JPH10197493A - Eddy-current flow detecting probe - Google Patents

Eddy-current flow detecting probe

Info

Publication number
JPH10197493A
JPH10197493A JP9004705A JP470597A JPH10197493A JP H10197493 A JPH10197493 A JP H10197493A JP 9004705 A JP9004705 A JP 9004705A JP 470597 A JP470597 A JP 470597A JP H10197493 A JPH10197493 A JP H10197493A
Authority
JP
Japan
Prior art keywords
coils
coil
detection
eddy current
flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9004705A
Other languages
Japanese (ja)
Inventor
Masaaki Kurokawa
政秋 黒川
Seiichi Kawanami
精一 川浪
Takeo Kamimura
武男 神村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9004705A priority Critical patent/JPH10197493A/en
Publication of JPH10197493A publication Critical patent/JPH10197493A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an eddy-current flow detecting probe which not only reduces a normal lift-off signal, but also an oblique lift-off signal. SOLUTION: An eddy-current flow detecting probe is composed of four detecting coils 1, an exciting coil 2, an oscillator 3, and a bridge circuit 4. The coils 1 are positioned to the apexes of a rhombus and, at the same time, each two diagonal coils 1 are Connected in opposite phases and, in addition, these two sets of coils are differentially connected to each other. The exciting coil 2 is constituted by combining coils which generate eddy currents obliquely flowing through an object to be tested near the coil centers of the two sets of detecting coils 1 with together. The oscillator 3 supplies an alternating current to the coil 2 and the bridge circuit 4 only fetches flaw signals from the differentially connected detecting coils 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、渦電流探傷試験時
におけるリフトオフノイズの低減と、きず検出信号の増
大を図った渦電流探傷プローブに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eddy current inspection probe for reducing lift-off noise in an eddy current inspection test and increasing a flaw detection signal.

【0002】[0002]

【従来の技術】従来の技術を図4に示す。渦電流探傷試
験は、鉄鋼・非鉄材料の製造時における検査および熱交
換器の細管などの各種プラントにおける保守検査等に広
く用いられており、探傷プローブはその探傷装置の性能
を決める重要な要素のーつである。
2. Description of the Related Art FIG. Eddy current testing is widely used for inspections during the production of steel and non-ferrous materials and for maintenance inspections in various plants such as heat exchanger tubes.Flaw detection probes are an important factor that determines the performance of the flaw detection equipment. It is one.

【0003】従来の渦電流探傷プローブの例を図4に示
す。従来の探傷プローブは、主にボビンコイルや、パン
ケーキコイルなどを用いており、検出方法としては、 (1)コイル自身のインピーダンス変化から、 きずの有無を調べるアブソリュート型(図4(a))
と、 二つのコイルの差動成分からきずの有無を調べるディ
ファレンシャル型(図4(b))に分けられる。 (2)さらにこれらは、 渦電流を発生させるための励磁と、発生した渦電流の
検出をかねて行う自己誘導型(図4の(a)−1、
(b)−1)と、 励磁用の一次コイルと検出用の二次コイルが分離され
ている相互誘導型(図4の(a)−2、(b)−2)に
分けられる。特にディファレンシャル型は、アブソリュ
ート型と比べて、平行なリフトオフ変化によるノイズに
も強い特徴をもつ。
FIG. 4 shows an example of a conventional eddy current flaw detection probe. Conventional flaw detection probes mainly use bobbin coils, pancake coils, and the like. The detection method is as follows: (1) Absolute type (Fig. 4 (a)) that checks for the presence or absence of flaws from the impedance change of the coil itself
And a differential type (FIG. 4B) for examining the presence or absence of a flaw from the differential components of the two coils. (2) In addition, these are self-induction types that perform both excitation for generating an eddy current and detection of the generated eddy current ((a) -1, FIG.
(B) -1), and a mutual induction type ((a) -2, (b) -2 in FIG. 4) in which a primary coil for excitation and a secondary coil for detection are separated. In particular, the differential type has a feature that is more resistant to noise due to parallel lift-off changes than the absolute type.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の技術に
は、次のような問題がある。 (1)上記従来の渦電流探傷プローブでは、特にアブソ
リュート型においてはリフトオフによりリフトオフ信号
が発生し、きず信号がこれに埋もれてしまい、きずの検
出性能を悪くするというような問題点があった。 (2)また、リフトオフに強いディファレンシャル型に
おいても、図5(a)に示すように探傷プローフに対し
て、試験体が料めになるリフトオフに対しては、二つの
コイルの試験体までの距離l1 、l2 に差が生じ、リフ
トオフ信号が発生して、きずの検出性能が悪くなるとい
う問題点があった。 本発明は、これらの問題を解決することができる渦電流
探傷プローブを提供することを目的とする。
However, the prior art has the following problems. (1) In the above-mentioned conventional eddy current flaw detection probe, particularly in the case of the absolute type, there is a problem that a lift-off signal is generated by lift-off, and the flaw signal is buried in the lift-off signal, thereby deteriorating the flaw detection performance. (2) Also in the differential type which is strong against lift-off, as shown in FIG. 5 (a), the distance between the test object of the two coils and the lift-off for which the test object is expensive as shown in FIG. There is a problem that a difference occurs between l 1 and l 2 , a lift-off signal is generated, and the flaw detection performance deteriorates. An object of the present invention is to provide an eddy current flaw detection probe that can solve these problems.

