JP3145561B2 - Eddy current detector - Google Patents

Eddy current detector

Info

Publication number
JP3145561B2
JP3145561B2 JP08133494A JP8133494A JP3145561B2 JP 3145561 B2 JP3145561 B2 JP 3145561B2 JP 08133494 A JP08133494 A JP 08133494A JP 8133494 A JP8133494 A JP 8133494A JP 3145561 B2 JP3145561 B2 JP 3145561B2
Authority
JP
Japan
Prior art keywords
flaw detector
magnetic field
metal
coil
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08133494A
Other languages
Japanese (ja)
Other versions
JPH07286992A (en
Inventor
保夫 荒木
優 谷口
亮一 高取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP08133494A priority Critical patent/JP3145561B2/en
Publication of JPH07286992A publication Critical patent/JPH07286992A/en
Application granted granted Critical
Publication of JP3145561B2 publication Critical patent/JP3145561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、金属平板、金属細管等
の健全性を確認するための渦電流探傷装置における渦電
流探傷子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eddy current flaw detector in an eddy current flaw detector for checking the soundness of a flat metal plate, a thin metal tube or the like.

【0002】[0002]

【従来の技術】一般に渦電流探傷装置は、金属平板等の
金属物体中の欠陥の有無を判定し、その健全性の確認に
使用されている。従来の渦電流探傷装置は、図5に示す
ように励磁コイル101、検出コイル102、磁心10
3で構成される探傷子100、及び表示画面51を有す
る探傷器120からなり、探傷子100と探傷器120
との間を接続ケーブル130により接続している。
2. Description of the Related Art Generally, an eddy current flaw detector is used to determine the presence or absence of a defect in a metal object such as a metal flat plate and to confirm its soundness. As shown in FIG. 5, a conventional eddy current flaw detection apparatus includes an excitation coil 101, a detection coil 102,
3 and a flaw detector 120 having a display screen 51. The flaw detector 100 and the flaw detector 120
Are connected by a connection cable 130.

【0003】この渦電流探傷装置の電磁気的な接続状態
を図6に示す。図5及び図6において、110は対象と
する被検体金属、111は被検体金属中の表面欠陥、1
31は励磁コイル101が発生する磁界、132は励磁
コイル101が発生する磁界131によって生じ、被検
体である金属中を流れる渦電流、133は渦電流132
によって発生する磁界であり、141は探傷器120が
内蔵する交流の発振器である。
FIG. 6 shows an electromagnetically connected state of the eddy current flaw detector. 5 and 6, reference numeral 110 denotes a target metal to be inspected; 111, a surface defect in the metal to be inspected;
Numeral 31 denotes a magnetic field generated by the exciting coil 101, 132 denotes an eddy current generated by the magnetic field 131 generated by the exciting coil 101, and eddy currents 133 flowing through a metal as a subject.
141 is an AC oscillator built in the flaw detector 120.

【0004】励磁コイル101には、発振器141から
接続ケーブル130を通じて一定の大きさ(振幅)、一
定周波数の交流の電流が流される。コイル101に交流
の電流が流れることによって磁界131が発生し、検出
コイル102、及び被検体金属110と鎖交することに
より、被検体金属110に渦電流132が発生する。こ
の渦電流132は、被検体金属110が健全な場合(欠
陥が存在しない場合)、励磁コイル101と同心円状に
発生する。この渦電流132によっても磁界133が発
生し、励磁コイル101が発生する磁界131に影響す
る。
[0004] An alternating current of a fixed size (amplitude) and a fixed frequency is passed from the oscillator 141 through the connection cable 130 to the exciting coil 101. When an alternating current flows through the coil 101, a magnetic field 131 is generated, and the magnetic field 131 is linked to the detection coil 102 and the test object metal 110, thereby generating an eddy current 132 in the test object metal 110. The eddy current 132 is generated concentrically with the exciting coil 101 when the test object metal 110 is healthy (when there is no defect). The eddy current 132 also generates a magnetic field 133, which affects the magnetic field 131 generated by the exciting coil 101.

