JP3748852B2 - Magnetic flaw detector - Google Patents

Magnetic flaw detector Download PDF

Info

Publication number
JP3748852B2
JP3748852B2 JP2002375649A JP2002375649A JP3748852B2 JP 3748852 B2 JP3748852 B2 JP 3748852B2 JP 2002375649 A JP2002375649 A JP 2002375649A JP 2002375649 A JP2002375649 A JP 2002375649A JP 3748852 B2 JP3748852 B2 JP 3748852B2
Authority
JP
Japan
Prior art keywords
core
detection
dut
magnetic
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002375649A
Other languages
Japanese (ja)
Other versions
JP2004205380A (en
Inventor
英二 加藤
克己 藤間
潔 峯浦
正人 榎園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2002375649A priority Critical patent/JP3748852B2/en
Publication of JP2004205380A publication Critical patent/JP2004205380A/en
Application granted granted Critical
Publication of JP3748852B2 publication Critical patent/JP3748852B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、励磁用コイルによって被試験体に磁界を印加し、被試験体の内部に存在する亀裂や、溶接部等で生成されるピンホール欠陥、腐食等に起因する配管材の肉厚減少等の内部欠陥などによる影響を受けた内部磁界を検出し、被試験体の欠陥を検出する磁気探傷装置に関するものである。
【0002】
【従来の技術】
励磁用コイルによって被試験体に磁界を印加し、被試験体の内部に存在する亀裂や、溶接部等で生成されるピンホール欠陥、腐食等に起因する配管材の肉厚減少等の内部欠陥などによる影響を受けた内部磁界を、磁気センサやピックアップコイルに生じる起電力で検出するようにした磁気探傷装置においては、単に欠陥の存在を検出するだけでなく、欠陥の位置、欠陥の深さを特定することが要求されている。
【0003】
また、こういった磁気探傷装置においては、被試験体における局部的な磁気的特性変化、ムラなどに起因する磁界分布の乱れ、表面粗さなどにより生じる磁界分布の乱れに等よって雑音磁界が生じるが、この雑音磁界と欠陥によって発生する磁界の変化とを区別する、すなわちS/N比を高めなければ正確な欠陥検出ができない。そのため、例えば特許文献1には、馬蹄形の磁鉄心に設けた励起コイルで発生させた交流磁界によって被測定物に渦電流を起こさせると共に、磁鉄心の足の部分(ヨーク)に巻いたピックアップコイルでこの渦電流で生じた磁束による起電力を検出できるようにし、被測定物の欠陥などの存在によって被測定物の渦電流が乱れたとき、両ヨークに設けたピックアップコイルに生じた起電力の差を検出して欠陥を検出できるようにした探傷装置において、前記ピックアップコイルをグラジオメータで構成すると共に、起電力検出にSQUID素子(超伝導量子干渉素子)を用い、微弱起電力を検出できるようにして検出精度を向上させた磁気探傷装置が示されている。
【0004】
また特許文献2には、磁化器に複数の磁化レベルを与えたと同様な効果を得るため、磁化器の磁化方向に沿って設置位置を変えた複数の磁気センサを設け、被検査物における欠陥からの漏洩磁束信号をこの両磁気センサで測定し、両センサの距離によって受ける信号が異なるのを利用することで、S/N比の高い検出信号を得るようにした装置が示されている。
【0005】
さらに特許文献3には、単一の磁化器に複数の周波数の交流をミックスして供給して単一の磁気センサで被検査物から返ってくる磁束を検出し、被検査物に欠陥があった場合に高周波と低周波で被検査物の欠陥から返ってくる漏洩磁束の強さが異なることを利用し、雑音を分離して欠陥のみを効率よく検出する漏洩磁束探傷装置が示されている。
【0006】
【特許文献1】
特開平11−14601号公報
【特許文献2】
特開2000−227419公報
【特許文献3】
特開2000−275219公報
【0007】
【発明が解決しようとする課題】
しかしながら、前記特許文献1に示された装置は、SQUID素子(超伝導量子干渉素子)を使うために液体窒素を扱えるようにする必要があり、必然的に高価になると共に一般的な場所で使用するためには困難が伴う。また特許文献2、特許文献3公報に示された装置は、目的がS/N比の高い検出信号を得ることであり、傷の位置、深さなどを推定することについてはなんら記載がない。
【0008】
そのため本発明においては、簡単、かつ安価な構造で、亀裂や溶接部等で生成されるピンホール欠陥、腐食等によって生じる配管材における肉厚減少等の内部欠陥などの位置、深さを推定・探知できるようにした磁気探傷装置を提供することが課題である。
【0009】
【課題を解決するための手段】
上記課題を解決するため本発明は、
高透磁率材料を半ドーナツ状に形成したコアに巻回して被試験体に直交交差する磁束を発生する励磁用コイルと、該励磁用コイルによる磁束で被試験体に誘起された磁界を検出する検出用コイルとで構成された磁気探傷装置において、
前記検出用コイルを前記コアに2つ設け、前記励磁用コイルに複数の周波数成分を多重化した交流を印加する手段と、前記両検出用コイルが検出した磁界から前記複数の周波数における各周波数の周波数変化、磁位差、振幅値の変化などを検出し、被試験体の欠陥の位置、深さを推定・探知する手段とを有し、前記半ドーナツ状コアの被試験体と相対する両端部分近傍を残して該コアに巻回した励磁用コイルを有することを第1の要旨とする。
【0010】
すなわち鋼などの導電体に交流磁界を印加すると、表皮効果により、導電体に進入する磁束は深くなればなるほど弱くなってゆき、深いところにある信号源ほど検出信号レベルが弱められることになるが、この現象は励磁周波数が高いほど、また、被試験体の透磁率が高いほど顕著に現れる。従って、このように励磁用コイルに複数の周波数成分を多重化した交流を印加すると、欠陥により生じる低周波による磁界への影響と高周波による磁界への影響とでは検出用コイルで検出されるレベルが異なり、また、その欠陥によって周波数が変化する。そのため検出用コイルを2つ設け、それぞれの検出用コイルで、重畳した周波数毎に変化した周波数、磁位差、振幅を検出することで、簡単、かつ安価な構造で被試験体の亀裂や溶接部等で生成されるピンホール欠陥、腐食等に起因した配管材の肉厚減少等の内部欠陥における位置、深さを推定・探知することが可能な磁気探傷装置を提供することができる。
【0011】
そして請求項1記載の発明は、前記励磁用コイルとコアとの間に二重巻き状に巻回した2つの検出用コイルとからなり、該2つの検出用コイルを前記半ドーナツ状コアの両端部分にまで延在して巻回したことを特徴とし、又請求項2記載の発明は、前記コアの励磁用コイルが巻回されていないコア両端部分近傍にそれぞれ別個に巻回した前記2つの検出用コイルとからなることを特徴とし、
更に請求項3記載の発明は、前記コアが被試験体と相対する両端部分近傍に設けた検出用コイル収容穴にそれぞれ別個に収容した2つの検出用コイルとからなることを特徴とする。
これにより、被試験体によって最適な形態を選択することができる。また両検出用コイルを、コアが被試験体と相対する両端部分近傍に設けた場合は、両検出用コイルはコアの被試験体と相対する部分の距離だけ離れるから、磁位差の検出がより容易になる。
【0012】
【発明の実施の形態】
以下、図面に基づいて本発明の実施の形態を例示的に詳しく説明する。但し、この実施の形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りはこの発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例に過ぎない。
【0013】
図1は本発明の実施の形態を示した装置の概略ブロック図であり、図2乃至4は、本発明における検出・励磁センサの実施形態を示した断面図である。図中1は本発明に用いる検出・励磁センサ、2は検出・励磁センサ1を構成する高透磁率材料(アモルファスフェライト、高透磁率鋼板など)で半ドーナツ状に構成したコア、3は被試験体6に直交交差する磁束を発生するための励磁用コイル、4、5は励磁用コイル3のコア2側に巻回され、励磁用コイル3による磁束で被試験体6に誘起された磁界を検出する検出用コイルで、この図では励磁用コイル3のコア2側に巻回した。6は被試験体、7は演算装置(CPU)で、検出・励磁センサ1の励磁用コイル3に送出する複数の周波数成分を多重化した交流磁界のための信号の作成や、検出用コイル4、5による検出結果を高速フーリエ変換、相対振幅値検出などで解析し、被試験体6における欠陥の位置、深さを算出したり、検出・励磁センサ1の掃引位置の指示などをおこなう。8は演算装置7から送られてくる複数の周波数成分を多重化した信号をデジタル/アナログ変換するデジタル/アナログコンバータ(D/A−C)、9はデジタル/アナログコンバータ8からの信号を増幅し、励磁用コイル3に与えて複数の周波数成分を多重化した交流磁界を生成するためのパワーアンプ、10、11は検出用コイル4、5の検出した微小信号を増幅するプリアンプ、12、13はプリアンプ10、11が増幅した検出用コイル4、5からの信号をアナログ/デジタル変換して演算装置7に送るアナログ/デジタルコンバータ(A/D−C)、14はモータやその駆動回路を有して検出・励磁センサ1を被試験体6に対して掃引させるよう移動させる掃引装置、図3において20、20はコア2における被試験体と相対する部分近傍に巻回した検出用コイル、図4において21、21は同じくコア2の被試験体と相対する部分近傍に設けた検出用コイル収容穴22に収容した検出用コイルである。
【0014】
