JP2008032575A - Eddy current measuring probe and flaw detection device using it - Google Patents

Eddy current measuring probe and flaw detection device using it Download PDF

Info

Publication number
JP2008032575A
JP2008032575A JP2006207271A JP2006207271A JP2008032575A JP 2008032575 A JP2008032575 A JP 2008032575A JP 2006207271 A JP2006207271 A JP 2006207271A JP 2006207271 A JP2006207271 A JP 2006207271A JP 2008032575 A JP2008032575 A JP 2008032575A
Authority
JP
Japan
Prior art keywords
eddy current
excitation
magnetic field
current measurement
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006207271A
Other languages
Japanese (ja)
Inventor
Mitsuo Hashimoto
光男 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP2006207271A priority Critical patent/JP2008032575A/en
Publication of JP2008032575A publication Critical patent/JP2008032575A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an eddy current measuring probe capable of performing thickness reduction inspection or the like unaccompanied by a supplementary work such as dismantling of a heat insulating material, and evaluating easily a flaw of a pipe or the like, and a flaw detection device using the probe. <P>SOLUTION: The eddy current measuring probe 1 is arranged in the state of keeping a prescribed distance to an electric conductor or a ferromagnetic material which is a measuring object 2, and is equipped with an excitation part 3 for generating an eddy current in the measuring object. The excitation part 3 is constituted of the first excitation coil 5 and the second excitation coil 4 arranged adjacently to the first excitation coil 5, in order to form a magnetic field distribution concentrated into the measuring object 2. The probe 1 may be equipped with a magnetic field detection part 6 disposed adjacently to the excitation part 3. Hereby, flaw detection of a flaw section generated on a ferromagnetic pipe covered with the heat insulating material can be performed accurately and nondestructively in a short time. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、保温配管などの保温材で被覆された配管の傷部の探傷に用いることができる、渦電流測定用プローブ及びそれを用いた探傷装置に関する。   The present invention relates to an eddy current measuring probe that can be used for flaw detection of a flawed part of a pipe covered with a heat insulating material such as a heat insulating pipe, and a flaw detection apparatus using the probe.

化学プラントや火力などの発電所には多数の保温配管が存在しており、配管の減肉損傷によって引き起こされる故障は重大なものとなると考えられる。近年、保温材下の外面腐食の発生が問題となってきており、外面減肉箇所の検出や補修等が必要となってきている。外面減肉の検査手法としては、保温材を直接取り外して検査を行うことが有効とされているが、保温材の脱着及び関連する足場設置等に多大な労力と費用が掛かる。そこで、減肉発生箇所を特定し、保温材取り外し箇所を最小限に抑える必要がある。   Many heat insulation pipes exist in power plants such as chemical plants and thermal power plants, and failures caused by thinning damage to the pipes are considered to be serious. In recent years, the occurrence of outer surface corrosion under a heat insulating material has become a problem, and it has become necessary to detect or repair an outer surface thinning portion. As an inspection method for the outer wall thinning, it is effective to perform the inspection by directly removing the heat insulating material, but it takes a great amount of labor and cost to detach the heat insulating material and to set the related scaffolding. Therefore, it is necessary to identify the location where the thinning occurs and minimize the location where the heat insulating material is removed.

現在行われている検査方法としては、上記の目視検査、中性子水分計(保温材の含湿の有無)、放射線を用いた試験方法が知られている。目視検査や中性子水分計を用いた試験方法では発生箇所の特定が困難である。一方、放射線を用いた検査は有効な検査方法であるが、検査のスピード及び安全性で課題がある。   As an inspection method currently performed, the above-described visual inspection, neutron moisture meter (presence / absence of moisture in the heat insulating material), and a test method using radiation are known. It is difficult to identify the location of occurrence by a visual inspection or a test method using a neutron moisture meter. On the other hand, although inspection using radiation is an effective inspection method, there are problems with the speed and safety of inspection.

配管の保守検査は、管内部から検査を行う必要があるために、亀裂検査法として、渦電流(渦電流:Eddy Current Testing)探傷法が実用的に用いられている。渦電流探傷法は、電気配線や導電体や強磁性体の鋼管内部に所定の間隔で配設された交流電源に駆動される励磁用コイルと検出コイルからなるプローブを挿入し、鋼管の傷部における磁束の変化を検出コイルにより検出する非破壊検査方法である(特許文献1参照)。   Since maintenance inspection of pipes requires inspection from the inside of the pipe, an eddy current (Eddy Current Testing) flaw detection method is practically used as a crack inspection method. In the eddy current flaw detection method, a probe comprising an excitation coil and a detection coil driven by an AC power source arranged at a predetermined interval is inserted into a steel pipe made of electrical wiring, conductors, or ferromagnetic material, and the steel pipe is damaged. This is a nondestructive inspection method in which a change in magnetic flux is detected by a detection coil (see Patent Document 1).

特開2001−145225号公報JP 2001-145225 A

特許文献1のように、鋼管などの外部に励磁用コイルを配置する方法を、保温材で被覆された鋼管の損傷検査に適用する場合には、励磁用コイルと鋼管との間には距離が生じ、励磁用コイルから鋼管に発生させる渦電流分布が広がり、しかもその強度が減少するために鋼管に生じた減肉の存在の検出が困難となる課題がある。   When the method of disposing an excitation coil outside a steel pipe or the like as in Patent Document 1 is applied to a damage inspection of a steel pipe covered with a heat insulating material, there is a distance between the excitation coil and the steel pipe. As a result, the distribution of the eddy current generated from the exciting coil to the steel pipe is widened, and the strength is reduced, so that it is difficult to detect the presence of thinning in the steel pipe.

本発明は、上記課題に鑑み、操業を継続したままで、かつ、保温材の解体等の附帯工事を伴わない減肉検査などを可能とし、配管などの傷の評価を容易に行ない得る、新規な渦電流測定用プローブ及びそれを用いた探傷装置を提供することを目的としている。   In view of the above problems, the present invention enables a thinning inspection and the like that does not involve incidental construction such as dismantling of a heat insulating material while continuing operation, and can easily evaluate scratches on piping and the like. An object of the present invention is to provide a simple eddy current measuring probe and a flaw detection apparatus using the probe.

上記目的を達成するため、本発明の渦電流測定用プローブは、被測定物である導電体又は強磁性体に所定の距離を保持して配置され、被測定物に渦電流を発生させる励磁部を備え、励磁部が、被測定物に集中した磁場分布を形成するために、第1の励磁用コイルと、第1の励磁用コイルに隣接して配置される第2の励磁用コイルと、からなることを特徴とする。
本発明の渦電流測定用プローブは、好ましくは、励磁部に隣接して配設される磁界検出部を備え、磁界検出部が、励磁部で発生する磁場で誘起される被測定物からの渦電流を検知する検出コイル又は磁気検出素子からなる。
好ましくは、第1及び第2の励磁用コイルと検出コイルとは、同心状に隣接して配置される構造を有している。
磁界検出部は、好ましくは異なる方向の磁界の検出又は差動出力を得る構成である。
In order to achieve the above object, an eddy current measuring probe according to the present invention is an exciter that is disposed at a predetermined distance from a conductor or a ferromagnetic material that is an object to be measured and generates an eddy current in the object to be measured. A first excitation coil and a second excitation coil disposed adjacent to the first excitation coil so that the excitation unit forms a magnetic field distribution concentrated on the object to be measured; It is characterized by comprising.
The eddy current measurement probe of the present invention preferably includes a magnetic field detection unit disposed adjacent to the excitation unit, and the magnetic field detection unit eddies from the object to be measured induced by the magnetic field generated by the excitation unit. It consists of a detection coil or a magnetic detection element for detecting current.
Preferably, the first and second excitation coils and the detection coil have a structure in which they are concentrically arranged adjacent to each other.
The magnetic field detector is preferably configured to detect magnetic fields in different directions or obtain a differential output.

