151 indicates the scanning direction X of the flaw detector, and an arrow 152 indicates the scanning direction Y of the flaw detector.
The flaw detector is scanned on the surface of the subject in the directions of these arrows X and Y to detect the flaw of the subject metal 110.

【0007】被検体金属110に欠陥111が存在する
場合、渦電流132の流れ方が欠陥の無い場合に比べて
変化する。このとき、渦電流132が発生する磁界13
3も欠陥の無い場合に比べて変化するため、検出コイル
101に誘起する電圧も変化し、この電圧の変化を探傷
器120にて処理し、探傷器120の画面121に表示
する。実際に適用される場合、探傷子を被検体金属11
0の表面上を矢印151及び152の方向に走査し、こ
のときの探傷器120の画面121に現われる信号波形
123、即ち、検出コイル101に誘起する電圧を処理
した信号波形123を観察する。探傷子が被検体金属1
10の健全部(欠陥の無い部分)にあるときは、検出コ
イル101及びダミーコイル102に誘起する電圧が相
殺されるように調整されているため、探傷器120の画
面121の信号波形123は点状となり、欠陥の無いこ
とが判定される。
When a defect 111 is present in the object metal 110, the flow of the eddy current 132 changes as compared with the case where there is no defect. At this time, the magnetic field 13 generated by the eddy current 132
3 also changes as compared with the case where there is no defect, the voltage induced in the detection coil 101 also changes, and this change in the voltage is processed by the flaw detector 120 and displayed on the screen 121 of the flaw detector 120. When actually applied, the flaw detector is connected to the object metal 11.
The surface 0 is scanned in the directions of arrows 151 and 152, and a signal waveform 123 appearing on the screen 121 of the flaw detector 120 at this time, that is, a signal waveform 123 obtained by processing a voltage induced in the detection coil 101 is observed. Flaw detector is object metal 1
10, the voltage induced in the detection coil 101 and the dummy coil 102 is adjusted so as to cancel each other out, so that the signal waveform 123 on the screen 121 of the flaw detector 120 has a dot. And it is determined that there is no defect.

【0008】従って、上記のように探傷子を被検体金属
110上で移動させながら、探傷器120の画面121
を観察することによって、欠陥の有無を判断でき、被検
体金属110の健全性を知ることができる。
Therefore, the screen 121 of the flaw detector 120 is moved while moving the flaw detector on the subject metal 110 as described above.
By observing, the presence or absence of a defect can be determined, and the soundness of the test metal 110 can be known.

【0009】[0009]

【発明が解決しようとする課題】しかし、上記の従来の
探傷子を用いた探傷装置では、被検金属中の渦電流が探
傷子の励磁コイルと同心円状に流れるため、欠陥による
信号が欠陥の方向とは無関係に発生し、欠陥の方向が分
からないというような問題があった。
However, in the above-described flaw detector using the conventional flaw detector, since the eddy current in the metal to be tested flows concentrically with the exciting coil of the flaw detector, a signal due to the defect is not detected. There is a problem that the defect occurs regardless of the direction and the direction of the defect is not known.

【0010】本発明は上記の課題を解決するためになさ
れたもので、被検体金属に存在する欠陥の方向を容易に
感知でき、かつ、欠陥に関して多くの情報を得ることが
でき、正確な修理、期間の大幅短縮等を可能にする渦電
流探傷装置用探傷子を提供することを目的とする。
The present invention has been made in order to solve the above problems, and can easily detect the direction of a defect existing in a metal to be inspected, obtain a lot of information about the defect, and perform accurate repair. It is an object of the present invention to provide a flaw detector for an eddy current flaw detector which enables a significant reduction in period.