図2は、本発明における検出・励磁センサ1の第1の実施形態を示した断面図であり、高透磁率材料(アモルファスフェライト、高透磁率鋼板など)で半ドーナツ状に構成したコア2側に検出用コイル4、5を巻回し、さらにその外側に励磁用コイル3を巻回したもので、この検出用コイル4、5と励磁用コイル3は、励磁用コイル3をコア2側にし、検出用コイル4、5をその外側に巻回しても良い。図3、図4はこの検出・励磁センサ1の第2、第3の実施形態を示した断面図であり、高透磁率材料(アモルファスフェライト、高透磁率鋼板など)で半ドーナツ状に構成したコア2の周りに励磁用コイル3を巻回し、図3の実施形態においては検出用コイル20、20を前記半ドーナツ状コア2の被試験体と相対する両端部分近傍にそれぞれ別個に巻回し、図4の実施形態においては検出用コイル21、21を、前記半ドーナツ状コア2の被試験体と相対する両端部分近傍に設けた検出用コイル収容穴22にそれぞれ別個に収容したものである。
【0015】
本発明の磁気探傷装置においては、これら図2乃至4に示した実施形態におけるどの形態の検出・励磁センサ1のいずれを用いても良く、図1においては、一例として図2に示した形の検出・励磁センサ1を用いた場合を示した。
【0016】
このように構成した検出・励磁センサ1に、鋼などの導電体で構成された被試験体6に直交交差するような磁束を発生させる交流磁界を発生させると、表皮効果により、被試験体6に進入する磁束は深くなればなるほど弱くなってゆく。この現象は励磁用コイル3の励磁周波数が高いほど、また、被試験体6の透磁率が高いほど顕著に現れる。そのため、複数の周波数成分を多重化した磁界を被試験体6に与えると、被試験体6の深いところに亀裂や溶接部等で生成されたピンホール欠陥、腐食等に起因した配管材の肉厚減少等の内部欠陥が存在した場合、その欠陥によって進入した磁束による磁界が受ける影響は多重化した周波数のそれぞれに対応した値となり、周波数毎にこの影響を受けた磁界を検出することによって、欠陥の位置、深さを推定・探知することが可能となる。
【0017】
こういった考え方に基づいて構成した図1に示した第1の実施形態の磁気探傷装置においては、演算装置(CPU)7によって複数の周波数成分を多重化した交流磁界のための信号を生成し、デジタル/アナログコンバータ(D/A−C)8でアナログ信号に変換してパワーアンプ9で増幅し、検出・励磁センサ1に与える。また同じく演算装置(CPU)7は、この検出・励磁センサ1を被試験体6に対して相対的に移動させ、被試験体6の全面を掃引する掃引信号を生成して掃引装置14に与え、この掃引装置14が有するモータやその駆動回路によって検出・励磁センサ1、または被試験体6を移動させて被試験体6の全面を掃引する。
【0018】
そのため検出・励磁センサ1は、複数の周波数成分を多重化した交流磁界による磁束を被試験体6に与えながらこの被試験体6を掃引し、検出・励磁センサ1の検出用コイル4、5は、この交流磁界による磁束で被試験体6に発生した磁界を検出してプリアンプ10、11に送る。するとプリアンプ10、11は、この検出信号を増幅してアナログ/デジタルコンバータ12、13に送り、このアナログ/デジタルコンバータ12、13はこのアナログ信号をデジタル信号に変換して演算装置7に送る。そして演算装置7は、この送られてきた信号によって被試験体6に欠陥があるかどうかを監視する。
【0019】
励磁用コイル3によって被試験体6に与えられた磁束は、前記したようにその励磁周波数、及び被試験体6の透磁率に応じた深さに進入するが、被試験体6に欠陥がない場合は検出用コイル4、5で検出される磁界に変化は無く、ほぼ一定の値となる。しかし被試験体6に欠陥が有る場合、特定の周波数以下の周波数による磁束のみが欠陥のある位置に達して磁界が影響を受け、変化が起こる。そのため、検出用コイル4、5が検出した磁界は励磁周波数によって変化が生じるものが出るから、演算装置7はこの検出用コイル4、5が検出した各周波数の磁界の変化を高速フーリエ変換、相対振幅値検出などを用い、例えば振幅値の変化した周波数と変化しなかった周波数の到達する深さから欠陥の深さを検出し、特定周波数毎に検出用コイル4、5が検出した磁界の強弱から磁位差を検出して欠陥の位置を推定し、磁束の周波数変化によって欠陥の大きさを推定する、などして欠陥を推定・探知する。
【0020】
このようにして掃引装置14により、検出・励磁センサ1を被試験体6に対して全面掃引させながらこういった演算を行なってゆくことにより、被試験体6における亀裂や溶接部等で生成されるピンホール欠陥、腐食等によって生じる配管材の肉厚減少等の内部欠陥などはその位置、深さを推定することができ、この検出結果を表示装置などに表示することにより、被試験体6における内部欠陥を目視することができる。
【0021】
図3は本発明における検出・励磁センサ1の第2の実施形態であり、この第2の実施形態では、検出用コイル20、20をコア2の被試験体6と相対する両端部分近傍に巻回し、励磁用コイル3はこの検出用コイル20、20間に巻回したものである。このようにすることにより、両検出用コイル20、20間はコア2の被試験体6と相対する両端部分の距離だけ離れるから、磁位差の検出がより容易になる。
【0022】
そして図4は本発明における検出・励磁センサ1の第3の実施形態であり、この第3の実施形態では、検出用コイル21、21をコア2の被試験体6と相対する両端部分近傍に設けた検出用コイル収容穴22に収容し、励磁用コイル3はこの検出用コイル20、20間に巻回したものである。このようにすることにより、第2の実施形態同様両検出用コイル21、21間はコア2の被試験体6と相対する両端部分の距離だけ離れるから、磁位差の検出が容易になる。
【0023】
【発明の効果】
以上記載の如く本発明によれば、検出・励磁センサ1を構成する励磁用コイル3で複数の周波数成分を多重化した交流磁界を発生して被試験体6に印加し、2つ設けた検出用コイルで検出することにより、欠陥により生じる低周波による磁界への影響と高周波による磁界への影響とでは検出用コイルで検出されるレベルが異なり、また、その欠陥によって周波数が変化するから、被試験体6に生じている欠陥に到達する磁束が周波数によって異なること、また、その欠陥によって磁界が影響を受けることを利用して、周波数毎に変化した周波数、磁位差、振幅などを検出することにより、被試験体の亀裂や溶接部等で生成されるピンホール欠陥、腐食等によって生じる配管材の肉厚減少等の内部欠陥における位置、深さを推定・探知することが可能となり、簡単、かつ安価な構造の磁気探傷装置を提供することができ、大きな効果をもたらすものである。
【図面の簡単な説明】
【図1】 本発明の実施の形態を示した装置の概略ブロック図である。
【図2】 本発明における検出・励磁センサの第1の実施形態を示した断面図である。
【図3】 本発明における検出・励磁センサの第2の実施形態を示した断面図である。
【図4】 本発明における検出・励磁センサの第3の実施形態を示した断面図である。
【符号の説明】
1 検出・励磁センサ
2 コア
3 励磁用コイル
4、5 検出用コイル
6 被試験体
7 演算装置(CPU)
8 デジタル/アナログコンバータ(D/A−C)
9 パワーアンプ
10、11 プリアンプ
12、13 アナログ/デジタルコンバータ(A/D−C)
14 掃引装置
[0001]
BACKGROUND OF THE INVENTION
The present invention applies a magnetic field to a device under test by an exciting coil, and reduces the thickness of piping material due to cracks existing inside the device under test, pinhole defects generated in welds, corrosion, etc. The present invention relates to a magnetic flaw detector that detects an internal magnetic field affected by an internal defect such as the above, and detects a defect of a device under test.
[0002]
[Prior art]
Internal defects such as cracks existing inside the DUT, pinhole defects generated in welds, etc., pipe wall thickness reduction due to corrosion, etc. when a magnetic field is applied to the DUT by the excitation coil In a magnetic flaw detector that detects the internal magnetic field affected by the magnetic force or the electromotive force generated in the pickup coil, not only the presence of a defect but also the position of the defect and the depth of the defect are detected. It is required to specify.
[0003]