【0005】[0005]

【課題を解決するための手段】[Means for Solving the Problems]

(第1の手段)本発明に係る渦電流探傷プローブは、
(A)4個の検出コイル1と、(B)励磁コイル2と、
(C)発振器3と、(D)ブリッジ回路4とからなり、
(E)前記4個の検出コイルは、菱形の各頂点を中心と
するように配置するとともに、検出コイルの対角にある
2個を逆相接続し、さらに、これら2組のコイルを差動
接続し、(F)前記励磁コイルは、2組の検出コイルの
コイル中心近傍の試験体中を斜め方向に流れる渦電流を
発生させるコイルを組合わせることにより構成し、
(G)前記発振器3は、励磁コイル2に交流電流を供給
し、(H)前記ブリッジ回路4は、差動接続されている
検出コイルから、きず信号だけを取り出すことを特徴と
する。
(First Means) An eddy current flaw detection probe according to the present invention comprises:
(A) four detection coils 1, (B) excitation coil 2,
(C) An oscillator 3 and (D) a bridge circuit 4
(E) The four detection coils are arranged so as to be centered on the respective vertices of the rhombus, and two diagonally opposite detection coils are connected in anti-phase. (F) the excitation coil is configured by combining a coil that generates an eddy current that flows in an oblique direction in a test body near the coil center of the two detection coils;
(G) The oscillator 3 supplies an alternating current to the exciting coil 2, and (H) the bridge circuit 4 extracts only a flaw signal from the differentially connected detection coil.

【0006】すなわち、本発明は、上記問題点を解決す
るために、検出コイルとして4個のコイルを菱形の各頂
点を中心とするように配置して、対角にある2個を逆相
接続し、これら2組のコイルを差動接続し、励磁コイル
としては2組の検出コイルのコイル中心近傍の試験体中
を斜め方向に流れる渦電流を発生させるコイルを組合わ
せたことを特徴とする。
That is, in order to solve the above-mentioned problem, the present invention arranges four coils as detection coils so as to be centered on each vertex of a rhombus, and connects two diagonally opposite coils in opposite phase. The two sets of coils are differentially connected, and the exciting coil is a combination of coils for generating an eddy current that flows obliquely in a test body near the coil center of the two sets of detection coils. .

【0007】「コイルを組合わせる」とは、「検出コイ
ル」と「励磁コイル」を組合わせることをいう。したが
って、次のように作用する。
The term "combining coils" refers to combining "detection coils" and "excitation coils". Therefore, it operates as follows.