【0011】[0011]

【課題を解決するための手段】本発明に係る渦電流探傷
装置用探傷子は、渦電流探傷器からの信号により励磁さ
れる励磁コイルと、この励磁コイルの内側に直交して配
置される第1及び第2の検出コイルとを具備し、上記第
1及び第2の検出コイルが被検体金属の健全部に位置し
ているときは被検体金属に発生した渦電流による磁界を
均等に受け、上記第1及び第2の検出コイルが被検体金
属の欠陥上を走査したときは該欠陥の方向に対応して上
記第1あるいは第2の検出コイル誘起電圧が発生するよ
うに構成したことを特徴とする。
A flaw detector for an eddy current flaw detector according to the present invention comprises an exciting coil excited by a signal from an eddy current flaw detector, and a first coil arranged inside the exciting coil at a right angle. A first and a second detection coil, and when the first and the second detection coils are located in a sound portion of the metal to be inspected, the magnetic field due to the eddy current generated in the metal to be inspected is evenly received, When the first and second detection coils scan over the defect of the metal to be inspected, the first or second detection coil induced voltage is generated corresponding to the direction of the defect. And

【0012】(作用)被検体金属上を探傷子により走査
すると、被検体金属中に励磁コイルによって発生する渦
電流が励磁コイルと同心円状に発生する。被検体金属上
に欠陥がある場合、欠陥の方向によって変化する渦電流
の影響が、欠陥の方向によって決まる1個の検出コイル
にしか発生しない。従って、第1、第2の検出コイルに
誘起する信号の方向(極性)によって欠陥の方向を判定
することが可能となる。
(Operation) When the metal to be inspected is scanned by the flaw detector, an eddy current generated by the exciting coil in the metal to be inspected is generated concentrically with the exciting coil. When there is a defect on the metal to be inspected, the effect of the eddy current that changes depending on the direction of the defect occurs only in one detection coil determined by the direction of the defect. Therefore, it becomes possible to determine the defect direction by the direction (polarity) of the signal induced in the first and second detection coils.

【0013】[0013]

【発明の実施の形態】以下、図面を参照して本発明の一
実施形態を説明する。図1は、本発明の一実施形態に係
る渦電流探傷装置の構成図である。図1において、10
3は探傷子の励磁コイルで、探傷器120からの交流電
流によって交流の磁界を発生する。上記励磁コイル10
3の内側には、例えば方形の第1の検出コイル2及び第
2の検出コイル3が直交するように配置される。上記検
出コイル2,3は、励磁コイル103の磁界及び被検体
金属110中の渦電流の変化による磁界の変化等によっ
て誘起する電圧が変化する。この検出コイル2,3の誘
起電圧は探傷器120に送られ、各誘起電圧の差が処理
されて画面121に信号波形52として表示される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of an eddy current inspection device according to an embodiment of the present invention. In FIG. 1, 10
Reference numeral 3 denotes an exciting coil of the flaw detector, which generates an alternating magnetic field by the alternating current from the flaw detector 120. Exciting coil 10
A first detection coil 2 and a second detection coil 3, which are rectangular, for example, are arranged inside 3 so that they are orthogonal to each other. In the detection coils 2 and 3, the voltage induced by the magnetic field of the exciting coil 103 and the change of the magnetic field due to the change of the eddy current in the subject metal 110 changes. The induced voltage of the detection coils 2 and 3 is sent to the flaw detector 120, and the difference between the induced voltages is processed and displayed as a signal waveform 52 on the screen 121.

【0014】120は従来の探傷装置と同一の渦電流探
傷器であり、130は同様に探傷器120とコイルの間
を接続するケーブルである。111は被検体金属110
の欠陥であり、132は被検体金属110中を流れる渦
電流、133は渦電流が発生する磁界、矢印151は探
傷子の走査方向X、矢印152は探傷子の走査方向Yで
ある。
Reference numeral 120 is the same eddy current flaw detector as in the conventional flaw detector, and 130 is a cable for connecting between the flaw detector 120 and the coil. 111 is the subject metal 110
132 is an eddy current flowing through the metal 110 to be inspected, 133 is a magnetic field generated by the eddy current, arrow 151 is the scanning direction X of the flaw detector, and arrow 152 is the scanning direction Y of the flaw detector.