Further, in such a magnetic flaw detector, a noise magnetic field is generated due to a local magnetic characteristic change in the DUT, a disturbance in the magnetic field distribution caused by unevenness, a disturbance in the magnetic field distribution caused by surface roughness, etc. However, unless the noise magnetic field and the change in the magnetic field generated by the defect are distinguished, that is, the S / N ratio is not increased, accurate defect detection cannot be performed. Therefore, for example, in Patent Document 1, an eddy current is caused in an object to be measured by an alternating magnetic field generated by an excitation coil provided in a horseshoe-shaped magnetic core, and a pickup coil wound around a leg portion (yoke) of the magnetic core. Therefore, when the eddy current of the object to be measured is disturbed due to the presence of a defect in the object to be measured, the electromotive force generated in the pickup coils provided in both yokes can be detected. In the flaw detection apparatus capable of detecting a defect by detecting a difference, the pickup coil is composed of a gradiometer, and a SQUID element (superconducting quantum interference element) is used for detecting an electromotive force so that a weak electromotive force can be detected. A magnetic flaw detector with improved detection accuracy is shown.
[0004]
Further, in Patent Document 2, in order to obtain the same effect as when a plurality of magnetization levels are given to the magnetizer, a plurality of magnetic sensors whose installation positions are changed along the magnetization direction of the magnetizer are provided, and defects from the inspection object are detected. A device is shown in which a magnetic flux leakage signal is measured by both magnetic sensors, and a detection signal having a high S / N ratio is obtained by utilizing the fact that the received signals differ depending on the distance between the two sensors.
[0005]
Further, in Patent Document 3, a single magnetometer is mixed and supplied with a plurality of frequency alternating currents, a magnetic flux returning from the inspection object is detected by a single magnetic sensor, and the inspection object has a defect. In this case, a leakage magnetic flux flaw detector that isolates noise and efficiently detects only the defect by using the fact that the strength of the leakage magnetic flux returned from the defect of the inspection object differs between high frequency and low frequency .
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-14601 [Patent Document 2]
JP 2000-227419 A [Patent Document 3]
JP 2000-275219 JP
[Problems to be solved by the invention]
However, the apparatus disclosed in Patent Document 1 needs to be able to handle liquid nitrogen in order to use a SQUID element (superconducting quantum interference element), which is inevitably expensive and used in a general place. It is difficult to do. The devices disclosed in Patent Document 2 and Patent Document 3 are intended to obtain a detection signal having a high S / N ratio, and there is no description about estimating the position and depth of a flaw.
[0008]
Therefore, in the present invention, the position and depth of internal defects such as pinhole defects generated in cracks and welded parts, pipe wall defects caused by corrosion, etc. It is an object to provide a magnetic flaw detection apparatus that can be detected.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the present invention
An excitation coil that generates a magnetic flux orthogonally intersecting the DUT by winding a high permeability material around a core formed in a semi-doughnut shape, and a magnetic field induced in the DUT by the magnetic flux generated by the excitation coil is detected. In a magnetic flaw detector composed of a detection coil,
Two detection coils are provided in the core, a means for applying an alternating current in which a plurality of frequency components are multiplexed to the excitation coil, and each frequency at the plurality of frequencies from the magnetic field detected by the two detection coils. Means for detecting frequency change, magnetic potential difference, amplitude value change, etc., and estimating / detecting the position and depth of the defect of the DUT, both ends of the half-doughnut core facing the DUT The first gist is to have an exciting coil wound around the core leaving the vicinity of the portion.
[0010]
That is, when an AC magnetic field is applied to a conductor such as steel, the magnetic flux entering the conductor becomes weaker as the depth increases due to the skin effect, and the detection signal level becomes weaker as the signal source is deeper. This phenomenon becomes more prominent as the excitation frequency is higher and the permeability of the device under test is higher. Therefore, when an alternating current in which a plurality of frequency components are multiplexed is applied to the exciting coil in this way, the level detected by the detecting coil is different between the influence of the low frequency caused by the defect on the magnetic field and the influence of the high frequency on the magnetic field. The frequency varies depending on the defect. For this reason, two detection coils are provided, and each detection coil detects the frequency, magnetic potential difference, and amplitude changed for each superimposed frequency, so that the test object can be cracked or welded with a simple and inexpensive structure. It is possible to provide a magnetic flaw detector capable of estimating and detecting the position and depth of an internal defect such as a pinhole defect generated in a part or the like, a thickness reduction of a piping material due to corrosion, or the like.