【0005】検出コイル102は、被検体金属110が
発生する磁界131が、渦電流132によって生じた磁
界133に影響されたものと鎖交し、検出コイル102
に交流の電圧が誘起する。励磁コイル101が発生する
磁界131は常に一定に保たれているため、検出コイル
102に誘起する電圧の変化分に着目することによっ
て、被検体金属110の異常(欠陥の存在等)を感知す
ることができる。
In the detection coil 102, the magnetic field 131 generated by the subject metal 110 interlinks with the magnetic field 133 generated by the eddy current 132, and the detection coil 102
, An AC voltage is induced. Since the magnetic field 131 generated by the exciting coil 101 is always kept constant, it is possible to detect an abnormality (existence of a defect or the like) of the subject metal 110 by paying attention to a change in the voltage induced in the detection coil 102. Can be.

【0006】探傷器120の内部には各種の信号処理回
路が存在しており、この信号処理回路によって、検出コ
イル102に誘起する電圧の変化だけを抽出して画面5
1に波形として表示する。
Various signal processing circuits exist inside the flaw detector 120. The signal processing circuit extracts only a change in the voltage induced in the detection coil 102, and the screen 5
1 is displayed as a waveform.

【0007】被検体金属110に欠陥111が存在する
場合、渦電流132の流れ方が欠陥のない場合に比べて
変化する。このとき渦電流132が発生する磁界133
も欠陥のない場合に比べて変化するため、検出コイル1
02に誘起する電圧も変化し、この電圧の変化を探傷器
120の画面51にて観察し、欠陥の有無を判断する。
When the defect 111 exists in the metal 110 to be inspected, the flow of the eddy current 132 changes as compared with the case where there is no defect. At this time, the magnetic field 133 generated by the eddy current 132
Also changes as compared with the case where there is no defect.
The voltage induced at 02 also changes, and this change in voltage is observed on the screen 51 of the flaw detector 120 to determine the presence or absence of a defect.

【0008】実際に適用する場合、探傷子100を被検
体金属110に沿って移動させながら、このときの探傷
器120の画面51の波形を観察する。図7は、各状態
での信号波形例を示したものである。図7の51は図5
と同様の探傷器120の画面であり、(a)は探傷子1
00を被検体表面で静止させたときの波形例121、
(b)は表面欠陥による波形例122、(c)は探傷子
100を走査したときに生じる探傷子100の浮き上が
りによる波形例123を示している。
In actual application, the waveform of the screen 51 of the flaw detector 120 at this time is observed while moving the flaw detector 100 along the test object metal 110. FIG. 7 shows an example of a signal waveform in each state. 7 in FIG.
7A shows a screen of the flaw detector 120 similar to FIG.
00 is a waveform example 121 when the object is stopped on the surface of the subject.
(B) shows a waveform example 122 due to a surface defect, and (c) shows a waveform example 123 caused by lifting of the flaw detector 100 generated when the flaw detector 100 is scanned.

【0009】図7(a)に示したように、探傷子100
を被検体金属110上に静止した場合、検出コイル10
2の誘起電圧には、全く変化が生じず、探傷器画面51
には点(スポット)しか現われない。探傷子100を表
面欠陥111の近くで走査したとき、その欠陥で渦電流
が乱され、検出コイル102の誘起電圧は、特有の性質
を持って変化するため、探傷器120の画面51には図
7(b)のような波形122が現われる。探傷子100
の浮き上がりによっても、励磁コイル101が発生する
磁界131が被検体金属110に作用する強さが変化
し、被検体金属中に発生する渦電流の強度等が変化し、
検出コイル102の誘起電圧が特有の性質を持って変化
するため、探傷器120の画面51には図7(c)のよ
うな波形が現われる。
[0009] As shown in FIG.
Is stationary on the object metal 110, the detection coil 10
No change occurs in the induced voltage of No. 2 and the flaw detector screen 51
Shows only spots. When the flaw detector 100 is scanned near the surface defect 111, the eddy current is disturbed by the defect, and the induced voltage of the detection coil 102 changes with a specific property. A waveform 122 as shown in FIG. 7 (b) appears. Flaw detector 100
The strength of the magnetic field 131 generated by the exciting coil 101 acting on the test metal 110 also changes due to the rise of the eddy current, and the intensity of the eddy current generated in the test metal changes.
Since the induced voltage of the detection coil 102 changes with a specific property, a waveform as shown in FIG. 7C appears on the screen 51 of the flaw detector 120.