【0015】次に上記実施形態の動作を図2、図3及び
図4を参照して説明する。図2は本発明に係る探傷子の
作用を説明するための図である。図3は同探傷子の信号
波形を説明するための図で、(a)は欠陥が無い場合、
(b)は探傷子が欠陥を通過した場合の信号波形であ
る。図3において、125は探傷器120の画面121
で観察される欠陥が無い場合の信号波形、126は探傷
子が欠陥を横切った場合の信号波形、55は信号波形の
左側のピーク点、56は信号波形の右側のピーク点であ
る。
Next, the operation of the above embodiment will be described with reference to FIGS. 2, 3 and 4. FIG. 2 is a diagram for explaining the operation of the flaw detector according to the present invention. FIG. 3 is a diagram for explaining the signal waveform of the same flaw detector, and FIG.
(B) is a signal waveform when the flaw passes through the defect. In FIG. 3, 125 is a screen 121 of the flaw detector 120.
The signal waveform when there is no defect observed in 1., 126 is the signal waveform when the flaw crosses the defect, 55 is the left peak point of the signal waveform, and 56 is the right peak point of the signal waveform.

【0016】また、図4は欠陥の方向と信号波形の方向
を説明するための図で、同図(a)の61は第1の検出
コイル2が該コイル2と平行な方向の欠陥を横切った場
合の信号波形、62は信号波形61の発生し始める方向
を示している。また、同図(b)の63は第2の検出コ
イル3が該コイル3と平行な方向の欠陥を横切った場合
の信号波形、64は信号波形63の発生し始める方向を
示している。
FIG. 4 is a diagram for explaining the direction of the defect and the direction of the signal waveform. In FIG. 4A, reference numeral 61 indicates that the first detection coil 2 crosses the defect in the direction parallel to the coil 2. In the case of the signal waveform, reference numeral 62 indicates the direction in which the signal waveform 61 starts to be generated. Reference numeral 63 in FIG. 6B shows a signal waveform when the second detection coil 3 crosses a defect in a direction parallel to the coil 3, and reference numeral 64 shows a direction in which the signal waveform 63 starts to be generated.

【0017】図2は、被検体金属110中を流れる渦電
流132の流れ方が欠陥111にどのように影響され、
それに伴って生じる第1の検出コイル2及び第2の検出
コイル3の誘起電圧の変化を示したものである。
FIG. 2 shows how the flow of the eddy current 132 flowing in the metal 110 under test is affected by the defect 111,
The change of the induced voltage of the 1st detection coil 2 and the 2nd detection coil 3 which accompanies it is shown.

【0018】図2(a)は、健全な金属体上に探傷子が
ある場合の渦電流及び渦電流が発生する磁界について示
している。健全な金属体上に探傷子がある場合、渦電流
132は真円になって流れ、渦電流が発生する磁界13
3は、検出コイル2,3の周囲に均等に生じ、これらの
渦電流が発生する磁界133は各検出コイル2,3に対
して、その左右の磁界が逆方向に鎖交する。このため各
々の検出コイル2,3に誘起する電圧は、互いに打消し
合って発生しない。従って、被検体金属110の健全部
で、探傷子が走査されても、各々の検出コイル2,3に
は電圧が誘起しない。このように誘起電圧が無い場合、
探傷器120の内部で信号処理されても、図3(a)の
ように信号波形125は探傷器120の画面121の原
点で表示され、振れが生じない。
FIG. 2A shows an eddy current and a magnetic field generated by the eddy current when the flaw detector is provided on a sound metal body. When there is a flaw detector on a sound metal body, the eddy current 132 flows in a perfect circle, and the magnetic field 13 generated by the eddy current is generated.
3 are evenly generated around the detection coils 2 and 3, and the magnetic field 133 generated by these eddy currents is such that the left and right magnetic fields interlink with the respective detection coils 2 and 3 in opposite directions. Therefore, the voltages induced in the respective detection coils 2 and 3 do not cancel each other and do not occur. Therefore, no voltage is induced in each of the detection coils 2 and 3 even if the flaw detector scans the sound part of the subject metal 110. If there is no induced voltage like this,
Even if the signal processing is performed inside the flaw detector 120, the signal waveform 125 is displayed at the origin of the screen 121 of the flaw detector 120 as shown in FIG.