[0011]
The invention according to claim 1 comprises two detection coils wound in a double winding between the excitation coil and the core, and the two detection coils are arranged at both ends of the half-doughnut core. The invention according to claim 2 is characterized in that the two coils are separately wound in the vicinity of both end portions of the core where the exciting coil of the core is not wound. It consists of a coil for detection,
Furthermore, the invention described in claim 3 is characterized in that the core is composed of two detection coils separately accommodated in detection coil accommodation holes provided in the vicinity of both end portions facing the device under test.
More to this, it is possible to select the optimum mode by the test object. If both detection coils are provided in the vicinity of both end portions where the core faces the DUT, both detection coils are separated by the distance of the portion of the core facing the DUT. It becomes easier.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be exemplarily described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention only to those unless otherwise specified. This is just an example.
[0013]
FIG. 1 is a schematic block diagram of an apparatus showing an embodiment of the present invention, and FIGS. 2 to 4 are sectional views showing an embodiment of a detection / excitation sensor according to the present invention. In the figure, 1 is a detection / excitation sensor used in the present invention, 2 is a core made of a high permeability material (amorphous ferrite, high permeability steel plate, etc.) constituting the detection / excitation sensor 1 and formed in a half donut shape, 3 is a device under test Excitation coils 4, 5 for generating magnetic flux orthogonal to the body 6 are wound around the core 2 side of the excitation coil 3, and the magnetic field induced in the DUT 6 by the magnetic flux generated by the excitation coil 3. The detection coil to be detected is wound around the core 2 side of the excitation coil 3 in this figure . Reference numeral 6 denotes a device under test, and 7 an arithmetic unit (CPU), which generates a signal for an alternating magnetic field in which a plurality of frequency components sent to the excitation coil 3 of the detection / excitation sensor 1 are multiplexed, and the detection coil 4. 5 is analyzed by fast Fourier transform, relative amplitude value detection, etc., the position and depth of the defect in the DUT 6 are calculated, and the sweep position of the detection / excitation sensor 1 is instructed. Reference numeral 8 denotes a digital / analog converter (D / A-C) for digital / analog conversion of a signal multiplexed from a plurality of frequency components sent from the arithmetic unit 7, and 9 amplifies the signal from the digital / analog converter 8. , A power amplifier 10 for generating an alternating magnetic field in which a plurality of frequency components are multiplexed by being supplied to the exciting coil 3, 10 and 11 are preamplifiers for amplifying a minute signal detected by the detection coils 4 and 5, and 12 and 13 An analog / digital converter (A / D-C) 14 for analog / digital conversion of signals from the detection coils 4 and 5 amplified by the preamplifiers 10 and 11 and sending them to the arithmetic unit 7, 14 has a motor and its drive circuit. sweeping device for moving so as to sweep the detection and excitation sensor 1 with respect to the test object 6 Te, 3 20 1, 20 2 phases and the test object in the core 2 Detecting coil wound around the portion near to a 21 1, 21 2 is also detecting coil accommodated in the detecting coil housing hole 22 provided in the portion facing the vicinity and DUT core 2 in FIG.
[0014]