【0010】このように、渦電流探傷では、探傷子10
0を被検体金属110の表面上で移動させながら、その
ときの探傷器120の画面51に現われる波形を観察す
ることによって、欠陥の有無等を判断でき、被検体金属
110の健全性を知ることができる。
As described above, in the eddy current inspection, the flaw detector 10
By observing the waveform that appears on the screen 51 of the flaw detector 120 at that time while moving 0 on the surface of the test object metal 110, it is possible to determine the presence or absence of a defect, etc., and to know the soundness of the test object metal 110. Can be.

【0011】[0011]

【発明が解決しようとする課題】ところが上記従来の探
傷子100を使用した場合、図8に示すように、励磁コ
イル101が発生するほとんど全ての磁界(被検体金属
110の表面部を通過する磁界135、及び被検体金属
110の裏面部を通過する磁界136等)、及びこれら
の磁界により発生する全ての渦電流の影響を検出コイル
102が受ける。図8に示すように被検体金属110の
表面部を通過する磁界135は、励磁コイル101から
出て励磁コイル101に帰って来る経路の差によって、
被検体金属110の裏面部を通過する磁界136よりも
強度が大きい。この結果、被検体金属110の表面近く
に存在する異常は、検出コイル102に大きく影響し、
被検体金属110の裏面部に存在する異常に対しては、
検出コイル102への影響が小さい。
However, when the above-described conventional flaw detector 100 is used, as shown in FIG. 8, almost all the magnetic fields generated by the exciting coil 101 (the magnetic fields passing through the surface of the test object metal 110). 135 and the magnetic field 136 passing through the back surface of the test object metal 110) and all the eddy currents generated by these magnetic fields. As shown in FIG. 8, the magnetic field 135 passing through the surface portion of the test object metal 110 is generated by the difference between the paths coming out of the exciting coil 101 and returning to the exciting coil 101.
The strength is higher than the magnetic field 136 passing through the back surface of the subject metal 110. As a result, the abnormality existing near the surface of the test object metal 110 greatly affects the detection coil 102,
For abnormalities existing on the back surface of the test object metal 110,
The influence on the detection coil 102 is small.

【0012】このため、探傷器120の画面51には、
裏面の欠陥112による波形124(図9参照)は小さ
くしか現われない。図7(c)に探傷子100の浮き上
がりによる波形を示したが、これは表面部を通過する磁
界の影響を大きく受けるため、探傷器120の画面51
に、これによる信号波形が大きく現われる。図9は、上
記探傷子による裏面欠陥による信号波形を示したもので
あるが、上述した理由により、裏面欠陥による波形12
4は、図7の表面欠陥による波形122、及び探傷子1
00の浮き上がりによる波形123よりも小さくなる。
被検体金属110の健全性は、表面、裏面にかかわら
ず、いずれの面に対しても、十分に確認されることが要
求される。
Therefore, the screen 51 of the flaw detector 120 includes
The waveform 124 (see FIG. 9) due to the back surface defect 112 appears only small. FIG. 7C shows a waveform due to the lifting of the flaw detector 100, which is greatly affected by the magnetic field passing through the surface portion.
In this case, a large signal waveform appears. FIG. 9 shows a signal waveform due to a back surface defect caused by the flaw detector.
4 is a waveform 122 due to the surface defect in FIG.
00 becomes smaller than the waveform 123 due to the floating.
It is required that the soundness of the test metal 110 be sufficiently confirmed on any surface regardless of the front surface or the rear surface.