【0019】図2(b)は、検出コイル2の右側に欠陥
111が接近した場合の例である。この場合には、金属
体中を流れる渦電流132は図のように真円にはなら
ず、欠陥111の近傍で流れが欠陥111と平行にな
る。このため渦電流132によって発生する磁界133
も検出コイル2に対して左右で均等にならず、検出コイ
ル2の右側の磁界が、検出コイル2と強く鎖交し、検出
コイル2に一定極性の電圧を誘起する。
FIG. 2B shows an example in which the defect 111 approaches the right side of the detection coil 2. In this case, the eddy current 132 flowing in the metal body does not form a perfect circle as shown in the figure, and the flow becomes parallel to the defect 111 in the vicinity of the defect 111. Therefore, the magnetic field 133 generated by the eddy current 132
Is not even on the left and right with respect to the detection coil 2, and the magnetic field on the right side of the detection coil 2 strongly interlinks with the detection coil 2 and induces a voltage of constant polarity in the detection coil 2.

【0020】図2の(b),(c),(d)では、検出
コイル3を省略して描いたが、図2では、検出コイル2
に平行な方向の欠陥111が存在する場合について説明
しており、この場合では、欠陥111の存在による渦電
流の流れ方の変化により生じる渦電流が発生する磁界は
検出コイル3に対して左右均等となり、電圧を誘起しな
いためである。
Although the detection coil 3 is omitted in FIGS. 2B, 2C and 2D, the detection coil 2 is shown in FIG.
The case where the defect 111 exists in the direction parallel to is described. In this case, the magnetic field generated by the eddy current generated by the change in the flow of the eddy current due to the existence of the defect 111 is equal to the left and right with respect to the detection coil 3. This is because the voltage is not induced.

【0021】図2(b)に示すように、検出コイル2に
平行な方向の欠陥111の接近によって、一定極性の電
圧が検出コイル2に誘起する。このとき検出コイル3に
は電圧が誘起されない。検出コイル2と検出コイル3に
誘起する電圧は、探傷器120の内部で互いに減算され
るが、検出コイル3には電圧が誘起されないため、検出
コイル2に誘起する電圧そのものが信号処理され、探傷
器120の画面121上の信号波形126に振れが発生
する。
As shown in FIG. 2B, when the defect 111 approaches in the direction parallel to the detection coil 2, a voltage having a constant polarity is induced in the detection coil 2. At this time, no voltage is induced in the detection coil 3. The voltages induced in the detection coil 2 and the detection coil 3 are subtracted from each other inside the flaw detector 120. However, since the voltage is not induced in the detection coil 3, the voltage itself induced in the detection coil 2 is subjected to signal processing and flaw detection is performed. A shake occurs in the signal waveform 126 on the screen 121 of the container 120.