上記構成によれば、第1の励磁用コイルと第2の励磁用コイルとに逆向きの電流を流して励磁することで、渦電流測定用プローブから離して配置した導電性又は強磁性体から成る被測定物の表面に局在化した渦電流測を生起することができる。   According to the above configuration, the first excitation coil and the second excitation coil are excited by flowing currents in opposite directions, so that the conductive or ferromagnetic material arranged away from the eddy current measurement probe can be used. An eddy current measurement localized on the surface of the object to be measured can be generated.

上記構成において、好ましくは、渦電流測定用プローブは磁化器を備えている。
本発明の渦電流測定用プローブによれば、磁性材料からなる外装材を有する保温配管の内部にある配管を渦電流測定用プローブで探傷する場合に、磁化器により外装材を磁化し、励磁部による渦電流を保温配管の内部配管へ浸透させ易くする作用を有している。このため、渦電流測定用プローブを用いた渦電流測定において、磁気雑音が大きい場合に磁化器を設けることで磁気雑音を低下させることができる。
In the above configuration, the eddy current measurement probe preferably includes a magnetizer.
According to the eddy current measurement probe of the present invention, when the piping inside the heat insulation pipe having the exterior material made of a magnetic material is flawed by the eddy current measurement probe, the exterior material is magnetized by the magnetizer, Has the effect of facilitating the penetration of eddy currents into the internal piping of the heat insulation piping. For this reason, in the eddy current measurement using the eddy current measurement probe, when the magnetic noise is large, the magnetic noise can be reduced by providing a magnetizer.

本発明の渦電流測定用プローブを用いた探傷装置は、被測定物である導電体又は強磁性体に所定の距離を保持して配置され、被測定物に渦電流を発生させる励磁部と励磁部に隣接して配設される磁界検出部とからなる渦電流測定用プローブと、渦電流測定用プローブの励磁部駆動源と、渦電流測定用プローブの信号処理部と、を備え、励磁部が、被測定物に集中した磁場分布を形成するために第1の励磁用コイルと第1の励磁用コイルに隣接して配置される第2の励磁用コイルとからなり、磁界検出部が、励磁部で発生する磁場で誘起される被測定物からの渦電流を検知する検出コイル又は磁気検出素子からなることを特徴とする。
上記構成によれば、渦電流測定用プローブから離して配置した導電性又は強磁性体から成る被測定物の表面に局在化した渦電流を生起し、この渦電流の被測定物の傷部における変化を検出することができる。したがって、保温配管のような保温材で被覆された配管の傷部を、非破壊で短時間に精度良く検出することができる。
The flaw detection apparatus using the eddy current measurement probe according to the present invention is arranged with a predetermined distance from a conductor or a ferromagnetic material to be measured, and an excitation unit that generates eddy current in the measurement object and excitation. An eddy current measurement probe comprising a magnetic field detection unit disposed adjacent to the excitation unit, an excitation unit drive source of the eddy current measurement probe, and a signal processing unit of the eddy current measurement probe. Comprises a first excitation coil and a second excitation coil disposed adjacent to the first excitation coil in order to form a magnetic field distribution concentrated on the object to be measured. It is characterized by comprising a detection coil or a magnetic detection element for detecting eddy currents from an object to be measured induced by a magnetic field generated in an excitation unit.
According to the above configuration, the eddy current localized on the surface of the object to be measured made of a conductive or ferromagnetic material arranged away from the eddy current measurement probe is generated, and the damaged part of the object to be measured of this eddy current is generated. Changes in can be detected. Therefore, a flawed part of a pipe covered with a heat insulating material such as a heat insulating pipe can be detected accurately in a short time without being broken.

上記構成において、励磁部駆動源は、好ましくは交流又はパルスを発生する。従って、被測定物の傷部における渦電流変化を高感度で検出することができる。   In the above configuration, the excitation unit driving source preferably generates an alternating current or a pulse. Therefore, the eddy current change in the damaged part of the object to be measured can be detected with high sensitivity.

本発明の渦電流測定用プローブ及びそれを用いた探傷装置によれば、渦電流測定用プローブと被測定物との距離が離れている場合の測定に有効であり、特に、保温材などで被覆された導電性や強磁性の配管などに生じた傷部を、短時間で、かつ、精度よく探傷することができる。   According to the eddy current measuring probe and the flaw detection apparatus using the eddy current measuring probe of the present invention, it is effective for measurement when the distance between the eddy current measuring probe and the object to be measured is long, and in particular, covered with a heat insulating material or the like. It is possible to detect flaws in the conductive or ferromagnetic pipes that have been made in a short time and with high accuracy.

以下、この発明の実施の形態を図面を参照して詳細に説明する。各図において同一又は対応する部材には同一符号を用いる。
まず、本発明に係る渦電流測定用プローブについて説明する。
図1は本発明に係る渦電流測定用プローブの構成を示す模式図であり、(A)は電流測定用プローブを保温配管に設置した外観図、(B)は(A)に示すA−A線に沿う断面図、(C)は渦電流測定用プローブの(A)に示すB−B線に沿う断面図を示している。
図1(A)に示すように、本発明の渦電流測定用プローブ1は、被測定物2である保温配管の導電体2A又は強磁性体に所定の距離を保持して配置され、この被測定物2に渦電流を発生させる励磁部3を備えている。励磁部3は被測定物2に集中した磁場分布を形成するために、第1の励磁用コイル5と、第1の励磁用コイル5に隣接して配置される第2の励磁用コイル4と、から構成されている。図1(B)に示すように、保温配管2は、導電体又は強磁性体からなる配管2Aと保温材2Bとこの保温材2Bを保護する外装材2Cとから構成されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In each figure, the same or corresponding members are denoted by the same reference numerals.
First, an eddy current measurement probe according to the present invention will be described.
1A and 1B are schematic views showing the configuration of an eddy current measurement probe according to the present invention, in which FIG. 1A is an external view in which a current measurement probe is installed on a heat insulation pipe, and FIG. 1B is an AA shown in FIG. Sectional drawing which follows a line, (C) has shown sectional drawing which follows the BB line shown to (A) of the probe for eddy current measurement.
As shown in FIG. 1 (A), the eddy current measurement probe 1 of the present invention is arranged with a predetermined distance held on a conductor 2A or a ferromagnetic body of a heat insulation pipe as a measurement object 2. An excitation unit 3 for generating an eddy current in the measurement object 2 is provided. In order to form a magnetic field distribution concentrated on the DUT 2, the excitation unit 3 includes a first excitation coil 5 and a second excitation coil 4 disposed adjacent to the first excitation coil 5. , Is composed of. As shown in FIG. 1 (B), the heat insulation pipe 2 is composed of a pipe 2A made of a conductor or a ferromagnetic material, a heat insulation material 2B, and an exterior material 2C that protects the heat insulation material 2B.

渦電流測定用プローブ1は、励磁部3に隣接して配設される磁界検出部6を備えてもよい。磁界検出部6は、励磁部3で発生する磁場で誘起される被測定物2からの渦電流を検知する検出コイル又は磁気検出素子から構成することができる。図示の場合には、磁界検出部6として、検出コイルを用いる場合を示している。   The eddy current measurement probe 1 may include a magnetic field detection unit 6 disposed adjacent to the excitation unit 3. The magnetic field detection unit 6 can be configured by a detection coil or a magnetic detection element that detects eddy currents from the DUT 2 induced by the magnetic field generated by the excitation unit 3. In the illustrated case, a detection coil is used as the magnetic field detection unit 6.