【0013】実際の探傷では、探傷子100の走査中
に、探傷子100の浮き上がりがよく発生し、これによ
る信号波形がよく発生する。この探傷子の浮き上がり等
による信号波形と分離して検出する必要がある。この点
から、上記従来の渦電流探傷装では、被検体裏面の異常
に対する検出感度が、被検体表面よりも低下するという
問題があった。
In actual flaw detection, during the scanning of the flaw detector 100, the lift of the flaw detector 100 often occurs, which often causes a signal waveform to be generated. It is necessary to detect the signal waveform separately from the signal waveform due to the lifting of the flaw detector. From this point, the above-mentioned conventional eddy current flaw detector has a problem that the detection sensitivity to the abnormality on the back surface of the subject is lower than that of the front surface of the subject.

【0014】本発明は上記実情に鑑みてなされたもの
で、励磁コイルの内部に検出コイルを設け、検出コイル
の位置を適切にすることによって、被検体金属の裏面部
と作用する磁界によってのみ、検出コイルが影響される
ように配慮し、裏面部に存在する欠陥等の異常に対する
検出感度を相対的に向上し得る渦電流探傷子を提供する
ことを目的とする。
The present invention has been made in view of the above circumstances. By providing a detection coil inside an excitation coil and arranging the position of the detection coil appropriately, only a magnetic field acting on the back surface of the subject metal can be used. It is an object of the present invention to provide an eddy current flaw detector capable of relatively improving the detection sensitivity to an abnormality such as a defect existing on the back surface while taking care that the detection coil is affected.

【0015】[0015]

【課題を解決するための手段】本発明に係る渦電流探傷
子は、被検体金属の表面に対して直交する方向に巻回さ
れ、上記被検体金属に対する磁界を発生する励磁コイル
と、この励磁コイルの内側部に配置され、該励磁コイル
と同方向に巻回されて上記被検体金属による磁界の変化
を検出する検出コイルとを備え、上記検出コイルは、
記励磁コイルを被検体金属の表面上に位置させた際に、
上記励磁コイルが発生する磁界のうちの被検体金属内
表面部を通過する磁界の変化よりも裏面部を通過する
界の変化を強く検出できる位置に配置したことを特徴と
する。
An eddy current flaw detector according to the present invention is wound in a direction perpendicular to the surface of a test object metal.
Is, an exciting coil for generating a magnetic field to said subject a metal, is disposed inside portion of the exciting coil, the exciting coil
And wound in the same direction and a detection coil for detecting a change in magnetic field due to the subject metal, the detection coils, on
When the excitation coil is positioned on the surface of the test object metal,
Of the magnetic field generated by the excitation coil ,
It is characterized in that it is arranged at a position where a change in the magnetic field passing through the back surface can be detected more strongly than a change in the magnetic field passing through the front surface .

【0016】[0016]

【作用】本発明による探傷子は、上記のように構成され
ているので、励磁コイルが発生する磁界のうち、被検体
金属の表面部に作用する磁界の影響を検出コイルがほと
んど受けず、被検体金属の裏面部に作用する磁界の変化
のみに、検出コイルが影響され、被検体金属の裏面部に
存在する欠陥等の異常による信号が相対的に大きく現わ
れる。従って、探傷子の走査中に生じる探傷子の浮き上
がりによる信号波形が相対的に小さくなり、被検体裏面
部の欠陥に対する検出感度を向上できることになる。
Since the flaw detector according to the present invention is constructed as described above, of the magnetic field generated by the excitation coil, the detection coil is hardly affected by the magnetic field acting on the surface of the test object metal. The detection coil is affected only by a change in the magnetic field acting on the back surface of the sample metal, and a relatively large signal due to an abnormality such as a defect existing on the back surface of the sample metal appears. Accordingly, the signal waveform due to the lifting of the flaw detector during the scanning of the flaw detector becomes relatively small, and the detection sensitivity to the defect on the back surface of the subject can be improved.