【0022】図2(c)は、検出コイル2と該コイル2
と平行な欠陥111の中心が一致した場合を説明した図
である。この場合、図を簡単にするため、検出コイル2
を省略して描いた。図2(c)のように、検出コイル2
と欠陥111の中心が一致した場合、渦電流132は楕
円になり、この渦電流132により発生する磁界133
は図2(a)のときと異なり、周囲が均一にはならな
い。しかし、この磁界133は、検出コイル2に対して
左右均等になり、左右の磁界は検出コイル2に対して互
いに逆方向で鎖交する。このため検出コイル2の誘起電
圧は、互いに打消し合って出力が発生しない。従って、
図2(c)の場合は、検出コイル2,3には電圧が誘起
せず、これらの減算によっても電圧は生じなず、これを
探傷器120の内部回路で信号処理しても、信号波形に
振れは生じない。この場合、信号波形は、探傷器120
の画面121の原点上に表示される。
FIG. 2C shows the detection coil 2 and the coil 2.
It is a figure explaining the case where the center of the defect 111 parallel to is in agreement. In this case, in order to simplify the drawing, the detection coil 2
Was omitted. As shown in FIG. 2C, the detection coil 2
And the center of the defect 111 coincide with each other, the eddy current 132 becomes an ellipse, and the magnetic field 133 generated by the eddy current 132 is generated.
Unlike in the case of FIG. 2A, the periphery is not uniform. However, this magnetic field 133 becomes equal to the left and right with respect to the detection coil 2, and the left and right magnetic fields interlink with the detection coil 2 in opposite directions. Therefore, the induced voltages of the detection coil 2 cancel each other out and no output is generated. Therefore,
In the case of FIG. 2C, no voltage is induced in the detection coils 2 and 3, and no voltage is generated by subtraction of these, and even if this is processed by the internal circuit of the flaw detector 120, the signal waveform There is no wobbling. In this case, the signal waveform is the flaw detector 120.
Is displayed on the origin of the screen 121.

【0023】図2(d)は、図2(b)とは逆に、欠陥
111が検出コイル2の左側に近接した場合の例であ
る。この場合、渦電流132は図2(b)と逆になり、
左側で欠陥111と平行になる。このため検出コイル2
の左側の磁界133が検出コイル2と強く鎖交して電圧
が誘起する。この場合、磁界133が検出コイル2と鎖
交する方向は、図2(b)と逆になり、検出コイル2が
誘起する電圧の極性が図2(b)と逆になる。この逆極
性の誘起電圧は探傷器120の内部回路で信号処理さ
れ、探傷器120の画面121に振れとなって現われる
が、この場合の振れは図2(b)の場合と逆になる。
Contrary to FIG. 2B, FIG. 2D shows an example in which the defect 111 is close to the left side of the detection coil 2. In this case, the eddy current 132 is opposite to that in FIG.
It becomes parallel to the defect 111 on the left side. Therefore, the detection coil 2
The magnetic field 133 on the left side of is strongly interlinked with the detection coil 2 and a voltage is induced. In this case, the direction in which the magnetic field 133 interlinks with the detection coil 2 is opposite to that in FIG. 2B, and the polarity of the voltage induced by the detection coil 2 is opposite to that in FIG. 2B. The induced voltage of the opposite polarity is subjected to signal processing in the internal circuit of the flaw detector 120 and appears as a shake on the screen 121 of the flaw detector 120. In this case, the shake is opposite to that in the case of FIG. 2B.

【0024】今、検出コイル2と平行な方向に欠陥11
1が存在し、この欠陥111に対して検出コイル2が図
2の矢印151の方向に移動するとき、欠陥111は、
図2(b)のように検出コイル2に右側から接近し、次
に図2(c)のように検出コイル2と欠陥111の中心
が一致し、その後、図2(d)のように検出コイル2か
ら欠陥111が左側から離れる。この場合、以上の説明
のように、図2(b)と図2(d)では電圧が誘起する
が、誘起する電圧の極性が逆になるため、これが探傷器
120の内部回路で信号処理され、探傷器120の画面
121上で、図2(b)と図2(d)では逆の振れとな
って現われる。
Now, the defect 11 is present in the direction parallel to the detection coil 2.
1 exists and when the detection coil 2 moves in the direction of arrow 151 of FIG.
As shown in FIG. 2B, the detection coil 2 is approached from the right side, then the centers of the detection coil 2 and the defect 111 are aligned as shown in FIG. 2C, and then the detection coil 2 is detected as shown in FIG. 2D. The defect 111 moves away from the coil 2 from the left side. In this case, as described above, the voltage is induced in FIG. 2B and FIG. 2D, but the polarity of the induced voltage is opposite, and this is processed by the internal circuit of the flaw detector 120. On the screen 121 of the flaw detector 120, the shake appears opposite to that in FIGS. 2B and 2D.