図1(A)及び(C)に示すように、渦電流測定用プローブ1は、外側から内側に向かって配置される第2の励磁用コイル4と第1の励磁用コイル5と検出コイル6とから構成されている。第1及び第2の励磁用コイル5,4と検出コイル6とは同心円状に配置し、それらの形状は円形としている。これらの各コイル4,5,6は同心状であれば、長円、楕円形や多角形としてもよい。   As shown in FIGS. 1A and 1C, the eddy current measurement probe 1 includes a second excitation coil 4, a first excitation coil 5, and a detection coil 6 arranged from the outside to the inside. It consists of and. The first and second exciting coils 5 and 4 and the detection coil 6 are arranged concentrically, and their shapes are circular. As long as these coils 4, 5, and 6 are concentric, they may be oval, elliptical, or polygonal.

図1(A)に示すように、第2の励磁用コイル4の端子4A,4Bと第1の励磁用コイル5の端子5A,5Bには、逆向きに電流を流し、その合成磁界が、渦電流測定用プローブの中心方向に集中するようにされる。渦電流測定用プローブ1においては、内側の第1の励磁用コイル5により生じた磁場を、外側の第2の励磁用コイル4により生じる磁場を用いて制御し、合成磁場としては局所的な磁場分布としている。   As shown in FIG. 1A, a current flows in the opposite direction to the terminals 4A and 4B of the second exciting coil 4 and the terminals 5A and 5B of the first exciting coil 5, and the resultant magnetic field is The eddy current measuring probe is concentrated in the center direction. In the eddy current measurement probe 1, the magnetic field generated by the inner first excitation coil 5 is controlled using the magnetic field generated by the outer second excitation coil 4. Distribution.

上記の第1及び第2の励磁用コイル5,4におけるそれぞれの起磁力は、最適な磁気分布を得るためにその比を決めればよい。第1及び第2の励磁用コイル5,4における起磁力の比を可変できる機構を備えていてもよい。   The magnetomotive force in each of the first and second exciting coils 5 and 4 may be determined in order to obtain an optimum magnetic distribution. A mechanism capable of changing the ratio of magnetomotive force in the first and second exciting coils 5 and 4 may be provided.

この起磁力比は、数値解析を行なうことにより基本的な設計をすることができる。
図2は、第1の励磁用コイル5と第2の励磁用コイル4から発生する磁場による渦電流分布図であり、図3は図2との比較のために示す単一の励磁用コイルから発生する渦電流分布図である。渦電流分布は有限要素法を用いて解析した。何れの図も、図の左軸を中心とした断面図を示している。
図2は、第1及び第2の励磁用コイル5,4及び被測定物である導電体2A又は強磁性体から成る平板10の断面を示している。第1及び第2の励磁用コイル5,4と平板10との距離はLである。この配置において、第1及び第2の励磁用コイル5,4を互いに逆向きに電流を流して励磁した。起磁力比は、第1の励磁用コイル5:第2の励磁用コイル4=1:2とした。この場合、平板10に生じる渦電流分布12において、ほぼ第1の励磁用コイル5に対応する位置で局所的な渦電流12Aとなることが分かる。
一方、図3に示すように、単一の励磁用コイル13に電流を流して励磁した場合の渦電流分布14は、そのピーク強度14Aが小さく、しかも、励磁用コイル13と対向する位置からずれ、分布が広くなることが分かる。このため、後述する保安配管の傷探傷における分解能も低下する。
これから、本発明の渦電流測定用プローブにおいては、第1及び第2の励磁用コイル5,4に互いに逆向きに電流を流し、かつ、その起磁力比を調整することで、保温配管2のように保温材2Bで配管2Aとの距離がある場合においても、第1及び第2の励磁用コイル5,4直下の配管2Aに局所的な渦電流12Aを生起することができる。
This magnetomotive force ratio can be fundamentally designed by numerical analysis.
FIG. 2 is a distribution diagram of eddy currents due to magnetic fields generated from the first excitation coil 5 and the second excitation coil 4, and FIG. 3 shows a single excitation coil for comparison with FIG. It is an eddy current distribution map. Eddy current distribution was analyzed using finite element method. Each figure shows a cross-sectional view around the left axis of the figure.
FIG. 2 shows a cross section of the flat plate 10 made of the first and second exciting coils 5 and 4 and the conductor 2A or the ferromagnetic material to be measured. The distance between the first and second exciting coils 5 and 4 and the flat plate 10 is L. In this arrangement, the first and second exciting coils 5 and 4 were excited by flowing currents in opposite directions. The magnetomotive force ratio was set to the first excitation coil 5: second excitation coil 4 = 1: 2. In this case, it can be seen that in the eddy current distribution 12 generated in the flat plate 10, a local eddy current 12 </ b> A is obtained at a position substantially corresponding to the first exciting coil 5.
On the other hand, as shown in FIG. 3, the eddy current distribution 14 when the single excitation coil 13 is excited by flowing a current has a small peak intensity 14 </ b> A and deviates from a position facing the excitation coil 13. It can be seen that the distribution becomes wider. For this reason, the resolution | decomposability in the flaw detection of the security piping mentioned later also falls.
From this, in the eddy current measurement probe according to the present invention, current flows through the first and second exciting coils 5 and 4 in opposite directions, and the magnetomotive force ratio is adjusted, so that As described above, even when the heat insulating material 2B has a distance from the pipe 2A, a local eddy current 12A can be generated in the pipe 2A immediately below the first and second exciting coils 5 and 4.

検出コイル6は、単一型、差動型、マルチ型でも良い。差動型の場合には、図1(C)に示すように、2つの検出コイル6A,6Bを用いることができる。互いに同相に巻いた2つのコイル6A,6Bの差動出力を検出することで、渦電流による磁場検出を高感度で測定することができる。検出コイル6は、差動出力を得るために、互いに逆相に巻いた2つのコイル6A,6Bを直列接続してもよい。   The detection coil 6 may be a single type, a differential type, or a multi type. In the case of the differential type, as shown in FIG. 1C, two detection coils 6A and 6B can be used. By detecting the differential outputs of the two coils 6A and 6B wound in the same phase, magnetic field detection by eddy current can be measured with high sensitivity. In order to obtain a differential output, the detection coil 6 may connect two coils 6A and 6B wound in opposite phases to each other in series.

磁界検出部6として、検出コイルではなく磁気検出素子を用いる場合には、ホール効果素子、磁気抵抗素子、巨大磁気抵抗素子、強磁性体応用素子、SQUIDの何れかを用いることができる。磁気検出素子は、検出コイル6と同様に、異なる方向の磁界の検出又は差動出力を得る構成であることが好ましい。   When a magnetic detection element is used as the magnetic field detection unit 6 instead of a detection coil, any of a Hall effect element, a magnetoresistive element, a giant magnetoresistive element, a ferromagnetic application element, and a SQUID can be used. Similarly to the detection coil 6, the magnetic detection element is preferably configured to detect a magnetic field in a different direction or obtain a differential output.