【0008】本発明の渦電流探傷プローブは上記のよう
に構成されているので、励磁コイルによって試験体に斜
め方向に渦電流が発生し、このときの渦電流の変化を磁
気的に結合している検出コイルによって検出する。
Since the eddy current flaw detection probe of the present invention is constructed as described above, an eddy current is generated obliquely in the test piece by the exciting coil, and the change of the eddy current at this time is magnetically coupled. Detected by the detection coil.

【0009】4個の検出コイルは対角同士の2個が逆相
接続され、さらにそれらが差動接続されているので、見
かけ上は2個のコイルが差動接続されている形となる。
これら差動接続された2組のコイルの検出中心は、どち
らも対角同士2個のコイルを結んだ線の中点となること
から、2組のコイルは同じ検出中心をもつ。
The four detection coils are connected in opposite phases at two diagonals and are connected differentially, so that apparently, the two coils are differentially connected.
Since the detection centers of these two sets of differentially connected coils are both the midpoints of the lines connecting the two coils diagonally, the two sets of coils have the same detection center.

【0010】このため、リフトオフの変化に対しては、
リフトオフがコイルに対して平行に変化した場合は、2
組のコイル間で完全にキヤンヤルされ、リフトオフがコ
イルに対して斜めに変化した場合でも、2組のコイルの
コイル中心が同じことから、リフトオフ信号が大幅に低
減される。
For this reason, with respect to a change in lift-off,
If the lift-off changes parallel to the coil, 2
The lift-off signal is greatly reduced even if the lift-off changes obliquely with respect to the coils, even if the lift-off signal changes completely with respect to the coils.

【0011】また、2組の検出コイルのコイル中心の近
傍の試験体中を渦電流が斜めに流れているため、きずに
より渦電流の乱れる割合も大きい。またその発生する位
置と4個の検出コイル間の距離が短くなるため、きずが
ある場合には、きずによる渦電流変化が作る交流磁場の
乱れを効率よく検出することができる。
Further, since the eddy current flows obliquely in the test body near the coil center of the two sets of detection coils, the turbulence of the eddy current due to the flaw is large. Further, since the distance between the position where the generation occurs and the four detection coils is reduced, if there is a flaw, the disturbance of the AC magnetic field caused by the eddy current change due to the flaw can be efficiently detected.

【0012】そのため、探傷プローブを走査したとき、
試験体のきず付近における交流磁場に乱れが生じるた
め、2組のコイルの鎖交磁束に差が生じて、きずの検出
が可能になる。
Therefore, when scanning the flaw detection probe,
Since the AC magnetic field is disturbed in the vicinity of the flaw of the test body, a difference occurs in the interlinkage magnetic flux between the two coils, and the flaw can be detected.

【0013】[0013]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(第1の実施の形態)本発明の第1の実施の形態を図1
〜図3、図5〜図6に示す。図1は、第1の実施の形態
に係る渦電流探傷プローブの構成を示す図。
(First Embodiment) FIG. 1 shows a first embodiment of the present invention.
3 and FIGS. 5 to 6. FIG. 1 is a diagram illustrating a configuration of an eddy current flaw detection probe according to the first embodiment.

【0014】図2は、第1の実施の形態の係る渦電流探
傷プローブの回路構成を示す図。図3は、渦電流探傷プ
ローブの励磁コイルの方式を示す図。図5は、斜めのリ
フトオフに対する従来技術と本発明の比較を示す図。
FIG. 2 is a diagram showing a circuit configuration of the eddy current inspection probe according to the first embodiment. FIG. 3 is a diagram showing a method of an exciting coil of the eddy current inspection probe. FIG. 5 is a diagram showing a comparison between the prior art and the present invention for oblique lift-off.

【0015】図6は、渦電流分布の従来技術と本発明の
比較を示す図である。図1の(A)、(B)に示すよう
に、1は、4個の検出コイルであり、菱形の各頂点にそ
の中心がくるように配置されている。その対角の2個は
逆相接続されており、さらにこれら2組が差動接続され
ている。
FIG. 6 is a diagram showing a comparison between the prior art of the eddy current distribution and the present invention. As shown in FIGS. 1A and 1B, reference numeral 1 denotes four detection coils, each of which is disposed so that its center is located at each vertex of the rhombus. Two of the diagonals are connected in reverse phase, and these two sets are differentially connected.