【0025】つまり、探傷子が検出コイル2を横切る方
向に走査された場合、図3(b)に示すように、健全な
状態である振れの生じない原点から、欠陥111が検出
コイル2に接近することによって信号波形が信号波形の
左側のピーク点55の方向に振れ、欠陥111が検出コ
イル2と一致することによって振れが生じなくなる原点
に戻り、次に、欠陥111が検出コイル2の左側に存在
することにより信号波形の右側のピーク点56の方向に
振れ、更に欠陥111が検出コイル2から遠ざかること
により振れが無くなる原点に帰るというように信号波形
が発生する。つまり、探傷子が検出コイル2と平行な方
向の欠陥111を横切るとき、原点を対象とする図3
(b)のような信号波形126が探傷器120の画面1
21上に現われる。
That is, when the flaw detector is scanned across the detection coil 2, as shown in FIG. 3B, the defect 111 approaches the detection coil 2 from the origin, which is in a sound state and in which no shake occurs. By doing so, the signal waveform swings in the direction of the peak point 55 on the left side of the signal waveform, and the defect 111 coincides with the detection coil 2 to return to the origin where no shake occurs, and then the defect 111 moves to the left side of the detection coil 2. When present, the signal waveform is generated such that it swings in the direction of the peak point 56 on the right side of the signal waveform, and when the defect 111 moves away from the detection coil 2, the defect returns to the origin where there is no vibration. That is, when the flaw detector traverses the defect 111 in the direction parallel to the detection coil 2, the target point of FIG.
The signal waveform 126 as shown in (b) is displayed on the screen 1 of the flaw detector 120.
Appears on 21.

【0026】以上の説明のように、この信号波形126
の方向は、他の条件が一定であるとき、探傷子が移動す
る方向と常に一定の関係がある。また、第2の検出コイ
ル3に平行な方向に欠陥がある場合についても、全く同
様であり、検出コイル3が該コイル3に平行な方向の欠
陥を横切って走査されるとき、図3(b)に示したと同
様な信号波形が発生する。
As described above, this signal waveform 126
The direction of has a constant relationship with the direction in which the flaw moves when other conditions are constant. The same applies to the case where there is a defect in the direction parallel to the second detection coil 3, and when the detection coil 3 is scanned across the defect in the direction parallel to the coil 3, FIG. A signal waveform similar to that shown in () is generated.

【0027】しかし、前述したように、検出コイル2に
誘起される電圧と検出コイル3に誘起される電圧は、互
いに減算されるため、検出コイル3が該コイル3と平行
な方向の欠陥を横切って走査されるときの信号波形は、
図4のように検出コイル2が該コイル2と平行な方向の
欠陥を横切って走査されるときの逆極性(反対の方向
に)に現われる。
However, as described above, since the voltage induced in the detection coil 2 and the voltage induced in the detection coil 3 are subtracted from each other, the detection coil 3 crosses a defect in a direction parallel to the coil 3. The signal waveform when scanned by
It appears in the opposite polarity (in the opposite direction) when the detection coil 2 is scanned across a defect in a direction parallel to the coil 2 as in FIG.

【0028】即ち、図4(a)に示すように検出コイル
2が該コイル2と平行な方向の欠陥を横切って走査され
た場合、信号波形61は信号の発生し始める方向62の
方向に現われる。また、図4(b)に示すように検出コ
イル3が該コイル3と平行な方向の欠陥を横切って走査
された場合、信号の発生し始める方向64の方向に信号
波形63が現われる。
That is, when the detection coil 2 is scanned across a defect in a direction parallel to the coil 2 as shown in FIG. 4A, a signal waveform 61 appears in a direction 62 in which a signal starts to be generated. . Further, as shown in FIG. 4B, when the detection coil 3 is scanned across a defect in a direction parallel to the coil 3, a signal waveform 63 appears in a direction 64 in which a signal starts to be generated.