本発明に係る渦電流測定用プローブの変形例について説明する。
図4は、本発明に係る渦電流測定用プローブの変形例の構成を示す断面図である。図4に示すように、この渦電流測定用プローブ15が渦電流測定用プローブ1と異なるのは、さらに、渦電流測定用プローブ1を覆う磁化器16を備えている点である。磁化器16はコイルや永久磁石などから構成することができる。磁化器16は、保温配管2の外装材2Cが鉄板などの磁性体からなる場合に、外装材2Cを磁化し、渦電流測定用プローブ1の励磁部3による磁場が保温配管2の内部にある配管2Aに渦電流を浸透させ易くする作用を有している。さらに、後述する渦電流測定において、磁気雑音は被測定物となる配管で発生する磁気雑音も含み、その磁気雑音が大きい場合に、磁化器16の作用により磁気雑音を低下させることができる。この磁化器を併用すれば、後述する保温配管のように渦電流測定用プローブと被測定物との距離(この距離を、適宜リフトオフと呼ぶ)が大きい渦電流測定に限らず、一般のリフトオフの小さい渦電流測定においても、用いることができる。この場合には、渦電流分布をも制御するので、探傷する被測定物に生じさせる渦電流分布も制御できることから、探傷の分解能を向上させることができる。
A modification of the eddy current measurement probe according to the present invention will be described.
FIG. 4 is a cross-sectional view showing the configuration of a modified example of the eddy current measurement probe according to the present invention. As shown in FIG. 4, the eddy current measurement probe 15 is different from the eddy current measurement probe 1 in that it further includes a magnetizer 16 that covers the eddy current measurement probe 1. The magnetizer 16 can be composed of a coil, a permanent magnet, or the like. The magnetizer 16 magnetizes the exterior material 2C when the exterior material 2C of the heat insulation pipe 2 is made of a magnetic material such as an iron plate, and the magnetic field generated by the excitation unit 3 of the eddy current measurement probe 1 is inside the heat insulation pipe 2. It has the effect of facilitating the penetration of eddy currents into the pipe 2A. Further, in the eddy current measurement described later, the magnetic noise includes magnetic noise generated in the pipe to be measured. When the magnetic noise is large, the magnetic noise can be reduced by the action of the magnetizer 16. If this magnetizer is used in combination, it is not limited to eddy current measurement in which the distance between the eddy current measurement probe and the object to be measured (this distance is appropriately referred to as lift-off) as in the heat insulation pipe described later, It can also be used in small eddy current measurements. In this case, since the eddy current distribution is also controlled, the eddy current distribution generated in the object to be flawed can be controlled, so that the flaw detection resolution can be improved.

次に、本発明の渦電流測定用プローブを用いた探傷装置20について説明する。
図5は、本発明の渦電流測定用プローブ1,15を用いた探傷装置20の構成を示すブロック図である。渦電流測定用プローブ1,15を用いた探傷装置20は、渦電流測定用プローブ1,15の励磁部3を駆動するための励磁部駆動源21と磁界検出部6からの出力信号を処理する信号処理部22とから構成される。
励磁部駆動源21は、励磁部3の第1及び第2の励磁用コイル5,4を駆動するために十分な出力を発生させる発振器23と、必要に応じてこの発振器23の出力を増幅する発振器用増幅器24を含んで構成されている。この発振器23は連続波又はパルスを発生することができる。
なお、磁化器16を有する渦電流測定用プローブ15を用いる場合には、磁化器16用の直流電源をさらに備えてもよい。他の点は渦電流測定用プローブ1と同じであるので、以下の説明においては、渦電流測定用プローブ1を用いるものとして説明する。
Next, the flaw detection apparatus 20 using the eddy current measurement probe of the present invention will be described.
FIG. 5 is a block diagram showing a configuration of the flaw detection apparatus 20 using the eddy current measurement probes 1 and 15 of the present invention. The flaw detection device 20 using the eddy current measurement probes 1 and 15 processes the output signals from the excitation unit drive source 21 and the magnetic field detection unit 6 for driving the excitation unit 3 of the eddy current measurement probes 1 and 15. And a signal processing unit 22.
The exciter drive source 21 generates an oscillator 23 that generates a sufficient output for driving the first and second exciting coils 5 and 4 of the exciter 3, and amplifies the output of the oscillator 23 as necessary. An oscillator amplifier 24 is included. The oscillator 23 can generate a continuous wave or a pulse.
In addition, when using the eddy current measurement probe 15 having the magnetizer 16, a DC power source for the magnetizer 16 may be further provided. Since the other points are the same as those of the eddy current measurement probe 1, the following description will be made assuming that the eddy current measurement probe 1 is used.

信号処理部22は、磁界検出部からの出力信号6Cを検出し、アナログ信号をデジタル信号に変換するA/D変換器25と、デジタル化した信号を処理し、渦電流を判別する処理装置26と、を含んで構成される。被測定物2の傷を高感度で検出するためには、A/D変換器25の前段に図示しない増幅器を挿入してもよい。この増幅器は、渦電流測定用プローブ1に内蔵されていてもよい。処理装置26は、コンピュータを用いることができる。   The signal processing unit 22 detects the output signal 6C from the magnetic field detection unit, converts the analog signal into a digital signal, and processes the digitized signal to determine an eddy current. And comprising. In order to detect a scratch on the DUT 2 with high sensitivity, an amplifier (not shown) may be inserted in front of the A / D converter 25. This amplifier may be incorporated in the eddy current measurement probe 1. The processor 26 can be a computer.

発振器23からの出力が連続波の場合、その周波数は被測定物2に生じる渦電流の浸透深さを計算し、被測定物2に渦電流が発生できる周波数を選定すればよい。   When the output from the oscillator 23 is a continuous wave, the penetration frequency of eddy current generated in the device under test 2 is calculated as the frequency, and a frequency that can generate eddy current in the device under test 2 may be selected.

発振器23からの出力がパルスである場合には、連続波の場合に計算した渦電流を発生できる周波数が含まれているパルス波を用いればよい。この場合、磁界検出部6からの出力信号を、信号処理部22においてパルス波を時間軸で検出するようにすればよい。信号処理部22において、磁界検出部6からの出力信号をフーリエ変換し、印加するパルスの渦電流に関する周波数成分を検出してもよい。   When the output from the oscillator 23 is a pulse, a pulse wave including a frequency capable of generating an eddy current calculated in the case of a continuous wave may be used. In this case, the output signal from the magnetic field detector 6 may be detected by the signal processor 22 on the time axis. In the signal processing unit 22, the output signal from the magnetic field detection unit 6 may be Fourier transformed to detect a frequency component related to the eddy current of the pulse to be applied.

励磁部駆動源21が、交流又はパルスを発生する電源からなる場合には、直流で励磁部3を駆動した場合よりも、被測定物2の傷部における渦電流変化を高感度で検出することができる。   When the excitation unit drive source 21 is composed of a power source that generates alternating current or pulses, it is possible to detect the eddy current change in the damaged portion of the DUT 2 with higher sensitivity than when the excitation unit 3 is driven with direct current. Can do.

ここで、渦電流測定用プローブ1は、電池駆動のモータによる移動機構を有する台車を備えた自走ロボットなどのプローブ駆動装置に載置することができる。また、渦電流測定用プローブ1は、複数の励磁部3及び磁界検出部6を備えることで、多数点の測定を一度に行なうように構成してもよい。
なお、保温配管内の配管2Aや渦電流測定用プローブ1から距離を隔てた平板の傷部の判定においては、別途、傷部のない正常な保温配管や平板の渦電流データを、校正データとして使用できる。
Here, the eddy current measuring probe 1 can be mounted on a probe driving device such as a self-propelled robot provided with a carriage having a moving mechanism by a battery-driven motor. Further, the eddy current measurement probe 1 may include a plurality of excitation units 3 and magnetic field detection units 6 so that multiple points can be measured at a time.
In the determination of the scratches on the flat plate at a distance from the pipe 2A in the heat insulation pipe or the eddy current measuring probe 1, the eddy current data on the normal heat insulation pipe or flat plate having no scratch is separately used as calibration data. Can be used.