【0016】2は、励磁コイルであり、交流磁場を発生
し、試験体に斜め方向に渦電流を発生させるものであ
る。「斜め方向」とは、菱形の一方の対角線に対して角
度を有すると言う意味である。
Reference numeral 2 denotes an exciting coil which generates an alternating magnetic field and generates an eddy current in a test body in an oblique direction. "Diagonal direction" means having an angle with respect to one diagonal of the diamond.

【0017】「斜め方向に渦電流を発生させる励磁コイ
ル」としては、図3に示すように、 (1)励磁コイル方式1(平面型) (2)励磁コイル方式2(矩形型) (3)励磁コイル方式3(円形型) がある。
As shown in FIG. 3, the "exciting coil for generating an eddy current in an oblique direction" is as follows: (1) Exciting coil system 1 (planar type) (2) Exciting coil system 2 (rectangular type) (3) Excitation coil system 3 (circular type) is available.

【0018】各方式の特徴を示すと、 (1)励磁コイル方式1(平面型)は、高さが小さいが
幅が大きい。 (2)励磁コイル方式2(矩形型)は、高さが大きいが
幅が小さい。
The features of each system are as follows: (1) Excitation coil system 1 (flat type) has a small height but a large width. (2) Excitation coil system 2 (rectangular type) has a large height but a small width.

【0019】(3)励磁コイル方式3(円形型)は、高
さが大きいが幅が小さい。 しかし、各方式の性能は、同等である。そのため、測定
対象により方式を選定する。
(3) Excitation coil system 3 (circular type) has a large height but a small width. However, the performance of each method is equivalent. Therefore, the method is selected according to the measurement target.

【0020】3は、発信器で、励磁コイルに交流電流を
与える。4は、ブリッジ回路であり、差動接続されてい
る検出コイルから、きず信号だけを取り出す。
Reference numeral 3 denotes a transmitter which supplies an alternating current to the exciting coil. Reference numeral 4 denotes a bridge circuit which extracts only a flaw signal from the differentially connected detection coil.

【0021】10は、試験体、11は、試験体に生じた
きず、12は、試験体中に発生した渦電流である。
Reference numeral 10 denotes a test body, 11 denotes a flaw generated in the test body, and 12 denotes an eddy current generated in the test body.

【0022】図1の(C)、(D)に示すように、励磁
コイル2により試験体中に「斜め方向に発生した渦電
流」は、(a)きずがないときは、乱れはなく、検出コ
イルに生じる渦電流からの鎖交磁束に差はなく出力は0
となる。(b)しかし、きずがある場合は、渦電流に乱
れが生じ、このときの渦電流の乱れにより検出コイルの
鎖交磁束が各コイル間で異なるのできず信号として検出
される。
As shown in FIGS. 1C and 1D, the "eddy current generated in the oblique direction" in the test piece by the exciting coil 2 is not disturbed when (a) there is no flaw. There is no difference in the linkage flux from the eddy current generated in the detection coil, and the output is 0
Becomes (B) However, if there is a flaw, the eddy current is disturbed, and the disturbance of the eddy current causes the interlinkage magnetic flux of the detection coil to be different between the coils, and is detected as a signal.

【0023】図2に本発明装置の回路構成を示す。本発
明装置では検出コイルとして4個のコイルを用い、対角
にある2個を逆相接続し、これら2組のコイルを差動接
続する構成となっている。
FIG. 2 shows a circuit configuration of the device of the present invention. In the device of the present invention, four coils are used as detection coils, two diagonally opposite coils are connected in reverse phase, and these two coils are differentially connected.

