JPH04268449A - Electromagnetic flaw detection - Google Patents

Electromagnetic flaw detection

Info

Publication number
JPH04268449A
JPH04268449A JP2867891A JP2867891A JPH04268449A JP H04268449 A JPH04268449 A JP H04268449A JP 2867891 A JP2867891 A JP 2867891A JP 2867891 A JP2867891 A JP 2867891A JP H04268449 A JPH04268449 A JP H04268449A
Authority
JP
Japan
Prior art keywords
eddy current
defect
magnetic field
inspected
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2867891A
Other languages
Japanese (ja)
Inventor
Satoshi Nagai
敏 長井
Ichiro Furumura
古村 一朗
Taiji Hirasawa
泰治 平澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2867891A priority Critical patent/JPH04268449A/en
Publication of JPH04268449A publication Critical patent/JPH04268449A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To facilitate the detection of a defect by detecting a disturbance with a magnetic sensor as caused by a detect of an eddy current induced with an exciting coil to reduce effect of conductivity and magnetic permeability based on local unevenness of a metal organization. CONSTITUTION:A coil 11 for excitation is excited with an access of a probe 1 to an object 5 to be inspected to induce an eddy current to the object 5 to be inspected of a metal conductor. A magnetic sensor 12 detects a secondary magnetic field generated by the eddy current to measure disturbance of an eddy current field disturbed by a defect. When a defect such as cracking exists, a part of a concentric eddy current I2 flows detouring a defect F. As a detouring eddy current I2' flows in a direction different from the normal concentric eddy current I2, a magnetic field B2 generated by the eddy current changes. In other words, the eddy current I2' detouring the defect F flows reversely on both sides of the defect and a magnetic field B2' is reversed at the defect. Thus, the detection of the defect F is possible by measuring the magnetic field B2' based on the disturbance of the eddy current.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】[発明の目的][Object of the invention]

【0002】0002

【産業上の利用分野】本発明は各種金属材料の非破壊検
査方法に係わり、特に金属組織の不均一さの影響を軽減
できる電磁気探傷方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for non-destructive testing of various metal materials, and more particularly to an electromagnetic flaw detection method capable of reducing the effects of non-uniformity of metal structure.

【0003】0003

【従来の技術】金属材料の非破壊検査方法としては、渦
電流法による欠陥探傷法が従来から広く使用されている
BACKGROUND OF THE INVENTION As a non-destructive testing method for metal materials, defect detection using an eddy current method has been widely used.

【0004】従来の渦電流法による欠陥探傷法において
は、例えば渦流探傷試験A(日本非破壊検査協会編  
1977年)に示されるように、交流電流を流した検出
コイルを被検査体に近接させて渦電流を発生させると、
欠陥あるいは材質の変化部において渦電流が変化して前
記検出コイルのインピーダンスが増減することから、こ
のコイルのインピーダンス変化を測定することによって
検査体の欠陥探傷を行っていた。
In the conventional flaw detection method using the eddy current method, for example, eddy current flaw detection test A (edited by the Japan Nondestructive Inspection Association)
(1977), when a detection coil carrying an alternating current is brought close to the object to be inspected to generate eddy currents,
Since the impedance of the detection coil increases or decreases due to changes in eddy current at defects or material changes, defects in the inspection object have been detected by measuring changes in the impedance of the coil.

【0005】[0005]

【発明が解決しようとする課題】上記の従来技術では、
検出コイルのインピーダンス変化を測定して被検査体の
欠陥の有無及び大きさ等について判定していたが、この
検出コイルのインピーダンスは、材料の欠陥に限らず、
材質変化及び検出コイルと被検査体との位置関係によっ
ても大きく変化する。特に、被検査体が強磁性体材料の
場合には、局部的な金属組織の不均一さによって検出コ
イルのインピーダンスが大きく変化してしまうために、
目的とする欠陥信号の判定を困難にしていた。
[Problem to be solved by the invention] In the above conventional technology,
The impedance change of the detection coil was measured to determine the presence or absence and size of defects in the inspected object, but the impedance of the detection coil is not limited to material defects.
It also varies greatly depending on changes in the material and the positional relationship between the detection coil and the object to be inspected. In particular, when the object to be inspected is made of ferromagnetic material, the impedance of the detection coil changes greatly due to local non-uniformity of the metal structure.
This made it difficult to determine the target defect signal.