渦電流測定用プローブ1に磁界検出部6を設けない場合には、励磁部3の第1の励磁用コイル5及び/又は第2の励磁用コイル4を検出コイルとして用いることができる。この場合、信号処理部20はインピーダンス測定部を備え、第1の励磁用コイル5及び/又は第2の励磁用コイル4自体のインピーダンスを測定し、被測定物2に渦電流が流れた場合のインピーダンス変化を測定することで、渦電流を測定することができる。   When the magnetic field detector 6 is not provided in the eddy current measurement probe 1, the first excitation coil 5 and / or the second excitation coil 4 of the excitation unit 3 can be used as a detection coil. In this case, the signal processing unit 20 includes an impedance measurement unit, measures the impedance of the first excitation coil 5 and / or the second excitation coil 4 itself, and an eddy current flows through the DUT 2. The eddy current can be measured by measuring the impedance change.

本発明の渦電流測定用プローブ1を用いた探傷装置20によれば、渦電流測定用プローブ1により保温配管のような保温材を隔てた配管にも局所的に渦電流を発生させて、分解能の向上を図ることができる。このため、保温配管2のような保温材2Bで被覆された配管2Aの傷部を、非破壊で短時間に精度良く検出することができる。   According to the flaw detection apparatus 20 using the eddy current measurement probe 1 of the present invention, the eddy current measurement probe 1 generates eddy currents locally in a pipe separated by a heat insulation material such as a heat insulation pipe, thereby improving the resolution. Can be improved. For this reason, the damaged part of 2 A of pipes covered with the heat insulating material 2B like the heat insulating pipe 2 can be detected accurately in a short time without being broken.

以下、実施例によって本発明をさらに詳細に説明する。
実施例1として、渦電流測定用プローブ1について説明する。渦電流測定用プローブ1は、第1及び第2の励磁用コイル5,4と検出コイル6とが外側から内側へ順に密接して配置された円形状の平板コイルとした。起磁力比は、第1の励磁用コイル5:第2の励磁用コイル4=1:2とした。各コイルの構成を以下に示す。
第1の励磁用コイル5:外径及び内径を、それぞれ、70mm、50mmとし、幅を5mmとし、巻き数を200回とした。
第2の励磁用コイル4:外径及び内径を、それぞれ、90mm、70mmとし、幅を5mmとし、巻き数を100回とした。
検出コイル6:外径及び内径を、それぞれ、50mm、40mmとし、幅を5mmとし、巻き数が100回のコイル6A,6Bを2個使用し、差動で接続した差動検出コイルとした。
Hereinafter, the present invention will be described in more detail with reference to examples.
As Example 1, an eddy current measurement probe 1 will be described. The eddy current measuring probe 1 is a circular plate coil in which the first and second exciting coils 5 and 4 and the detection coil 6 are arranged in close contact in order from the outside to the inside. The magnetomotive force ratio was set to the first excitation coil 5: second excitation coil 4 = 1: 2. The configuration of each coil is shown below.
First exciting coil 5: The outer diameter and inner diameter were 70 mm and 50 mm, the width was 5 mm, and the number of turns was 200.
Second exciting coil 4: The outer diameter and inner diameter were 90 mm and 70 mm, the width was 5 mm, and the number of turns was 100.
Detection coil 6: A differential detection coil in which the outer diameter and the inner diameter are 50 mm and 40 mm, the width is 5 mm, the number of turns is 100, and two coils 6A and 6B are used and connected in a differential manner.

実施例2として、実施例1の渦電流測定用プローブ1を用いた探傷装置20を製作した。探傷装置20は、図5に示した構成であり、励磁部駆動源23は、発振器23となるファンクションシンセサイザ(株式会社エヌエフ回路設計ブロック製、モデル1940)と発振器用増幅器24(株式会社エヌエフ回路設計ブロック製、モデルHSA4011)とを用いた。検出コイル6からの出力信号6Cをロックインアンプ(株式会社エヌエフ回路設計ブロック製、モデルLI5640)で検出した。ロックインアンプの参照信号は発振器23からの信号を用いた。渦電流測定用プローブ1の第1及び第2の励磁用コイル5,4の励磁周波数は、後述する保温配管の配管2Aに生じる渦電流の浸透深さを計算し、配管2Aに渦電流が発生できる数値を選定し、200Hzの連続波(CW)とした。信号処理部22は、検出コイル6からの出力信号6CをA/D変換器25でデジタル信号に変換して、処理装置26としてパーソナルコンピュータ26に信号を入力した。渦電流測定用プローブ1の操作位置は、保温材2Bの厚みを考慮して配管2Aとの距離、即ちリフトオフを50mmとした。   As Example 2, a flaw detection apparatus 20 using the eddy current measurement probe 1 of Example 1 was manufactured. The flaw detection apparatus 20 has the configuration shown in FIG. 5, and the excitation unit drive source 23 is a function synthesizer (manufactured by NF Circuit Design Block Co., Ltd., model 1940) and an oscillator amplifier 24 (NF circuit design, Inc.). Model HSA4011) made by Bloc was used. The output signal 6C from the detection coil 6 was detected by a lock-in amplifier (manufactured by NF Circuit Design Block Co., Ltd., model LI5640). A signal from the oscillator 23 was used as a reference signal for the lock-in amplifier. The excitation frequency of the first and second exciting coils 5 and 4 of the eddy current measuring probe 1 calculates the penetration depth of eddy current generated in the pipe 2A of the heat insulation pipe described later, and eddy current is generated in the pipe 2A. A numerical value that can be used was selected to be a continuous wave (CW) of 200 Hz. The signal processing unit 22 converts the output signal 6C from the detection coil 6 into a digital signal by the A / D converter 25, and inputs the signal to the personal computer 26 as the processing device 26. The operating position of the eddy current measuring probe 1 is set to a distance from the pipe 2A, that is, the lift-off is 50 mm in consideration of the thickness of the heat insulating material 2B.

上記実施例1及び実施例2で説明した渦電流測定用プローブ1を用いた探傷装置20による測定結果を説明する。
図6は、被測定物となる平板試料10に故意に傷を形成した状態を示す平面図である。平板試料は5mm厚の鉄板から成り、大きさが850mm×850mmである。各傷部の大きさは、50mm×50mm、30mm×30mmの2種類とし、傷の深さは、図6の左側から右側の順にそれぞれ3.8mm,2.5mm,1.5mmとした。
A measurement result by the flaw detection apparatus 20 using the eddy current measurement probe 1 described in the first embodiment and the second embodiment will be described.
FIG. 6 is a plan view showing a state in which a flaw is intentionally formed on the flat plate sample 10 to be measured. The flat plate sample is made of an iron plate having a thickness of 5 mm and has a size of 850 mm × 850 mm. The size of each scratch was two types of 50 mm × 50 mm and 30 mm × 30 mm, and the depth of the scratch was 3.8 mm, 2.5 mm, and 1.5 mm in order from the left side to the right side of FIG.

渦電流測定用プローブ1を、平板試料10からの間隔を50mmに保持しつつ、同一の大きさを有する傷部の中心線上を図5のA−A方向に走査し、幅80cmを20秒で走査した。この場合の走査速度は4cm/分である。   The probe 1 for eddy current measurement is scanned in the AA direction in FIG. 5 on the center line of the scratch having the same size while maintaining the distance from the flat plate sample 10 at 50 mm, and the width 80 cm is 20 seconds. Scanned. In this case, the scanning speed is 4 cm / min.