FIG. 2 is a cross-sectional view showing a first embodiment of the detection / excitation sensor 1 according to the present invention, and is a core 2 side configured in a semi-doughnut shape with a high permeability material (amorphous ferrite, high permeability steel plate, etc.). The detection coils 4 and 5 are wound on the outer side, and the excitation coil 3 is wound on the outer side. The detection coils 4 and 5 and the excitation coil 3 are arranged on the core 2 side. The detection coils 4 and 5 may be wound around the outside. 3 and 4 are cross-sectional views showing the second and third embodiments of the detection / excitation sensor 1, which are configured in a semi-dough shape with a high permeability material (amorphous ferrite, high permeability steel plate, etc.). winding an exciting coil 3 around the core 2, independently of each winding of the detection coil 20 1, 20 2 at opposite end portions near the test object of the semi-donut-shaped core 2 in the embodiment of FIG. 3 In the embodiment shown in FIG. 4, the detection coils 21 1 and 21 2 are separately housed in the detection coil housing holes 22 provided in the vicinity of both end portions of the half-doughnut-shaped core 2 facing the object to be tested. Is.
[0015]
In the magnetic flaw detection apparatus of the present invention, any of the detection / excitation sensors 1 in the embodiments shown in FIGS. 2 to 4 may be used. In FIG. 1, the shape shown in FIG. 2 is taken as an example. The case where the detection / excitation sensor 1 is used is shown.
[0016]
When the detection / excitation sensor 1 configured in this way generates an alternating magnetic field that generates a magnetic flux that crosses the test object 6 made of a conductor such as steel at right angles, the test object 6 is caused by the skin effect. The magnetic flux that enters the field becomes weaker as it gets deeper. This phenomenon becomes more prominent as the excitation frequency of the exciting coil 3 is higher and as the magnetic permeability of the DUT 6 is higher. Therefore, when a magnetic field in which a plurality of frequency components are multiplexed is applied to the device under test 6, the piping material flesh caused by cracks, pinhole defects, corrosion, etc. generated deep in the device under test 6. When there is an internal defect such as thickness reduction, the effect of the magnetic field due to the magnetic flux entering by the defect is a value corresponding to each of the multiplexed frequencies, and by detecting the affected magnetic field for each frequency, It becomes possible to estimate and detect the position and depth of the defect.
[0017]
In the magnetic flaw detector according to the first embodiment shown in FIG. 1 configured based on such a concept, a signal for an alternating magnetic field in which a plurality of frequency components are multiplexed is generated by an arithmetic unit (CPU) 7. Then, it is converted into an analog signal by a digital / analog converter (D / A-C) 8, amplified by a power amplifier 9, and given to the detection / excitation sensor 1. Similarly, the arithmetic unit (CPU) 7 moves the detection / excitation sensor 1 relative to the device under test 6, generates a sweep signal for sweeping the entire surface of the device under test 6, and gives it to the sweep device 14. The entire surface of the device under test 6 is swept by moving the detection / excitation sensor 1 or the device under test 6 by the motor of the sweep device 14 or its drive circuit.
[0018]
Therefore, the detection / excitation sensor 1 sweeps the DUT 6 while applying a magnetic flux generated by an alternating magnetic field in which a plurality of frequency components are multiplexed to the DUT 6, and the detection coils 4 and 5 of the detection / excitation sensor 1 The magnetic field generated in the device under test 6 is detected by the magnetic flux generated by the alternating magnetic field and sent to the preamplifiers 10 and 11. Then, the preamplifiers 10 and 11 amplify this detection signal and send it to the analog / digital converters 12 and 13. The analog / digital converters 12 and 13 convert this analog signal into a digital signal and send it to the arithmetic unit 7. Then, the arithmetic unit 7 monitors whether or not the device under test 6 is defective based on the transmitted signal.
[0019]