【0006】[発明の構成][Configuration of the invention]

【0007】[0007]

【課題を解決するための手段】本発明の電磁気探傷方法
は、交流電流を流した励磁用コイルを被検査体に近接さ
せ、この被検査体に誘導する渦電流によってその欠陥を
検出するようにした電磁気探傷方法において、前記被検
査体に対して垂直の磁場を励磁して渦電流を誘導させる
前記励磁用コイルと、この渦電流が作る二次的な磁界を
検出する磁気センサーとにより、被検査体の欠陥によっ
て乱された渦電流の電流場の乱れを検出して被検査体の
欠陥を探傷することを特徴とする。
[Means for Solving the Problems] In the electromagnetic flaw detection method of the present invention, an excitation coil through which an alternating current is passed is brought close to an object to be inspected, and defects are detected by eddy current induced in the object to be inspected. In the electromagnetic flaw detection method, the excitation coil excites a magnetic field perpendicular to the object to be inspected to induce an eddy current, and the magnetic sensor detects a secondary magnetic field generated by this eddy current. The method is characterized in that defects in the object to be inspected are detected by detecting disturbances in the current field of eddy currents disturbed by defects in the object to be inspected.

【0008】[0008]

【作用】コイルに交流電流を流し、被検査体である金属
導体表面に近接させて垂直な磁場を印加すると、金属導
体に誘導電流である渦電流が流れ、この渦電流によって
前記コイルによる磁場の方向と逆向きの磁場が生じて、
コイルには誘導電流が流れ、コイルのインピーダンスを
変化させる。
[Operation] When an alternating current is passed through the coil and a perpendicular magnetic field is applied close to the surface of the metal conductor to be inspected, an eddy current, which is an induced current, flows in the metal conductor, and this eddy current reduces the magnetic field caused by the coil. A magnetic field in the opposite direction is generated,
An induced current flows through the coil, changing the impedance of the coil.

【0009】本発明では、欠陥によって渦電流の電流場
が乱される時に生じる磁場の分布が定常的な渦電流が作
る磁場の分布と異なることに注目し、被検査体の表面に
垂直な磁場を印加して渦電流を誘導させる励磁コイルの
中心軸に対し直交する方向の磁場を検出する磁気センサ
ーを使用している。従って、定常状態の渦電流から生じ
た励磁磁場と逆方向の磁場は殆ど検出せず、欠陥によっ
て生じた渦電流の乱れに基づく特定方向の磁場の変化を
選択的に検出するように作用し、金属組織の局部的な変
化に基づく導電率及び透磁率の変化の影響を軽減させる
ことができる。
In the present invention, we focus on the fact that the distribution of the magnetic field that occurs when the current field of an eddy current is disturbed by a defect is different from the distribution of the magnetic field created by a steady eddy current, and we A magnetic sensor is used to detect a magnetic field perpendicular to the central axis of the excitation coil, which is applied to induce eddy currents. Therefore, it hardly detects the magnetic field in the opposite direction to the excitation magnetic field generated by the steady-state eddy current, and acts to selectively detect changes in the magnetic field in a specific direction based on the disturbance of the eddy current caused by the defect. The influence of changes in electrical conductivity and magnetic permeability due to local changes in metal structure can be reduced.

【0010】0010

【実施例】以下、本発明の実施例を図面に基づいて詳細
に説明する。
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

【0011】図1は本発明において使用される電磁気探
傷装置の構成例を示すブロック図である。
FIG. 1 is a block diagram showing an example of the configuration of an electromagnetic flaw detector used in the present invention.

【0012】同図において、電磁気探傷装置は、励磁用
コイルと磁気センサー(図示せず)を有するプローブ1
と、このプローブ1の励磁用コイルに励磁電流を供給す
る交流電源2と、磁気センサーの出力信号を増幅した後
、励磁用コイルの励磁電流に同期した信号成分を出力す
る検出装置3と、その出力信号を表示記録する表示記録
装置4とから構成されている。
In the figure, the electromagnetic flaw detection device includes a probe 1 having an excitation coil and a magnetic sensor (not shown).
an AC power supply 2 that supplies an excitation current to the excitation coil of the probe 1; a detection device 3 that amplifies the output signal of the magnetic sensor and then outputs a signal component synchronized with the excitation current of the excitation coil; It is composed of a display/recording device 4 for displaying and recording output signals.