図7は、実施例2の渦電流測定用プローブを用いた探傷装置20により故意に傷を形成した平板試料の渦電流測定結果を示す図であり、傷の大きさが50mm×50mmの場合を示している。図7において、横軸は移動距離(mm)を示し、移動距離は800mmである。図7の縦軸は検出コイルからの信号をロックインアンプで検出したX及びY信号(mV)を示している。
図7から明らかなように、点線の楕円で囲んでいる部分の信号は何れもX信号がプラス側へのピークを有すると共に、Y信号がマイナス側のピーク信号を有しているので、50mmのリフトオフを有する渦電流測定用プローブ1において平板試料に故意に設けた傷を検出できていることが分かる。
FIG. 7 is a diagram showing an eddy current measurement result of a flat plate sample in which a flaw is intentionally formed by the flaw detection apparatus 20 using the eddy current measurement probe of Example 2, and the case where the flaw size is 50 mm × 50 mm. Show. In FIG. 7, the horizontal axis indicates the movement distance (mm), and the movement distance is 800 mm. The vertical axis in FIG. 7 indicates the X and Y signals (mV) obtained by detecting the signal from the detection coil with a lock-in amplifier.
As is clear from FIG. 7, since the X signal has a positive peak and the Y signal has a negative peak signal, the signal in the portion surrounded by the dotted ellipse is 50 mm. It can be seen that in the eddy current measurement probe 1 having lift-off, a flaw intentionally provided on the flat plate sample can be detected.

図8は、実施例2の渦電流測定用プローブを用いた探傷装置により、故意に傷を形成した平板試料の渦電流測定結果を示す図であり、傷の大きさが30mm×30mmの場合を示している。図の横軸及び縦軸は図6と同じである。横軸の移動距離は800mmである。図8から明らかなように、点線の楕円で囲んでいる部分の信号は何れもX信号がプラス側へのピークを有すると共に、Y信号がマイナス側のピーク信号を有しているので、50mmのリフトオフを有する渦電流測定用プローブ1において平板試料に故意に設けた傷を検出できていることが分かる。   FIG. 8 is a diagram showing an eddy current measurement result of a flat plate sample intentionally formed with a flaw detector using the eddy current measurement probe of Example 2, where the size of the flaw is 30 mm × 30 mm. Show. The horizontal and vertical axes in the figure are the same as those in FIG. The moving distance on the horizontal axis is 800 mm. As is apparent from FIG. 8, since the X signal has a positive peak and the Y signal has a negative peak signal, the signal in the portion surrounded by the dotted ellipse is 50 mm. It can be seen that in the eddy current measurement probe 1 having lift-off, a flaw intentionally provided on the flat plate sample can be detected.

次に、実施例2の渦電流測定用プローブ1を用いた探傷装置20により、保温配管の傷検出を行なった測定結果について説明する。
保温配管2の構成としては、外径が115mm、肉厚が6.5mmの鉄鋼製配管2Aの外側を約50mmの厚さの保温材2Bで被覆し、さらに、この保温材の外周には、外装材2Cとして厚さが0.75mmのブリキなどの磁性体で被覆したものである。この保温配管2の鉄鋼製配管2Aに故意に傷を設けた。
図9は、故意に傷を設け部分減肉を施した保温配管の配管2Aの概略図である。図9に示すように、配管2Aの軸方向に対して垂直方向に幅30mmで研削し、故意に傷2Dを設けた配管を示している。ここで、配管2Aの研削方向の最大深さを減肉深さと呼ぶ。この場合の傷2Dの減肉量は減肉深さを変えて調整し、図8の上から下に示した3箇所で、それぞれ、25%、50%、75%とした。
Next, a description will be given of measurement results obtained by detecting flaws in the heat insulation pipe by the flaw detection apparatus 20 using the eddy current measurement probe 1 of Example 2.
As the structure of the heat insulating pipe 2, the outer side of the steel pipe 2A having an outer diameter of 115 mm and a wall thickness of 6.5 mm is covered with a heat insulating material 2B having a thickness of about 50 mm. The exterior material 2C is coated with a magnetic material such as tin having a thickness of 0.75 mm. The steel pipe 2A of the heat insulation pipe 2 was intentionally damaged.
FIG. 9 is a schematic view of a heat insulation pipe 2A that is intentionally scratched and partially thinned. As shown in FIG. 9, a pipe that is ground with a width of 30 mm in a direction perpendicular to the axial direction of the pipe 2 </ b> A and intentionally provided with a scratch 2 </ b> D is shown. Here, the maximum depth in the grinding direction of the pipe 2A is referred to as a thinning depth. In this case, the thinning amount of the scratch 2D was adjusted by changing the thinning depth, and was set to 25%, 50%, and 75% at the three locations shown from the top to the bottom in FIG.

図10は、部分減肉した配管を有する保温配管の渦電流測定結果を示す図であり、減肉深さが3mmの場合を示している。図において、横軸は時間(秒)を示し、縦軸は検出コイルからの信号をロックインアンプで検出したX及びY信号(mV)を示している。
図10から明らかなように、点線の楕円で囲んでいる部分の信号は何れもX信号がプラス側へのピークを有すると共に、Y信号がマイナス側のピーク信号を有しているので、保温配管内の部分減肉配管の傷を検出できていることが分かる。
FIG. 10 is a diagram showing an eddy current measurement result of a heat retaining pipe having a pipe with a partial thickness reduction, and shows a case where the thickness reduction is 3 mm. In the figure, the horizontal axis represents time (seconds), and the vertical axis represents X and Y signals (mV) obtained by detecting a signal from the detection coil with a lock-in amplifier.
As is clear from FIG. 10, since the X signal has a plus-side peak and the Y signal has a minus-side peak signal, the portion of the signal surrounded by the dotted ellipse has a heat retention pipe. It turns out that the damage | wound of the partial thinning pipe | tube inside can be detected.

上記実施例1及び2で示した本発明の渦電流測定用プローブ1を用いた探傷装置20によれば、何れも故意に傷部を設けた保温配管2の傷から生じる渦電流を検出することができた。   According to the flaw detection apparatus 20 using the eddy current measurement probe 1 of the present invention shown in the first and second embodiments, both detect eddy currents caused by flaws in the heat retaining pipe 2 intentionally provided with flaws. I was able to.

本発明は上記実施例に限定されることなく、特許請求の範囲に記載した発明の範囲内で種々の変形が可能であり、それらも本発明の範囲内に含まれることはいうまでもない。例えば、本実施の形態では、被測定物の形状は管や板の場合について説明したが、被測定物の形状や材料の厚さ及び比透磁率などに応じてプローブを設計することや、発振器からの信号を連続波やパルスであるかに応じて信号処理部を適宜、設計して使用することなども本発明の範囲内に含まれることはいうまでもない。   The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope of the invention described in the claims, and it goes without saying that these are also included in the scope of the present invention. For example, in the present embodiment, the shape of the object to be measured has been described for the case of a tube or a plate, but it is possible to design a probe according to the shape of the object to be measured, the thickness of the material, the relative permeability, etc. Needless to say, it is also included in the scope of the present invention to appropriately design and use the signal processing unit depending on whether the signal from the signal is a continuous wave or a pulse.