【0024】次にリフトオフのある場合を図5により説
明する。 (1)従来装置による探傷の場合には、斜めリフトオフ
が発生すると、試験体と、検出コイルの位置関係が、図
5(a)に示すように検出コイルと試験体との距離がl
1 、l2 となり、それぞれ異なる。
Next, a case where there is a lift-off will be described with reference to FIG. (1) In the case of the flaw detection by the conventional apparatus, when the oblique lift-off occurs, the positional relationship between the test object and the detection coil is changed as shown in FIG.
1 and l 2 , each being different.

【0025】そのため大きなリフトオフ信号が発生す
る。 (2)一方、本発明装置の場合には、図5(b)に示す
ように、2組の検出コイルの検出中心からみた試験体ま
での距離lは常に等しく、(a)平行なリフトオフ変化
に対しては、リフトオフ信号が完全にキャンセルされ、
(b)斜めのリフトオフに対しても、リフトオフ信号が
大幅に低減される。
As a result, a large lift-off signal is generated. (2) On the other hand, in the case of the apparatus of the present invention, as shown in FIG. 5B, the distance l from the detection center of the two detection coils to the test object is always equal, and (a) the parallel lift-off change , The lift-off signal is completely cancelled,
(B) The lift-off signal is greatly reduced even for the oblique lift-off.

【0026】[0026]

【発明の効果】本発明は前述のように構成されているの
で、以下に記載するような効果を奏する。 (1)本発明によれば、通常のリフトオフ信号の低減だ
けでなく、斜めのリフトオフ信号に対しても低減が図ら
れる。 (2)さらに、図6(a)に示す従来の励磁コイルに比
較して、本発明による斜めの渦電流を発生させる励磁コ
イル(図6(b))の場合は、きずにより乱れる渦電流
の割合も大きく、また、渦電流の乱れる位置と検出コイ
ル間の距離が短くなるため、きずがある場合にはきずに
よる渦電成変化が作る交流磁場の乱れの減衰が小さくな
る。 (3)そのため、探傷プローブを走査したとき、試験体
のきず付近におけさらに渦電流が、きず信号が増大する
ため、きず信号がリフトオフ信号に埋もれることなく、
きずに対する検出性能が大幅に向上することができる。 (4)また、管の探傷に対しても検出性能の向上を図る
ことができる。
Since the present invention is configured as described above, it has the following effects. (1) According to the present invention, it is possible to reduce not only a normal lift-off signal but also an oblique lift-off signal. (2) Compared with the conventional excitation coil shown in FIG. 6 (a), the excitation coil (FIG. 6 (b)) for generating an oblique eddy current according to the present invention has an eddy current which is disturbed by a flaw. Since the ratio is large and the distance between the position where the eddy current is disturbed and the detection coil is short, if there is a flaw, the decay of the AC magnetic field disturbance caused by the eddy current change due to the flaw is reduced. (3) Therefore, when the flaw detection probe is scanned, the eddy current further increases near the flaw of the test object, and the flaw signal increases, so that the flaw signal is not buried in the lift-off signal.
The detection performance for flaws can be greatly improved. (4) Further, the detection performance can be improved even for the flaw detection of the pipe.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に係る渦電流探傷プ
ローブの構成を示す図。
FIG. 1 is a diagram showing a configuration of an eddy current inspection probe according to a first embodiment of the present invention.

【図2】本発明の第1の実施の形態の係る渦電流探傷プ
ローブの回路構成を示す図。
FIG. 2 is a diagram showing a circuit configuration of the eddy current inspection probe according to the first embodiment of the present invention.

【図3】第1の実施の形態の係る渦電流探傷プローブの
励磁コイルの方式を示す図。
FIG. 3 is a diagram showing a method of an exciting coil of the eddy current inspection probe according to the first embodiment.

【図4】従来の渦電流探傷プローブを示す図。FIG. 4 is a diagram showing a conventional eddy current flaw detection probe.

【図5】斜めのリフトオフに対する従来技術と本発明の
比較を示す図。
FIG. 5 is a diagram showing a comparison between the prior art and the present invention for oblique lift-off.

【図6】渦電流分布の従来技術と本発明の比較を示す
図。
FIG. 6 is a diagram showing a comparison between the prior art of the eddy current distribution and the present invention.