【0017】[0017]

【実施例】以下、図面を参照して本発明の一実施例を説
明する。本発明の一実施例に係る渦電流探傷子を図1、
図2、図3及び図4により説明する。図1は本発明の一
実施例に係る探傷子10のコイル形状を示したもので、
例えば方形状に形成した励磁コイル01の内側の中心近
くに方形状に形成した検出コイル02を配置している。
この検出コイル02の位置は、良好な欠陥検出性が得ら
れるように調整される。上記励磁コイル01及び検出コ
イル02は、図5の場合と同様に接続ケーブル130を
介して探傷器に接続される。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows an eddy current flaw detector according to one embodiment of the present invention.
This will be described with reference to FIGS. FIG. 1 shows a coil shape of a flaw detector 10 according to one embodiment of the present invention.
For example, a square-shaped detection coil 02 is arranged near the center inside the excitation coil 01 formed in a square shape.
The position of the detection coil 02 is adjusted so that good defect detection can be obtained. The excitation coil 01 and the detection coil 02 are connected to a flaw detector via a connection cable 130 as in the case of FIG.

【0018】上記励磁コイル01及び検出コイル02の
基本的な動作は、従来の探傷子と同様であり、励磁コイ
ル01にて磁界を発生し、検出コイル02により、被検
体金属110中の渦電流により影響を受けた磁界を検出
して、電圧を誘起する。また、図中の112は、被検体
金属110中のの裏面欠陥である。
The basic operation of the excitation coil 01 and the detection coil 02 is the same as that of a conventional flaw detector. A magnetic field is generated by the excitation coil 01, and the eddy current in the test object metal 110 is generated by the detection coil 02. To detect the magnetic field affected by the above, and induce a voltage. Reference numeral 112 in the drawing denotes a back surface defect in the test object metal 110.

【0019】図2は、上記探傷子10による磁界の発
生、利用の状態を示したものである。図2の11は励磁
コイル01により発生した被検体金属110の表面部を
通過する磁界であり、12は被検体金属110の裏面部
を通過する磁界である。
FIG. 2 shows a state of generation and use of a magnetic field by the flaw detector 10. In FIG. 2, reference numeral 11 denotes a magnetic field generated by the exciting coil 01 and passing through the front surface of the test metal 110, and reference numeral 12 denotes a magnetic field passing through the rear surface of the test metal 110.

【0020】図2に示す励磁コイル01と検出コイル0
2の配置において、一般的に検出コイル02が誘起する
電圧は、検出コイル02の内部を通過する(検出コイル
02と鎖交する)磁界にのみ影響され、検出コイル02
の外部を通過する磁界には影響されない。このため検出
コイル02の誘起電圧は、被検体金属110の表面部を
通過する磁界11の影響を受けず、被検体金属110の
裏面部を通過する磁界12の影響だけを受ける。
The excitation coil 01 and the detection coil 0 shown in FIG.
2, the voltage induced by the detection coil 02 is generally affected only by a magnetic field passing through the detection coil 02 (linking with the detection coil 02).
It is not affected by the magnetic field passing outside. For this reason, the induced voltage of the detection coil 02 is not affected by the magnetic field 11 passing through the front surface of the subject metal 110, but is only affected by the magnetic field 12 passing through the back surface of the subject metal 110.