【0013】交流電源2は、周波数発信器21により所
定の周波数の交流を発生させ、交流電源2の負荷変動に
対して常に一定の電流値に制御する定電流回路22によ
り、プローブ1の励磁用コイルにあらかじめ設定した一
定の励磁電流を供給するものである。
The AC power supply 2 generates AC at a predetermined frequency using a frequency oscillator 21, and uses a constant current circuit 22 to constantly control the current value to a constant value in response to load fluctuations of the AC power supply 2, for excitation of the probe 1. It supplies a preset constant excitation current to the coil.

【0014】検出装置3は、プローブ1内の磁気センサ
ーによって検出した欠陥に基づく特定方向の磁界の検出
信号を所定レベルに増幅する増幅器31と、増幅された
検出信号から励磁用コイルの励磁電流に同期した信号成
分を抽出して出力する同期検波回路32とから構成され
ている。
The detection device 3 includes an amplifier 31 that amplifies a detection signal of a magnetic field in a specific direction based on a defect detected by a magnetic sensor in the probe 1 to a predetermined level, and an amplifier 31 that amplifies a detection signal of a magnetic field in a specific direction based on a defect detected by a magnetic sensor in the probe 1, and converts the amplified detection signal into an excitation current of an excitation coil. It is composed of a synchronous detection circuit 32 that extracts and outputs synchronized signal components.

【0015】プローブ1は、図2(a),(b)のよう
に、励磁用コイル11と、その中心に、検出方向が前記
励磁用コイルの中心軸と直交するように配置した磁気セ
ンサー12とから構成される。磁気センサー12として
は、例えばピックアップコイルやホール素子等の磁電変
換素子が用いられる。
As shown in FIGS. 2(a) and 2(b), the probe 1 includes an excitation coil 11 and a magnetic sensor 12 disposed at its center so that its detection direction is perpendicular to the central axis of the excitation coil. It consists of As the magnetic sensor 12, a magnetoelectric conversion element such as a pickup coil or a Hall element is used, for example.

【0016】励磁用コイル11は被検査体5の表面に対
して垂直な交番磁界を発生させ、磁気センサー12は励
磁用コイル11から発生した交番磁界が被検査体5と鎖
交することによって被検査体5に誘起した渦電流の電流
場が欠陥によって乱されたときに発生する特定方向の磁
界を検出するものである。
The excitation coil 11 generates an alternating magnetic field perpendicular to the surface of the object 5 to be inspected, and the magnetic sensor 12 generates an alternating magnetic field perpendicular to the surface of the object 5 to be inspected. This detects a magnetic field in a specific direction that is generated when the current field of eddy currents induced in the inspection object 5 is disturbed by a defect.