【0029】このように本発明によれば、欠陥の方向に
よって得られる信号波形の方向が異なり、信号波形の方
向の差を見分けることによって、欠陥の方向を知ること
ができる。
As described above, according to the present invention, the direction of the signal waveform obtained differs depending on the direction of the defect, and the direction of the defect can be known by discriminating the difference in the direction of the signal waveform.

【0030】[0030]

【発明の効果】以上詳記したように本発明によれば、被
検体金属に存在する欠陥の方向を容易に感知することが
可能となり、次のステップで必要な修理等に対しての情
報が多くなり、修理を正確に行ない得ると共に、修理期
間を大幅に短縮することができる。
As described above in detail, according to the present invention, it becomes possible to easily detect the direction of the defect existing in the metal to be inspected, and the information for the repair necessary in the next step can be obtained. As a result, the number of repairs can be accurately performed, and the repair period can be significantly shortened.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る探傷子及び渦電流探
傷器の構成図。
FIG. 1 is a configuration diagram of a flaw detector and an eddy current flaw detector according to an embodiment of the present invention.

【図2】同実施形態における探傷子の作用を説明するた
めの図。
FIG. 2 is a view for explaining the operation of the flaw detector in the embodiment.

【図3】同実施形態における探傷子の信号波形を説明す
るための図。
FIG. 3 is an exemplary view for explaining a signal waveform of the flaw detector in the embodiment.

【図4】同実施形態における欠陥の方向と信号波形の方
向を説明するための図。
FIG. 4 is a view for explaining a direction of a defect and a direction of a signal waveform in the embodiment.

【図5】従来の探傷子及び渦電流探傷器を示す説明図。FIG. 5 is an explanatory view showing a conventional flaw detector and an eddy current flaw detector.

【図6】従来の探傷子及び渦電流探傷器の構成図。FIG. 6 is a configuration diagram of a conventional flaw detector and eddy current flaw detector.

【符号の説明】[Explanation of symbols]

2 第1の検出コイル 3 第2の検出コイル 52 信号波形 55 信号波形の左側のピーク点 56 信号波形の右側のピーク点 103 励磁コイル 110 被検体金属 125 欠陥が無い場合の信号波形 126 探傷子が欠陥を横切った場合の信号波形 120 探傷器 121 探傷器の画面 130 接続ケーブル 132 金属体中を流れる渦電流 133 渦電流が発生する磁界 2 1st detection coil 3 2nd detection coil 52 Signal waveform 55 Left peak point of signal waveform 56 Right peak point of signal waveform 103 Excitation coil 110 Specimen metal 125 Signal waveform when there is no defect 126 Signal waveform when a defect is crossed 120 Flaw detector 121 Flaw detector screen 130 Connection cable 132 Eddy current flowing in a metal body 133 Magnetic field generated by eddy current

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 渦電流探傷器からの信号により励磁され
る励磁コイルと、この励磁コイルの内側に直交して配置
される第1及び第2の検出コイルとを具備し、上記第1
及び第2の検出コイルが被検体金属の健全部に位置して
いるときは被検体金属に発生した渦電流による磁界を均
等に受け、上記第1及び第2の検出コイルが被検体金属
の欠陥上を走査したときは該欠陥の方向に対応して上記
第1あるいは第2の検出コイル誘起電圧が発生するよう
に構成したことを特徴とする渦電流探傷装置用探傷子。
1. An exciting coil that is excited by a signal from an eddy current flaw detector, and first and second detection coils that are arranged orthogonal to each other inside the exciting coil.
When the second detection coil is located in the sound part of the object metal, the magnetic field due to the eddy current generated in the object metal is evenly received, and the first and second detection coils are defective in the object metal. A flaw detector for an eddy current flaw detector, characterized in that, when scanning above, the first or second detection coil induced voltage is generated corresponding to the direction of the defect.
JP7335092A 1995-12-22 1995-12-22 Flaw detecting element for eddy current flaw detection device Pending JPH09178710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7335092A JPH09178710A (en) 1995-12-22 1995-12-22 Flaw detecting element for eddy current flaw detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7335092A JPH09178710A (en) 1995-12-22 1995-12-22 Flaw detecting element for eddy current flaw detection device