本発明に係る渦電流測定用プローブの構成を示す模式図であり、(A)は渦電流測定用プローブを保温配管に設置した外観図、(B)は(A)に示すA−A線に沿う断面図、(C)は渦電流測定用プローブの(A)に示すB−B線に沿う断面図である。It is a schematic diagram which shows the structure of the probe for eddy current measurement which concerns on this invention, (A) is the external view which installed the probe for eddy current measurement in heat insulation piping, (B) is the AA line shown to (A). Sectional drawing which follows, (C) is sectional drawing which follows the BB line shown to (A) of the probe for eddy current measurement. 第1の励磁用コイルと第2の励磁用コイルより発生する磁場による渦電流分布図である。It is an eddy current distribution map by the magnetic field generated from the first exciting coil and the second exciting coil. 図2との比較のために示す単一の励磁用コイルより発生する渦電流分布図である。FIG. 3 is a distribution diagram of eddy currents generated from a single exciting coil shown for comparison with FIG. 2. 本発明に係る渦電流測定用プローブの変形例の構成を示す断面図である。It is sectional drawing which shows the structure of the modification of the probe for eddy current measurement which concerns on this invention. 本発明の渦電流測定用プローブ1を用いた探傷装置の構成を示すブロック図である。It is a block diagram which shows the structure of the flaw detection apparatus using the probe 1 for eddy current measurement of this invention. 被測定物となる平板試料に故意に傷を形成した状態を示す平面図である。It is a top view which shows the state which formed the damage | wound intentionally in the flat plate sample used as a to-be-measured object. 実施例2の渦電流測定用プローブを用いた探傷装置により故意に傷を形成した平板試料の渦電流測定結果を示す図である。It is a figure which shows the eddy current measurement result of the flat plate sample which formed the flaw intentionally with the flaw detector using the probe for eddy current measurement of Example 2. FIG. 実施例2の渦電流測定用プローブを用いた探傷装置により、故意に傷を形成した平板試料の渦電流測定結果を示す図であり、傷の大きさが30mm×30mmの場合を示している。It is a figure which shows the eddy current measurement result of the flat plate sample which formed the flaw intentionally with the flaw detector using the probe for eddy current measurement of Example 2, and has shown the case where the magnitude | size of a flaw is 30 mm x 30 mm. 故意に傷を設け部分減肉を施した保温配管の概略図であるIt is a schematic diagram of a heat insulation pipe intentionally scratched and partially thinned 部分減肉した配管を有する保温配管の渦電流測定結果を示す図であり、減肉深さが3mmの場合を示している。It is a figure which shows the eddy current measurement result of the heat retention piping which has the pipe | tube with which partial thinning was carried out, and has shown the case where the thickness reduction is 3 mm.

符号の説明Explanation of symbols

1,15:渦電流測定用プローブ
2:被測定物(保温配管)
2A:導電体又は強磁性体(配管)
2B:保温材
2C:外装材
3:励磁部
4:第2の励磁用コイル
4A,4B:端子
5:第1の励磁用コイル
5A,5B:端子
6:磁界検出部(検出コイル)
6A,6B:差動コイル
6C:出力信号
10:平板
12,14:渦電流分布
12A:局所的な渦電流
13:単一の励磁用コイル
14A:ピーク強度
16:磁化器
20:渦電流測定用プローブを用いた探傷装置
21:励磁部駆動源
22:信号処理部
23:発振器
24:発振器用増幅器
25:A/D変換器
26:処理装置
1, 15: Probe for eddy current measurement 2: Object to be measured (thermal insulation pipe)
2A: Conductor or ferromagnetic material (pipe)
2B: Thermal insulation material 2C: Exterior material 3: Excitation section 4: Second excitation coil 4A, 4B: Terminal 5: First excitation coil 5A, 5B: Terminal 6: Magnetic field detection section (detection coil)
6A, 6B: Differential coil 6C: Output signal 10: Flat plate 12, 14: Eddy current distribution 12A: Local eddy current 13: Single excitation coil 14A: Peak intensity 16: Magnetizer 20: For eddy current measurement Flaw detection device 21 using probe: excitation unit drive source 22: signal processing unit 23: oscillator 24: oscillator amplifier 25: A / D converter 26: processing device

Claims (7)

被測定物である導電体又は強磁性体に所定の距離を保持して配置され、該被測定物に渦電流を発生させる励磁部を備え、
上記励磁部が、上記被測定物に集中した磁場分布を形成するために第1の励磁用コイルと該第1の励磁用コイルに隣接して配置される第2の励磁用コイルとからなることを特徴とする、渦電流測定用プローブ。
A conductor or a ferromagnetic material to be measured is arranged with a predetermined distance, and includes an excitation unit that generates an eddy current in the measured object.
The excitation unit includes a first excitation coil and a second excitation coil disposed adjacent to the first excitation coil to form a magnetic field distribution concentrated on the object to be measured. A probe for measuring eddy currents.
前記励磁部に隣接して配設される磁界検出部を備え、該磁界検出部が、前記励磁部で発生する磁場で誘起される前記被測定物からの渦電流を検知する検出コイル又は磁気検出素子からなることを特徴とする、請求項1に記載の渦電流測定用プローブ。   A detection coil or magnetic detection unit that includes a magnetic field detection unit disposed adjacent to the excitation unit, the magnetic field detection unit detecting an eddy current from the measurement object induced by a magnetic field generated by the excitation unit; The probe for eddy current measurement according to claim 1, comprising an element. 前記第1及び第2の励磁用コイルと前記検出コイルとが、同心状に隣接して配置される構造を有していることを特徴とする、請求項2に記載の渦電流測定用プローブ。   3. The eddy current measurement probe according to claim 2, wherein the first and second exciting coils and the detection coil have a structure in which they are concentrically adjacent to each other. 前記磁界検出部が、異なる方向の磁界の検出又は差動出力を得る構成であることを特徴とする、請求項2に記載の渦電流測定用プローブ。   The eddy current measurement probe according to claim 2, wherein the magnetic field detection unit is configured to detect a magnetic field in a different direction or to obtain a differential output. 前記渦電流測定用プローブが磁化器を備えていることを特徴とする、請求項1〜4の何れかに記載の渦電流測定用プローブ。   The eddy current measurement probe according to claim 1, wherein the eddy current measurement probe includes a magnetizer. 被測定物である導電体又は強磁性体に所定の距離を保持して配置され、該被測定物に電流を発生させる励磁部と、該励磁部に隣接して配設される磁界検出部とからなる渦電流測定用プローブと、
上記渦電流測定用プローブの励磁部駆動源と、
上記渦電流測定用プローブの信号処理部と、を備え、
上記励磁部が、上記被測定物に集中した磁場分布を形成するために第1の励磁用コイルと該第1の励磁用コイルに隣接して配置される第2の励磁用コイルとからなり、
上記磁界検出部が、上記励磁部で発生する磁場で誘起される上記被測定物からの渦電流を検知する検出コイル又は磁気検出素子からなることを特徴とする、渦電流測定用プローブを用いた探傷装置。
An excitation unit that is disposed at a predetermined distance from a conductor or a ferromagnetic material that is an object to be measured and generates an electric current in the object to be measured; and a magnetic field detection unit that is disposed adjacent to the excitation unit An eddy current measuring probe comprising:
An excitation drive source of the eddy current measurement probe;
A signal processing unit of the eddy current measurement probe,
The excitation unit includes a first excitation coil and a second excitation coil disposed adjacent to the first excitation coil to form a magnetic field distribution concentrated on the object to be measured;
An eddy current measurement probe is used, wherein the magnetic field detection unit comprises a detection coil or a magnetic detection element that detects an eddy current from the measurement object induced by the magnetic field generated by the excitation unit. Flaw detection equipment.
前記励磁部駆動源が、交流又はパルスを発生することを特徴とする、請求項6に記載の渦電流測定用プローブを用いた探傷装置。   The flaw detection apparatus using an eddy current measurement probe according to claim 6, wherein the excitation unit drive source generates an alternating current or a pulse.
JP2006207271A 2006-07-29 2006-07-29 Eddy current measuring probe and flaw detection device using it Pending JP2008032575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006207271A JP2008032575A (en) 2006-07-29 2006-07-29 Eddy current measuring probe and flaw detection device using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006207271A JP2008032575A (en) 2006-07-29 2006-07-29 Eddy current measuring probe and flaw detection device using it

Publications (1)

Publication Number Publication Date
JP2008032575A true JP2008032575A (en) 2008-02-14

Family

ID=39122156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006207271A Pending JP2008032575A (en) 2006-07-29 2006-07-29 Eddy current measuring probe and flaw detection device using it

Country Status (1)

Country Link
JP (1) JP2008032575A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085298A (en) * 2008-10-01 2010-04-15 Hitachi Ltd Pulse excitation type eddy current flaw detection method and device
JP2013104857A (en) * 2011-11-16 2013-05-30 Kaisei Engineer Kk Electromagnetic type checkup method and electromagnetic type checkup apparatus
CN103358222A (en) * 2012-03-30 2013-10-23 株式会社荏原制作所 Eddy current sensor and polishing method
JP2017194404A (en) * 2016-04-22 2017-10-26 横河電機株式会社 Thickness reduction detection system, and thickness reduction detection method
JP2019039677A (en) * 2017-08-22 2019-03-14 九州電力株式会社 Heat retention piping flaw detection apparatus and heat retention piping flaw detection method
CN110346447A (en) * 2019-07-09 2019-10-18 兰州理工大学 A kind of optimization method of calyx shape plane cylinder sensor
JP6768990B1 (en) * 2019-02-21 2020-10-14 株式会社テイエルブイ probe
CN113311065A (en) * 2021-05-25 2021-08-27 北京航空航天大学 Coil probe heat dissipation method for pulse eddy current detection
WO2022024478A1 (en) * 2020-07-31 2022-02-03 Jfeスチール株式会社 Inspection apparatus, inspection system, inspection method, and member repairing method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5026951B1 (en) * 1969-02-10 1975-09-04
JPH01274058A (en) * 1988-03-11 1989-11-01 Westinghouse Electric Corp <We> Detection of flaw in metal wall and eddy current probe apparatus
JPH0545184B2 (en) * 1986-05-22 1993-07-08 Kansai Electric Power Co
JPH05295538A (en) * 1992-02-18 1993-11-09 Hitachi Ltd Film forming method and device by both side sputtering
JPH06186207A (en) * 1992-12-17 1994-07-08 Nuclear Fuel Ind Ltd Eddy-current flaw detecting probe
JPH08236983A (en) * 1994-12-16 1996-09-13 Nippon Steel Corp Superconductive magnetic shield method
JPH09229906A (en) * 1996-02-21 1997-09-05 Nkk Corp Method and equipment for magnetic field test of metal band
JPH10160709A (en) * 1996-11-29 1998-06-19 Mitsubishi Heavy Ind Ltd Eddy current flaw detecting probe
JPH10232222A (en) * 1997-02-20 1998-09-02 Ee One Kk Foreign product detector
JP2001318080A (en) * 2000-05-09 2001-11-16 Kaisei Engineer Kk Detection coil and inspecting device using the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5026951B1 (en) * 1969-02-10 1975-09-04
JPH0545184B2 (en) * 1986-05-22 1993-07-08 Kansai Electric Power Co
JPH01274058A (en) * 1988-03-11 1989-11-01 Westinghouse Electric Corp <We> Detection of flaw in metal wall and eddy current probe apparatus
JPH05295538A (en) * 1992-02-18 1993-11-09 Hitachi Ltd Film forming method and device by both side sputtering
JPH06186207A (en) * 1992-12-17 1994-07-08 Nuclear Fuel Ind Ltd Eddy-current flaw detecting probe
JPH08236983A (en) * 1994-12-16 1996-09-13 Nippon Steel Corp Superconductive magnetic shield method
JPH09229906A (en) * 1996-02-21 1997-09-05 Nkk Corp Method and equipment for magnetic field test of metal band
JPH10160709A (en) * 1996-11-29 1998-06-19 Mitsubishi Heavy Ind Ltd Eddy current flaw detecting probe
JPH10232222A (en) * 1997-02-20 1998-09-02 Ee One Kk Foreign product detector
JP2001318080A (en) * 2000-05-09 2001-11-16 Kaisei Engineer Kk Detection coil and inspecting device using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085298A (en) * 2008-10-01 2010-04-15 Hitachi Ltd Pulse excitation type eddy current flaw detection method and device
JP2013104857A (en) * 2011-11-16 2013-05-30 Kaisei Engineer Kk Electromagnetic type checkup method and electromagnetic type checkup apparatus
CN103358222A (en) * 2012-03-30 2013-10-23 株式会社荏原制作所 Eddy current sensor and polishing method
JP2017194404A (en) * 2016-04-22 2017-10-26 横河電機株式会社 Thickness reduction detection system, and thickness reduction detection method
JP2019039677A (en) * 2017-08-22 2019-03-14 九州電力株式会社 Heat retention piping flaw detection apparatus and heat retention piping flaw detection method
JP6768990B1 (en) * 2019-02-21 2020-10-14 株式会社テイエルブイ probe
CN110346447A (en) * 2019-07-09 2019-10-18 兰州理工大学 A kind of optimization method of calyx shape plane cylinder sensor
CN110346447B (en) * 2019-07-09 2022-12-16 兰州理工大学 Optimization method of calyx-shaped planar eddy current sensor
WO2022024478A1 (en) * 2020-07-31 2022-02-03 Jfeスチール株式会社 Inspection apparatus, inspection system, inspection method, and member repairing method
JPWO2022024478A1 (en) * 2020-07-31 2022-02-03
JP7205642B2 (en) 2020-07-31 2023-01-17 Jfeスチール株式会社 Inspection device, inspection system, inspection method, and member repair method
CN113311065A (en) * 2021-05-25 2021-08-27 北京航空航天大学 Coil probe heat dissipation method for pulse eddy current detection
CN113311065B (en) * 2021-05-25 2024-01-23 北京航空航天大学 Coil probe heat dissipation method for pulsed eddy current detection

Similar Documents

Publication Publication Date Title
JP2008032575A (en) Eddy current measuring probe and flaw detection device using it
EP2480858B1 (en) Eddy current inspection of case hardening depth
JP5522699B2 (en) Nondestructive inspection apparatus and nondestructive inspection method using pulse magnetism
CN109781838B (en) Vortex-ultrasonic detection probe based on V-shaped coil excitation
JP4998821B2 (en) Eddy current inspection method and eddy current inspection apparatus for implementing the eddy current inspection method
JP4756409B1 (en) Nondestructive inspection apparatus and nondestructive inspection method using alternating magnetic field
JP2006177952A (en) Eddy current probe, inspecting system and inspecting method
US20190178844A1 (en) Differential magnetic evaluation for pipeline inspection
KR101746072B1 (en) Nondestructive inspection apparatus for ferromagnetic steam generator tubes and method thereof
KR101339117B1 (en) Apparatus and method for detecting the defects of reverse side using pulsed eddy current
JP3748852B2 (en) Magnetic flaw detector
EP1877767A2 (en) Near fieldtm and combination near fieldtm - remote field electromagnetic testing (et) probes for inspecting ferromagnetic pipes and tubes such as those used in heat exchangers
JP5013363B2 (en) Nondestructive inspection equipment
JP2004294341A (en) Flaw detection method and flaw detection apparatus by pulsed remote field eddy current
JP2004354282A (en) Magnetic flux leakage flaw detection apparatus
CN107576720B (en) Ferromagnetic slender component shallow layer damage magnetic emission detection method and magnetic emission detection system
JPH05203629A (en) Electromagnetic flaw detection and device
JP2000275223A (en) Inspecting tool and its using method
US11493480B2 (en) Method and apparatus for the detection of corrosion under insulation (CUI), corrosion under fireproofing (CUF), and far side corrosion on carbon steel piping and plates
KR102283396B1 (en) Sensor Probe tesing System for Eddy Current Nondestructive Testing
WO2015194428A1 (en) Non-destructive inspection device and non-destructive inspection method
JP2009287931A (en) Rust detecting device and method
KR101250559B1 (en) Crack detection device
JP2021001813A (en) Nondestructive inspection magnetic sensor and nondestructive inspection device
JP3145561B2 (en) Eddy current detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111213