【0021】コイルが発生する磁界は、前述したよう
に、短い経路を通る磁界は強く、長い経路を通る磁界は
弱い。図2では、被検体金属110の表面部を通過する
磁界11は、被検体金属110の裏面を通過する磁界1
2よりも強い。この被検体金属110の表面部を通過す
る強い磁界11による影響を検出コイル02が受けない
ようにすることによって、表面部の欠陥による影響(信
号波形)、及び探傷子10の浮き上がりによる影響(信
号波形)が小さくなる。
As described above, the magnetic field generated by the coil is such that the magnetic field passing through a short path is strong and the magnetic field passing through a long path is weak. In FIG. 2, the magnetic field 11 passing through the front surface of the subject metal 110 is the magnetic field 1 passing through the back surface of the subject metal 110.
Stronger than 2. By preventing the detection coil 02 from being affected by the strong magnetic field 11 passing through the surface of the test object metal 110, the influence (signal waveform) due to the surface defect and the effect due to the lifting of the flaw detector 10 (signal). Waveform) becomes smaller.

【0022】図3及び図4は、この各要因による、信号
波形例(探傷器の画面51)を示したものである。図3
において、(a)の21は探傷子10が静止したときの
信号波形例、(b)の22は表面欠陥による信号波形
例、(c)の23は探傷子10の浮き上がりによる信号
波形例である。図3のように、本発明の探傷子10で
は、検出コイル02の誘起する電圧が、被検体金属11
0の表面部を通過する磁界11の影響を受けず、被検体
金属110の表面部に起因する要因に対しては、その信
号波形が小さくなり(検出感度が低下し)、表面欠陥に
よる波形22、及び探傷子10の浮き上がりによる波形
23は、従来の探傷子よりも小さく現われる(従来の探
傷子の波形例:図7参照)。一方、被検体金属110の
裏面部の欠陥による信号波形例を図4に示した。図4の
24は被検体金属110の裏面欠陥による波形例であ
り、従来の探傷子による裏面欠陥による波形例124と
ほぼ同様の大きさで探傷器画面51に現われる。
FIGS. 3 and 4 show examples of signal waveforms (the screen 51 of the flaw detector) due to these factors. FIG.
In (a), 21 is a signal waveform example when the flaw detector 10 is at rest, (b) 22 is a signal waveform example due to a surface defect, and (c) 23 is a signal waveform example when the flaw detector 10 rises. . As shown in FIG. 3, in the flaw detector 10 of the present invention, the voltage induced by the detection coil 02 is
0, which is not affected by the magnetic field 11 passing through the surface of the sample metal 110, the signal waveform of the factor due to the surface of the test object metal 110 is reduced (detection sensitivity is reduced), and the waveform 22 due to surface defects is reduced. , And the waveform 23 caused by the lifting of the flaw detector 10 appears smaller than the conventional flaw detector (example of waveform of the conventional flaw detector: see FIG. 7). On the other hand, FIG. 4 shows an example of a signal waveform due to a defect on the back surface of the test metal 110. In FIG. 4, reference numeral 24 denotes an example of a waveform due to a back surface defect of the test object metal 110, which appears on the flaw detector screen 51 with substantially the same size as a waveform example 124 due to a back surface defect by a conventional flaw detector.

【0023】実際の探傷で、探傷子を走査するとき、探
傷子の浮き上がりが生じることが多く。探傷子の浮き上
がりによる信号波形は、常に発生すると考えられる。こ
の探傷子の浮き上がりによる信号波形の中から欠陥によ
る信号を抽出するのが実用上困難であることが多く、実
際の探傷ではこの点で苦労を併うことが多い。
When scanning a flaw detector in actual flaw detection, the flaw detector often rises. It is considered that the signal waveform due to the lifting of the flaw detector always occurs. It is often practically difficult to extract a signal due to a defect from a signal waveform caused by the lifting of the flaw detector, and in actual flaw detection, it is often difficult in this respect.

【0024】本発明による探傷子10では、被検体金属
110の表面部に起因する信号波形(表面欠陥による信
号波形、及び探傷子の浮き上がりによる信号波形等)が
小さくなり、裏面欠陥による信号波形をより明確に観察
でき、裏面欠陥に対する検出感度を向上することができ
る。なお、上記実施例では、金属平板における欠陥を検
出する場合について説明したが、その他、金属細管に対
しても同様にして欠陥を検出し得るものである。
In the flaw detector 10 according to the present invention, a signal waveform (a signal waveform due to a surface defect, a signal waveform due to a lift of the flaw detector, etc.) caused by the surface portion of the subject metal 110 is reduced, and a signal waveform due to a back surface defect is reduced. Observation can be made more clearly, and detection sensitivity to a back surface defect can be improved. In the above-described embodiment, the case of detecting a defect in a metal flat plate has been described. However, a defect can be similarly detected in a thin metal tube.

【0025】[0025]

【発明の効果】以上詳記したように本発明によれば、励
磁コイルの内部に検出コイルを設け、この検出コイルの
位置を適切に配慮することによって、被検体金属の表面
(探傷子配置側面)部に起因する信号波形の振幅を抑
え、一般的に検出が困難な被検体金属の裏面(探傷子配
置の反対面)に存在する欠陥等、異常に対する検出感度
を大幅に改善することができる。
As described above in detail, according to the present invention, the detection coil is provided inside the excitation coil, and the position of the detection coil is appropriately considered so that the surface of the metal to be inspected (the side face on which the flaw detector is arranged) is provided. The amplitude of the signal waveform caused by the portion) can be suppressed, and the detection sensitivity to an abnormality such as a defect existing on the back surface of the test metal that is generally difficult to detect (opposite the flaw detector) can be greatly improved. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る探傷子のコイル形状を
示す斜視図。
FIG. 1 is a perspective view showing a coil shape of a flaw detector according to one embodiment of the present invention.

【図2】本発明の探傷子による磁界の説明図。FIG. 2 is an explanatory diagram of a magnetic field by the flaw detector of the present invention.

【図3】本発明の探傷子による各要因に対する信号波形
例を示す図。
FIG. 3 is a diagram showing an example of a signal waveform for each factor by the flaw detector of the present invention.

【図4】本発明の探傷子による裏面欠陥による信号波形
例を示す図。
FIG. 4 is a diagram showing an example of a signal waveform due to a back surface defect by the flaw detector of the present invention.

【図5】従来の渦電流探傷装置を示す図。FIG. 5 is a diagram showing a conventional eddy current flaw detector.

【図6】従来の探傷子の欠陥検出の原理的な説明図。FIG. 6 is a view for explaining the principle of detection of a defect of a conventional flaw detector.

【図7】従来の探傷子による各要因に対する信号波形例
を示す図。
FIG. 7 is a diagram showing an example of a signal waveform for each factor by a conventional flaw detector.

【図8】従来の探傷子による磁界の説明図。FIG. 8 is an explanatory diagram of a magnetic field by a conventional flaw detector.

【図9】従来の探傷子による裏面欠陥による信号波形例
を示す図。
FIG. 9 is a diagram showing an example of a signal waveform due to a back surface defect by a conventional flaw detector.

【符号の説明】[Explanation of symbols]

01 励磁コイル 02 検出コイル 10 探傷子 11 被検体金属の表面部を通過する磁界 12 被検体金属の裏面部を通過する磁界 21 探傷子が静止したときの信号波形 22 表面欠陥による信号波形 23 探傷子の浮き上がりによる信号波形 24 裏面欠陥による信号波形 51 探傷器の画面 110 被検体金属 112 被検体金属中の裏面欠陥 REFERENCE SIGNS LIST 01 excitation coil 02 detection coil 10 flaw detector 11 magnetic field passing through surface of test metal 12 magnetic field passing through back face of test metal 21 signal waveform when flaw detector is stationary 22 signal waveform due to surface defect 23 flaw detector 24 Signal Waveform Due to Back Surface Defects 51 Screen of Flaw Detector 110 Subject Metal 112 Back Surface Defect in Test Metal

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 実開 昭61−94760(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01N 27/72 - 27/90 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References Japanese Utility Model Showa 61-94760 (JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) G01N 27/72-27/90

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被検体金属の表面に対して直交する方向
に巻回され、上記被検体金属に対する磁界を発生する励
磁コイルと、この励磁コイルの内側部に配置され、該励
磁コイルと同方向に巻回されて上記被検体金属による磁
界の変化を検出する検出コイルとを備え、上記検出コイ
ルは、上記励磁コイルを被検体金属の表面上に位置させ
た際に、上記励磁コイルが発生する磁界のうちの被検体
金属内の表面部を通過する磁界の変化よりも裏面部を通
過する磁界の変化を強く検出できる位置に配置したこと
を特徴とする渦電流探傷子。
1. A direction orthogonal to a surface of a test object metal.
Wound around the, an exciting coil for generating a magnetic field to said subject a metal, is disposed inside portion of the exciting coil, 該励
A detection coil wound in the same direction as the magnetic coil to detect a change in the magnetic field due to the test object metal, wherein the detection coil positions the excitation coil on the surface of the test object metal.
When the, through the back surface than the change in the magnetic field passing through the surface of the subject in the metal of the magnetic field that the exciting coil generates
An eddy current flaw detector arranged at a position capable of strongly detecting a change in a passing magnetic field.
JP08133494A 1994-04-20 1994-04-20 Eddy current detector Expired - Fee Related JP3145561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08133494A JP3145561B2 (en) 1994-04-20 1994-04-20 Eddy current detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08133494A JP3145561B2 (en) 1994-04-20 1994-04-20 Eddy current detector

Publications (2)

Publication Number Publication Date
JPH07286992A JPH07286992A (en) 1995-10-31
JP3145561B2 true JP3145561B2 (en) 2001-03-12

Family

ID=13743487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08133494A Expired - Fee Related JP3145561B2 (en) 1994-04-20 1994-04-20 Eddy current detector

Country Status (1)

Country Link
JP (1) JP3145561B2 (en)

Also Published As

Publication number Publication date
JPH07286992A (en) 1995-10-31

Similar Documents

Publication Publication Date Title
Tsukada et al. Small eddy current testing sensor probe using a tunneling magnetoresistance sensor to detect cracks in steel structures
US6636037B1 (en) Super sensitive eddy-current electromagnetic probe system and method for inspecting anomalies in conducting plates
US9453817B2 (en) Nondestructive inspection device using alternating magnetic field, and nondestructive inspection method
EP1674861A1 (en) Eddy current probe and inspection method comprising a pair of sense coils
JP2008032575A (en) Eddy current measuring probe and flaw detection device using it
Wincheski et al. Self-nulling eddy current probe for surface and subsurface flaw detection
JPH10197493A (en) Eddy-current flow detecting probe
JP3245057B2 (en) Eddy current flaw detector
US20060049830A1 (en) Magnetic sensor for detecting location of short circuit between lead wires of high-density micro-patterns
JP3572452B2 (en) Eddy current probe
JP3145561B2 (en) Eddy current detector
JP3979606B2 (en) Eddy current flaw detection probe and eddy current flaw detection device using the probe
WO2006113504A2 (en) Near fieldtm and combination near fieldtm - remote field electromagnetic testing (et) probes for inspecting ferromagnetic pipes and tubes such as those used in heat exchangers
JPH06242076A (en) Electromagnetic flaw detecting equipment
JPH09507294A (en) Method and apparatus for magnetically testing metal products
JPH0815229A (en) High resolution eddy current flaw detector
JP2575425Y2 (en) Eddy current flaw detector
JPH05203629A (en) Electromagnetic flaw detection and device
JP2606043Y2 (en) Eddy current flaw detector
JPH09178710A (en) Flaw detecting element for eddy current flaw detection device
JP2594454Y2 (en) Direction-sensitive eddy current flaw detector
Hayashi et al. Magnetic image detection of the stainless-steel welding part inside a multi-layered tube structure
JPS62232558A (en) Method for inspecting welded part by eddy current flaw detection
JPH04268449A (en) Electromagnetic flaw detection
JPH08211025A (en) Eddy current flaw detector

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001205

LAPS Cancellation because of no payment of annual fees