【符号の説明】[Explanation of symbols]

1…検出コイル 2…励磁コイル 3…発振器 4…ブリッジ回路 5…プローブ 10…試験体 11…きず 12…渦電流 REFERENCE SIGNS LIST 1 detection coil 2 excitation coil 3 oscillator 4 bridge circuit 5 probe 10 test specimen 11 flaw 12 eddy current

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】(A)4個の検出コイル(1)と、(B)
励磁コイル(2)と、(C)発振器(3)と、(D)ブ
リッジ回路(4)とからなり、(E)前記4個の検出コ
イル(1)は、菱形の各頂点を中心とするように配置す
るとともに、検出コイルの対角にある2個を逆相接続
し、さらに、これら2組のコイルを差動接続し、(F)
前記励磁コイル(2)は、2組の検出コイルのコイル中
心近傍の試験体中を斜め方向に流れる渦電流を発生させ
るコイルを組合わせることにより構成し、(G)前記発
振器(3)は、励磁コイル(2)に交流電流を供給し、
(H)前記ブリッジ回路(4)は、差動接続されている
検出コイルから、きず信号だけを取り出すことを特徴と
する渦電流探傷プローブ。
(A) four detection coils (1); and (B)
It comprises an exciting coil (2), (C) an oscillator (3), and (D) a bridge circuit (4). (E) The four detection coils (1) are centered on each vertex of a diamond. And the two coils on opposite sides of the detection coil are connected in anti-phase, and the two coils are connected differentially.
The excitation coil (2) is constituted by combining coils for generating an eddy current that flows in an oblique direction in a test body near the center of the two detection coils, and (G) the oscillator (3) includes: Supplying an alternating current to the exciting coil (2),
(H) The eddy current inspection probe, wherein the bridge circuit (4) extracts only a flaw signal from the differentially connected detection coil.
JP9004705A 1997-01-14 1997-01-14 Eddy-current flow detecting probe Pending JPH10197493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9004705A JPH10197493A (en) 1997-01-14 1997-01-14 Eddy-current flow detecting probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9004705A JPH10197493A (en) 1997-01-14 1997-01-14 Eddy-current flow detecting probe

Publications (1)

Publication Number Publication Date
JPH10197493A true JPH10197493A (en) 1998-07-31

Family

ID=11591306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9004705A Pending JPH10197493A (en) 1997-01-14 1997-01-14 Eddy-current flow detecting probe

Country Status (1)

Country Link
JP (1) JPH10197493A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000008458A1 (en) * 1998-08-06 2000-02-17 Mitsubishi Heavy Industries, Ltd. Eddy-current flaw detector probe
WO2002097425A1 (en) * 2001-05-29 2002-12-05 Nihon University Mutual-induction insertion probe
JP2004507736A (en) * 2000-08-24 2004-03-11 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Detection of abnormalities in conductive materials
WO2010134510A1 (en) * 2009-05-22 2010-11-25 住友金属工業株式会社 Rotating eddy current test probe
JP2011064590A (en) * 2009-09-17 2011-03-31 Ebara Corp Eddy current sensor, polishing apparatus, plating apparatus, polishing method, plating method
WO2013089205A1 (en) * 2011-12-13 2013-06-20 株式会社アミテック Position detection device
US9274085B2 (en) 2012-03-19 2016-03-01 Hitachi, Ltd. Eddy current inspection device, eddy current inspection probe, and eddy current inspection method
JP2017053635A (en) * 2015-09-07 2017-03-16 株式会社Ihi Flaw detection probe and flaw detection method
CN107153094A (en) * 2017-05-24 2017-09-12 昆明理工大学 U-shaped two-stage differential eddy current probe, detecting system and detection method
CN107167516A (en) * 2017-05-24 2017-09-15 昆明理工大学 Double difference dynamic formula pulse eddy current probe unit, array probe and detection means
JP2020180959A (en) * 2019-04-24 2020-11-05 健二 飯島 Magnetic sensor element, magnetic detector, motor having magnetic sensor element, and device having magnetic detector