【0017】上記構成の探傷装置を用いて被検査体の欠
陥を探傷する場合には、先ず、プローブ1を被検査体5
に近接させ、交流電源2によりあらかじめ設定した周波
数及び一定電流値にて励磁用コイル11を励磁する。こ
の励磁によって被検査体5である金属導体に渦電流が誘
導される。磁気センサー12はこの渦電流によって生じ
た二次的な磁界を検出し、欠陥によって乱された渦電流
場の乱れを測定する。ここで、欠陥による渦電流場の乱
れについて、図3の模式図を用いて説明すると、同図(
a)に示すように、励磁用コイル11に交流電流I1 
を流し、被検査体5に対して垂直な磁場B1 を印加す
ると、同心円状の渦電流I2 が誘起され、この渦電流
I2 によって励磁用コイル11が作る垂直磁場B1 
と逆向きの磁場B2 が発生し、励磁用コイル11のイ
ンピーダンスを変化させるように作用する。一方、割れ
等の欠陥が存在する場合、図3(b)に示すように同心
円状の渦電流I2 の一部は欠陥Fを迂回して流れる。 この欠陥を迂回して流れる渦電流I2’は通常の同心円
状の渦電流I2 とは異なる方向に流れることから、こ
の渦電流が作る磁場B2 に変化が生じる。即ち、図3
(c)に示すように、欠陥Fを迂回する渦電流I2’は
欠陥の両側で逆向きに流れることから、その電流の回り
に生ずる磁界B2’も欠陥を境に逆向きの方向になる。 したがって、この渦電流の乱れに基づく境界B2’を測
定することで欠陥Fの検出が可能になる。
When detecting defects in an object to be inspected using the flaw detection apparatus having the above configuration, first, the probe 1 is moved to the object to be inspected 5.
The excitation coil 11 is excited by the AC power source 2 at a preset frequency and a constant current value. This excitation induces an eddy current in the metal conductor that is the object 5 to be inspected. The magnetic sensor 12 detects the secondary magnetic field generated by this eddy current and measures the disturbance of the eddy current field caused by the defect. Here, the disturbance of the eddy current field due to defects will be explained using the schematic diagram in Figure 3.
As shown in a), an alternating current I1 is applied to the excitation coil 11.
When a perpendicular magnetic field B1 is applied to the object to be inspected 5, a concentric eddy current I2 is induced, and this eddy current I2 causes a vertical magnetic field B1 generated by the excitation coil 11.
A magnetic field B2 in the opposite direction is generated and acts to change the impedance of the excitation coil 11. On the other hand, if a defect such as a crack exists, a part of the concentric eddy current I2 flows around the defect F, as shown in FIG. 3(b). Since the eddy current I2' flowing around this defect flows in a direction different from that of the normal concentric eddy current I2, a change occurs in the magnetic field B2 created by this eddy current. That is, Figure 3
As shown in (c), since the eddy current I2' that detours around the defect F flows in opposite directions on both sides of the defect, the magnetic field B2' generated around the current also goes in the opposite direction with the defect as a boundary. Therefore, the defect F can be detected by measuring the boundary B2' based on the disturbance of this eddy current.

【0018】次に、この渦電流の乱れに基づく境界B2
’を磁気センサーで検出する方法について説明する。
Next, the boundary B2 based on the disturbance of this eddy current
We will explain how to detect ' with a magnetic sensor.

【0019】磁気センサー12は、前述のように、励磁
用コイル11の中心軸に直交する方向に磁気検出方向を
合せて配置されているので、励磁用コイル11が作る磁
場及び渦電流の作る磁場の垂直な磁場成分については応
答せず、それと直交する被検査体表面と平行な水平磁場
成分だけに応答した検出信号を生ずる。
As described above, the magnetic sensor 12 is arranged with its magnetic detection direction perpendicular to the central axis of the excitation coil 11, so that the magnetic field generated by the excitation coil 11 and the magnetic field generated by the eddy current are It does not respond to the vertical magnetic field component, but generates a detection signal that responds only to the horizontal magnetic field component that is perpendicular to the vertical magnetic field component and parallel to the surface of the object to be inspected.

【0020】即ち、図4に示すように、励磁用コイル1
1によって誘導された渦電流I2 は欠陥Fが無い部分
では励磁用コイル11と同心円状に流れており、渦電流
I2 が作る二次的な磁界B2 も励磁用コイル11の
中心軸に対して対称な磁場分布を示している。また、磁
気センサー12の検出方向の中心を励磁用コイル11の
中心と一致させているので、逆方向に向く水平成分の検
出信号は互いに打ち消しあって出力として現れない。一
方、プローブ1が欠陥Fのある方へ移動していくと、渦
電流I2 の一部は欠陥Fによって流れる方向を乱され
、それによって渦電流が作る磁界は磁気センサー12の
検出方向中心に対し非対称の磁場分布となり、互いに逆
方向の磁場成分にアンバランスが生じ、その差分が磁気
センサー12の出力信号として得られ、欠陥に基づく渦
電流場の乱れを検出できることになる。
That is, as shown in FIG. 4, the excitation coil 1
The eddy current I2 induced by 1 flows concentrically with the excitation coil 11 in areas where there is no defect F, and the secondary magnetic field B2 created by the eddy current I2 is also symmetrical with respect to the central axis of the excitation coil 11. It shows a magnetic field distribution. Further, since the center of the detection direction of the magnetic sensor 12 is made to coincide with the center of the excitation coil 11, horizontal component detection signals directed in opposite directions cancel each other out and do not appear as outputs. On the other hand, as the probe 1 moves toward the defect F, the flow direction of some of the eddy current I2 is disturbed by the defect F, and the magnetic field created by the eddy current is thereby directed toward the center of the detection direction of the magnetic sensor 12. This results in an asymmetrical magnetic field distribution, causing an imbalance in magnetic field components in opposite directions, and the difference is obtained as an output signal of the magnetic sensor 12, making it possible to detect disturbances in the eddy current field due to defects.