The magnetic flux applied to the device under test 6 by the exciting coil 3 enters the depth according to the excitation frequency and the magnetic permeability of the device under test 6 as described above, but the device under test 6 is not defective. In this case, there is no change in the magnetic field detected by the detection coils 4 and 5 and the value is almost constant. However, when the device under test 6 has a defect, only the magnetic flux having a frequency equal to or lower than a specific frequency reaches the position where the defect is present, the magnetic field is affected, and a change occurs. Therefore, since the magnetic field detected by the detection coils 4 and 5 changes depending on the excitation frequency, the arithmetic unit 7 performs fast Fourier transform and relative change of the magnetic field of each frequency detected by the detection coils 4 and 5. Using the amplitude value detection, for example, the depth of the defect is detected from the frequency at which the amplitude value has changed and the frequency at which the frequency value has not changed, and the strength of the magnetic field detected by the detection coils 4 and 5 for each specific frequency is detected. The position of the defect is estimated by detecting the magnetic potential difference, and the size of the defect is estimated by changing the frequency of the magnetic flux, and the defect is estimated and detected.
[0020]
In this way, by performing such calculation while sweeping the entire surface of the detection / excitation sensor 1 with respect to the device under test 6 by the sweep device 14, it is generated at a crack or a welded portion of the device under test 6. Pinhole defects, internal defects such as pipe wall thickness reduction caused by corrosion, etc., can be estimated in position and depth, and by displaying the detection results on a display device or the like, the device under test 6 Internal defects can be visually observed.
[0021]
Figure 3 is a second embodiment of the detection and excitation sensor 1 of the present invention, in this second embodiment, opposite end portions near the detection coil 20 1, 20 2 and the test object 6 of the core 2 The excitation coil 3 is wound between the detection coils 20 1 and 20 2 . By doing so, the detection coils 20 1 and 20 2 are separated from each other by the distance between both end portions of the core 2 facing the device under test 6, so that the detection of the magnetic potential difference becomes easier.
[0022]
FIG. 4 shows a third embodiment of the detection / excitation sensor 1 according to the present invention. In this third embodiment, both end portions of the detection coils 21 1 and 21 2 facing the DUT 6 of the core 2 are shown. The exciting coil 3 is housed in a detection coil housing hole 22 provided in the vicinity, and the excitation coil 3 is wound between the detection coils 20 1 and 20 2 . By doing so, the detection coils 21 1 and 21 2 are separated from each other by the distance between both end portions of the core 2 facing the device under test 6 as in the second embodiment, so that the magnetic potential difference can be easily detected. Become.
[0023]
【The invention's effect】
As described above, according to the present invention, the excitation coil 3 constituting the detection / excitation sensor 1 generates an alternating magnetic field in which a plurality of frequency components are multiplexed and applies it to the device under test 6 to provide two detections. Because the level detected by the detection coil differs between the influence of the low frequency caused by the defect on the magnetic field and the influence of the high frequency on the magnetic field, and the frequency changes due to the defect. Using the fact that the magnetic flux reaching the defect occurring in the specimen 6 varies depending on the frequency and that the magnetic field is affected by the defect, the frequency, magnetic potential difference, amplitude, etc. changed for each frequency are detected. Estimate and detect the position and depth of internal defects such as pinhole defects generated in cracks and welds of the specimen under test, reduced thickness of piping materials caused by corrosion, etc. Possible and becomes easy, and it is possible to provide a magnetic flaw detector inexpensive structure, is intended to provide a great effect.
[Brief description of the drawings]
FIG. 1 is a schematic block diagram of an apparatus showing an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a first embodiment of a detection / excitation sensor according to the present invention.
FIG. 3 is a cross-sectional view showing a second embodiment of the detection / excitation sensor according to the present invention.
FIG. 4 is a cross-sectional view showing a third embodiment of the detection / excitation sensor of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Detection / excitation sensor 2 Core 3 Excitation coil 4, 5 Detection coil 6 Test object 7 Computing device (CPU)
8 Digital / Analog Converter (D / A-C)
9 Power amplifier 10, 11 Preamplifier 12, 13 Analog / digital converter (A / D-C)
14 Sweeping device