Publications (1)

Publication Number Publication Date
JPH09178710A true JPH09178710A (en) 1997-07-11

Family

ID=18284686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7335092A Pending JPH09178710A (en) 1995-12-22 1995-12-22 Flaw detecting element for eddy current flaw detection device

Country Status (1)

Country Link
JP (1) JPH09178710A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050234A (en) * 2001-08-07 2003-02-21 Marktec Corp Eddy-current flaw detection testing device
JP2003050233A (en) * 2001-08-07 2003-02-21 Marktec Corp Eddy-current flaw detection testing method and eddy- current flaw detection testing device
WO2006109382A1 (en) * 2005-03-14 2006-10-19 National University Corporation Okayama University Magnetic impedance measuring device
CN108120764A (en) * 2017-12-21 2018-06-05 爱德森(厦门)电子有限公司 A kind of orthogonal Eddy Current Testing Transducer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050234A (en) * 2001-08-07 2003-02-21 Marktec Corp Eddy-current flaw detection testing device
JP2003050233A (en) * 2001-08-07 2003-02-21 Marktec Corp Eddy-current flaw detection testing method and eddy- current flaw detection testing device
JP4681770B2 (en) * 2001-08-07 2011-05-11 マークテック株式会社 Eddy current testing equipment
WO2006109382A1 (en) * 2005-03-14 2006-10-19 National University Corporation Okayama University Magnetic impedance measuring device
US7759931B2 (en) 2005-03-14 2010-07-20 National University Corporation, Okayama University Device for measuring magnetic impedance
CN108120764A (en) * 2017-12-21 2018-06-05 爱德森(厦门)电子有限公司 A kind of orthogonal Eddy Current Testing Transducer

Similar Documents

Publication Publication Date Title
US4379261A (en) Rotating magnetic field device for detecting cracks in metal
JPH0854375A (en) Electromagnetic induction-type inspecting apparatus
KR100630005B1 (en) Apparatus for non-destructive inspection of broken metal line and the method thereof
WO2015155877A1 (en) Test probe, testing system, and testing method
JP3245057B2 (en) Eddy current flaw detector
US3895290A (en) Defect detection system using an AND gate to distinguish specific flaw parameters
CN113433212B (en) Uniform field excitation directional eddy current probe with high interference resistance and detection method
Bernieri et al. A measurement system based on magnetic sensors for nondestructive testing
JPH10197493A (en) Eddy-current flow detecting probe
JPH09178710A (en) Flaw detecting element for eddy current flaw detection device
JP2007163263A (en) Eddy current flaw detection sensor
JPH0815229A (en) High resolution eddy current flaw detector
JPH0599901A (en) Eddy-current flaw detecting apparatus
JP2575425Y2 (en) Eddy current flaw detector
RU2813477C1 (en) Eddy current transducer for flaw detection
JPS612065A (en) Flaw detector using eddy current
JP2594454Y2 (en) Direction-sensitive eddy current flaw detector
JP3145561B2 (en) Eddy current detector
JPH03105245A (en) Remote field type probe for eddy current flaw detection
JPS60125560A (en) Method for inspecting metal surface
JPH08261991A (en) Eddy current probe
JPS6027852A (en) Eddy-current flaw detector
JPH06347448A (en) Eddy current flaw detection probe
JP3648713B2 (en) Eddy current flaw detector
JPH112624A (en) Detecting device of abnormal article

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010306