【0021】磁気センサー12の出力信号は、励磁用コ
イル11の励磁電流に対応した交流波形であるため、検
出装置3の同期検波回路32により同期検波を行い、励
磁電流に同期した信号成分を抽出すれば、水平成分の磁
界の強さに比例した直流信号として表示記録装置4に出
力される。
Since the output signal of the magnetic sensor 12 has an AC waveform corresponding to the excitation current of the excitation coil 11, synchronous detection is performed by the synchronous detection circuit 32 of the detection device 3 to extract signal components synchronized with the excitation current. Then, it is output to the display/recording device 4 as a DC signal proportional to the strength of the horizontal component magnetic field.

【0022】この場合、プローブ1を移動して得られる
検出信号の変化は、図4(b)に示すように、欠陥Fの
中心位置で0を示し、その両側で逆極性のピークを示す
ことから、欠陥の判定を適確に行うことができる。
In this case, the change in the detection signal obtained by moving the probe 1 shows 0 at the center position of the defect F, and peaks of opposite polarity on both sides of it, as shown in FIG. 4(b). Therefore, defects can be determined accurately.

【0023】ここで重要なことは、従来の渦流探傷法で
問題となる金属組織の局部的な材質変化に基づく導電率
及び透磁率の影響は、渦電流が作る磁界の強さの変化と
して現れるが、磁場の分布には影響しない点である。本
発明の方法では、上述したように渦電流の乱れに基づく
水平成分の磁界の変化を選択的に検出するようにしたの
で、局部的な材質変化部であっても渦電流に乱れが生じ
ないため、金属組織の局部的な材質変化に基づく影響を
受けることはない。
What is important here is that the effects of electrical conductivity and magnetic permeability caused by local material changes in the metal structure, which are a problem in conventional eddy current testing, appear as changes in the strength of the magnetic field created by eddy currents. However, it does not affect the distribution of the magnetic field. In the method of the present invention, as described above, changes in the horizontal component of the magnetic field based on disturbances in eddy currents are selectively detected, so that disturbances do not occur in eddy currents even in areas with local material changes. Therefore, it is not affected by local material changes in the metal structure.

【0024】[0024]

【発明の効果】以上説明したように、本発明の電磁気探
傷方法によれば、従来の渦流探傷法で問題となっていた
金属組織の局部的な不均一さに基づく導電率及び透磁率
の影響を軽減することができ、被検査体が強磁性体材料
であっても欠陥の探傷を容易に行うことができる。
As explained above, according to the electromagnetic flaw detection method of the present invention, the influence of electrical conductivity and magnetic permeability due to local non-uniformity of the metal structure, which has been a problem with the conventional eddy current flaw detection method, can be solved. This makes it possible to easily detect defects even if the object to be inspected is a ferromagnetic material.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明において使用される電磁気探傷装置の一
例を示すブロック構成図である。
FIG. 1 is a block configuration diagram showing an example of an electromagnetic flaw detection device used in the present invention.

【図2】(a)は図1の電磁気探傷装置におけるプロー
ブの概略を示す構成図、(b)はそのA−Aに沿う断面
図である。
2(a) is a configuration diagram schematically showing a probe in the electromagnetic flaw detection apparatus of FIG. 1, and FIG. 2(b) is a sectional view taken along line A-A.

【図3】(a),(b),(c)は被検査体における渦
電流場の乱れを説明するための説明図である。
FIGS. 3A, 3B, and 3C are explanatory diagrams for explaining disturbances in an eddy current field in an object to be inspected.

【図4】(a),(b)は本発明における渦電流場の乱
れを検出する方法を説明するための説明図である。
FIGS. 4(a) and 4(b) are explanatory diagrams for explaining a method for detecting disturbances in an eddy current field according to the present invention.

【符号の説明】[Explanation of symbols]

1……プローブ 2……交流電源 3……検出装置 4……表示記録装置 5……被検査体 11……励磁用コイル 12……磁気センサー 21……周波数発信器 22……定電流回路 31……増幅器 32……同期検波回路 1...probe 2...AC power supply 3...Detection device 4...display recording device 5...Object to be inspected 11... Excitation coil 12...Magnetic sensor 21...Frequency oscillator 22... Constant current circuit 31...Amplifier 32...Synchronized detection circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  交流電流を流した励磁用コイルを被検
査体に近接させ、この被検査体に誘導する渦電流によっ
てその欠陥を検出するようにした電磁気探傷方法におい
て、前記被検査体に対して垂直の磁場を励磁して渦電流
を誘導させる前記励磁用コイルと、この渦電流が作る二
次的な磁界を検出する磁気センサーとにより、被検査体
の欠陥によって乱された渦電流の電流場の乱れを検出し
て被検査体の欠陥を探傷することを特徴とする電磁気探
傷方法。
1. An electromagnetic flaw detection method in which an excitation coil through which an alternating current is passed is brought close to an object to be inspected, and defects are detected by eddy currents induced in the object to be inspected. The excitation coil excites a perpendicular magnetic field to induce eddy currents, and the magnetic sensor detects the secondary magnetic field created by this eddy current. An electromagnetic flaw detection method that detects defects in an object to be inspected by detecting disturbances in the field.
JP2867891A 1991-02-22 1991-02-22 Electromagnetic flaw detection Withdrawn JPH04268449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2867891A JPH04268449A (en) 1991-02-22 1991-02-22 Electromagnetic flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2867891A JPH04268449A (en) 1991-02-22 1991-02-22 Electromagnetic flaw detection

Publications (1)

Publication Number Publication Date
JPH04268449A true JPH04268449A (en) 1992-09-24

Family

ID=12255158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2867891A Withdrawn JPH04268449A (en) 1991-02-22 1991-02-22 Electromagnetic flaw detection

Country Status (1)

Country Link
JP (1) JPH04268449A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007511742A (en) * 2003-09-19 2007-05-10 オートモーティブ システムズ ラボラトリー インコーポレーテッド Magnetic collision sensor
JP2007212341A (en) * 2006-02-10 2007-08-23 Denso Corp Device and method for measuring resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007511742A (en) * 2003-09-19 2007-05-10 オートモーティブ システムズ ラボラトリー インコーポレーテッド Magnetic collision sensor
JP2007212341A (en) * 2006-02-10 2007-08-23 Denso Corp Device and method for measuring resistance

Similar Documents

Publication Publication Date Title
US4107605A (en) Eddy current flaw detector utilizing plural sets of four planar coils, with the plural sets disposed in a common bridge
US5689183A (en) Electromagnetic-induction type inspection device employing two induction coils connected in opposite phase relation
US20090167298A1 (en) System and method for the nondestructive testing of elongate bodies and their weldbond joints
JPS5877653A (en) Nondestructive testing device
JP4804006B2 (en) Flaw detection probe and flaw detection apparatus
EP1674861A1 (en) Eddy current probe and inspection method comprising a pair of sense coils
US20140055130A1 (en) Nondestructive inspection device using alternating magnetic field, and nondestructive inspection method
Shu et al. Study of pulse eddy current probes detecting cracks extending in all directions
US2441380A (en) Magnetic analysis
EP3159854B1 (en) Coin detection system
JPH0989843A (en) Method and apparatus for eddy current flaw detection
JP2666301B2 (en) Magnetic flaw detection
JPH06242076A (en) Electromagnetic flaw detecting equipment
JPH04268449A (en) Electromagnetic flaw detection
KR100626228B1 (en) Apparatus and Method for detecting defect with magnetic flux inducted by AC magnetic field
JPH05203629A (en) Electromagnetic flaw detection and device
JP2004354282A (en) Magnetic flux leakage flaw detection apparatus
JPH09274018A (en) Method and apparatus for detecting flaw of magnetic metal element
JPH0815229A (en) High resolution eddy current flaw detector
JP2003344362A (en) Eddy current flaw detection probe and eddy current flaw detector
JPH09507294A (en) Method and apparatus for magnetically testing metal products
JPH09166582A (en) Electromagnetic flaw detection method
JPS6011493Y2 (en) Electromagnetic induction detection device
JPS6021445A (en) Eddy current detecting apparatus
JP2021001813A (en) Nondestructive inspection magnetic sensor and nondestructive inspection device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514