Claims (3)

高透磁率材料を半ドーナツ状に形成したコアに巻回して被試験体に直交交差する磁束を発生する励磁用コイルと、該励磁用コイルによる磁束で被試験体に誘起された磁界を検出する検出用コイルとで構成された磁気探傷装置において、
前記検出用コイルを前記コアに2つ設け、前記励磁用コイルに複数の周波数成分を多重化した交流を印加する手段と、前記両検出用コイルが検出した磁界から前記複数の周波数における各周波数の周波数変化、磁位差、振幅値の変化などを検出し、被試験体の欠陥の位置、深さを推定・探知する手段とを有し、前記半ドーナツ状コアの被試験体と相対する両端部分近傍を残して該コアに巻回した励磁用コイルと、該励磁用コイルとコアとの間に二重巻き状に巻回した2つの検出用コイルとからなり、該2つの検出用コイルを前記半ドーナツ状コアの両端部分にまで延在して巻回したことを特徴とする磁気探傷装置。
An excitation coil that generates a magnetic flux orthogonally intersecting the DUT by winding a high permeability material around a core formed in a semi-doughnut shape, and a magnetic field induced in the DUT by the magnetic flux generated by the excitation coil is detected. In a magnetic flaw detector composed of a detection coil,
Two detection coils are provided in the core, a means for applying an alternating current in which a plurality of frequency components are multiplexed to the excitation coil, and each frequency at the plurality of frequencies from the magnetic field detected by the two detection coils. Means for detecting frequency change, magnetic potential difference, amplitude value change, etc., and estimating / detecting the position and depth of the defect of the DUT, both ends of the half-doughnut core facing the DUT An excitation coil wound around the core leaving the vicinity of the core and two detection coils wound in a double winding between the excitation coil and the core. The two detection coils A magnetic flaw detector which extends to both end portions of the half-doughnut-shaped core and is wound .
高透磁率材料を半ドーナツ状に形成したコアに巻回して被試験体に直交交差する磁束を発生する励磁用コイルと、該励磁用コイルによる磁束で被試験体に誘起された磁界を検出する検出用コイルとで構成された磁気探傷装置において、
前記検出用コイルを前記コアに2つ設け、前記励磁用コイルに複数の周波数成分を多重化した交流を印加する手段と、前記両検出用コイルが検出した磁界から前記複数の周波数における各周波数の周波数変化、磁位差、振幅値の変化などを検出し、被試験体の欠陥の位置、深さを推定・探知する手段とを有し、前記半ドーナツ状コアの被試験体と相対する両端部分近傍を残して該コアに巻回した励磁用コイルと、前記コアの励磁用コイルが巻回されていないコア両端部分近傍にそれぞれ別個に巻回した前記2つの検出用コイルとからなることを特徴とする磁気探傷装置。
An exciting coil that is wound around a core formed of a high permeability material in a semi-doughnut shape and generates a magnetic flux that intersects the DUT perpendicularly, and a magnetic field induced in the DUT is detected by the magnetic flux generated by the exciting coil. In a magnetic flaw detector composed of a detection coil,
Two detection coils are provided in the core, a means for applying an alternating current in which a plurality of frequency components are multiplexed to the excitation coil, and each frequency at the plurality of frequencies from the magnetic field detected by the two detection coils. Means for detecting frequency change, magnetic potential difference, amplitude value change, etc., and estimating / detecting the position and depth of the defect of the DUT, both ends of the half-doughnut core facing the DUT An excitation coil wound around the core leaving the vicinity of the core, and the two detection coils wound separately in the vicinity of both ends of the core where the excitation coil of the core is not wound. A magnetic flaw detection device.
高透磁率材料を半ドーナツ状に形成したコアに巻回して被試験体に直交交差する磁束を発生する励磁用コイルと、該励磁用コイルによる磁束で被試験体に誘起された磁界を検出する検出用コイルとで構成された磁気探傷装置において、
前記検出用コイルを前記コアに2つ設け、前記励磁用コイルに複数の周波数成分を多重化した交流を印加する手段と、前記両検出用コイルが検出した磁界から前記複数の周波数における各周波数の周波数変化、磁位差、振幅値の変化などを検出し、被試験体の欠陥の位置、深さを推定・探知する手段とを有し、前記半ドーナツ状コアの被試験体と相対する両端部分近傍を残して該コアに巻回した励磁用コイルと、前記コアが被試験体と相対する両端部分近傍に設けた検出用コイル収容穴にそれぞれ別個に収容した2つの検出用コイルとからなることを特徴とする磁気探傷装置。
An excitation coil that generates a magnetic flux orthogonally intersecting the DUT by winding a high permeability material around a core formed in a semi-doughnut shape, and a magnetic field induced in the DUT by the magnetic flux generated by the excitation coil is detected. In a magnetic flaw detector composed of a detection coil,
Two detection coils are provided in the core, a means for applying an alternating current in which a plurality of frequency components are multiplexed to the excitation coil, and each frequency at the plurality of frequencies from the magnetic field detected by the two detection coils. Means for detecting frequency change, magnetic potential difference, amplitude value change, etc., and estimating / detecting the position and depth of the defect of the DUT, both ends of the half-doughnut core facing the DUT an exciting coil wound on the core, leaving a portion near the core consists of two detecting coils each housed separately in the detection coil housing hole provided at opposite end portions near the test object Magnetic flaw detector characterized by that.
JP2002375649A 2002-12-25 2002-12-25 Magnetic flaw detector Expired - Fee Related JP3748852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002375649A JP3748852B2 (en) 2002-12-25 2002-12-25 Magnetic flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002375649A JP3748852B2 (en) 2002-12-25 2002-12-25 Magnetic flaw detector