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6501267B1 (en) 1998-08-06 2002-12-31 Mitsubishi Heavy Industries, Ltd. Eddy-current flaw detector probe
WO2000008458A1 (en) * 1998-08-06 2000-02-17 Mitsubishi Heavy Industries, Ltd. Eddy-current flaw detector probe
JP4903349B2 (en) * 2000-08-24 2012-03-28 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Detection of abnormalities in objects made of conductive materials
JP2004507736A (en) * 2000-08-24 2004-03-11 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Detection of abnormalities in conductive materials
WO2002097425A1 (en) * 2001-05-29 2002-12-05 Nihon University Mutual-induction insertion probe
US8638091B2 (en) 2009-05-22 2014-01-28 Nippon Steel & Sumitomo Metal Corporation Rotary eddy current testing probe device
WO2010134510A1 (en) * 2009-05-22 2010-11-25 住友金属工業株式会社 Rotating eddy current test probe
JP2011064590A (en) * 2009-09-17 2011-03-31 Ebara Corp Eddy current sensor, polishing apparatus, plating apparatus, polishing method, plating method
WO2013089205A1 (en) * 2011-12-13 2013-06-20 株式会社アミテック Position detection device
US9683829B2 (en) 2011-12-13 2017-06-20 Amiteq Co., Ltd. Position detection device
US9274085B2 (en) 2012-03-19 2016-03-01 Hitachi, Ltd. Eddy current inspection device, eddy current inspection probe, and eddy current inspection method
JP2017053635A (en) * 2015-09-07 2017-03-16 株式会社Ihi Flaw detection probe and flaw detection method
CN107153094A (en) * 2017-05-24 2017-09-12 昆明理工大学 U-shaped two-stage differential eddy current probe, detecting system and detection method
CN107167516A (en) * 2017-05-24 2017-09-15 昆明理工大学 Double difference dynamic formula pulse eddy current probe unit, array probe and detection means
CN107167516B (en) * 2017-05-24 2023-09-26 昆明理工大学 Double differential pulse eddy current probe unit, array probe and detection device
JP2020180959A (en) * 2019-04-24 2020-11-05 健二 飯島 Magnetic sensor element, magnetic detector, motor having magnetic sensor element, and device having magnetic detector

Similar Documents

Publication Publication Date Title
Tsukada et al. Small eddy current testing sensor probe using a tunneling magnetoresistance sensor to detect cracks in steel structures
US4379261A (en) Rotating magnetic field device for detecting cracks in metal
JP3276295B2 (en) Eddy current flaw detector
CA2299373A1 (en) Eddy-current testing probe
JPH02147950A (en) Ac leakage magnetic flux detector for plane flaw
EP1674861A1 (en) Eddy current probe and inspection method comprising a pair of sense coils
JPH0854375A (en) Electromagnetic induction-type inspecting apparatus
JPH10197493A (en) Eddy-current flow detecting probe
JP3245057B2 (en) Eddy current flaw detector
JP3572452B2 (en) Eddy current probe
US4675605A (en) Eddy current probe and method for flaw detection in metals
JP3673392B2 (en) Electromagnetic ultrasonic flaw detector
JPH0933489A (en) Moving exciting coil type eddy current flaw detector employing squid flux meter
JPH06242076A (en) Electromagnetic flaw detecting equipment
JPH09507294A (en) Method and apparatus for magnetically testing metal products
JPH09274018A (en) Method and apparatus for detecting flaw of magnetic metal element
JPH09178710A (en) Flaw detecting element for eddy current flaw detection device
JP3268219B2 (en) Eddy current detector
JP3145561B2 (en) Eddy current detector
JPH06347448A (en) Eddy current flaw detection probe
JPS6011493Y2 (en) Electromagnetic induction detection device
JPH05203629A (en) Electromagnetic flaw detection and device
JPH0727868A (en) Device for detecting position of buried metallic object
JPH03105245A (en) Remote field type probe for eddy current flaw detection
JPH0599901A (en) Eddy-current flaw detecting apparatus

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030924