Publications (2)

Publication Number Publication Date
JP2004205380A JP2004205380A (en) 2004-07-22
JP3748852B2 true JP3748852B2 (en) 2006-02-22

Family

ID=32813309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002375649A Expired - Fee Related JP3748852B2 (en) 2002-12-25 2002-12-25 Magnetic flaw detector

Country Status (1)

Country Link
JP (1) JP3748852B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6659444B2 (en) * 2016-04-28 2020-03-04 株式会社東芝 Magnetic property measuring probe, magnetic property measuring system, magnetic property measuring method and deterioration evaluation method
JP6607242B2 (en) * 2017-01-31 2019-11-20 Jfeスチール株式会社 Processing state evaluation method, processing state evaluation device, and manufacturing method of grain-oriented electrical steel sheet
CN110006991A (en) * 2019-04-25 2019-07-12 北京工业大学 A kind of ferromagnetic material earlier damage detection high sensitive electromagnetic mixed frequency sensor
CN110045003A (en) * 2019-04-25 2019-07-23 北京工业大学 A kind of Uniform ity Design Method being mixed detection excitation parameters optimization for electromagnetism
CN111189905B (en) * 2020-01-09 2023-09-05 中国石油大学(华东) Three-dimensional size assessment method for corrosion defect of underwater structure based on alternating-current electromagnetic field
CN112858467A (en) * 2021-04-09 2021-05-28 中国石油大学(华东) Rotating electromagnetic field pipeline crack detection probe and detection system in any direction

Also Published As

Publication number Publication date
JP2004205380A (en) 2004-07-22

Similar Documents

Publication Publication Date Title
Tsukada et al. Small eddy current testing sensor probe using a tunneling magnetoresistance sensor to detect cracks in steel structures
EP2480858B1 (en) Eddy current inspection of case hardening depth
Jomdecha et al. Design of modified electromagnetic main-flux for steel wire rope inspection
Tsukada et al. Detection of inner corrosion of steel construction using magnetic resistance sensor and magnetic spectroscopy analysis
Tsukada et al. Detection of back-side pit on a ferrous plate by magnetic flux leakage method with analyzing magnetic field vector
JP5522699B2 (en) Nondestructive inspection apparatus and nondestructive inspection method using pulse magnetism
Park et al. Evaluation of pulsed eddy current response and detection of the thickness variation in the stainless steel
JP2008032575A (en) Eddy current measuring probe and flaw detection device using it
JP4756409B1 (en) Nondestructive inspection apparatus and nondestructive inspection method using alternating magnetic field
JP2011013087A (en) Leakage flux flaw detection method and device
JP4804006B2 (en) Flaw detection probe and flaw detection apparatus
JP2018071983A (en) Magnetic nondestructive inspection method and magnetic nondestructive inspection device
Yoshimura et al. Optimal frequency of low-frequency eddy-current testing for detecting defects on the backside of thick steel plates
WO2008072508A1 (en) Nondestructive test instrument and nondestructive test method
JP3748852B2 (en) Magnetic flaw detector
JP4605307B1 (en) Bolt tightening force inspection device
WO2012021034A2 (en) Conductor thickness detecting device using a double core
JP2005338046A (en) Nondestructive inspection apparatus for metallic conduit
JP5013363B2 (en) Nondestructive inspection equipment
Matsunaga et al. Application of a HTS coil with a magnetic sensor to nondestructive testing using a low-frequency magnetic field
EP1877767A2 (en) Near fieldtm and combination near fieldtm - remote field electromagnetic testing (et) probes for inspecting ferromagnetic pipes and tubes such as those used in heat exchangers
JPH05203629A (en) Electromagnetic flaw detection and device
JPH09274018A (en) Method and apparatus for detecting flaw of magnetic metal element
CN114137065B (en) Metal crack/stress gradient detection sensor and application method thereof
Hayashi et al. Magnetic image detection of the stainless-steel welding part inside a multi-layered tube structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees