WO2012021034A2 - Conductor thickness detecting device using a double core - Google Patents

Conductor thickness detecting device using a double core Download PDF

Info

Publication number
WO2012021034A2
WO2012021034A2 PCT/KR2011/005962 KR2011005962W WO2012021034A2 WO 2012021034 A2 WO2012021034 A2 WO 2012021034A2 KR 2011005962 W KR2011005962 W KR 2011005962W WO 2012021034 A2 WO2012021034 A2 WO 2012021034A2
Authority
WO
WIPO (PCT)
Prior art keywords
core
probe
double core
insulator
hall sensor
Prior art date
Application number
PCT/KR2011/005962
Other languages
French (fr)
Korean (ko)
Other versions
WO2012021034A3 (en
Inventor
박덕근
정용무
김흥회
Original Assignee
한국원자력연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국원자력연구원 filed Critical 한국원자력연구원
Publication of WO2012021034A2 publication Critical patent/WO2012021034A2/en
Publication of WO2012021034A3 publication Critical patent/WO2012021034A3/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/04Corrosion probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9013Arrangements for scanning
    • G01N27/902Arrangements for scanning by moving the sensors

Definitions

  • the present invention provides a conductor thickness flaw detector, which doubles the core of a probe portion, thereby increasing the sensitivity of the flaw detector by increasing the sensitivity of the flaw detector without increasing the size of the core and at the low current. Concerning conductor thickness flaw detectors.
  • the insulation must be dismantled in order to inspect the pipe for damage due to corrosion or reduction in thickness of the pipe underneath the insulation.
  • the present invention was devised to solve the above problems, and by double the core of the probe part, the strength of the flaw detector can be obtained without increasing the size of the core and obtaining the intensity of the magnetic field even at a low current.
  • Using double core with increased The object is to provide a conductor thickness flaw detector.
  • the conductor thickness flaw detection apparatus using the heavy core according to the preferred embodiment of the present invention, the non-destructive inspection of the thickness change (thinning) by the corrosion or corrosion of the pipe covered with the insulator And using the eddy currents through the differential probe with double cores to evaluate the loss of the piping outside of the insulator without dismantling the insulator.
  • the probe portion, the eddy current is a fill eddy current
  • a hall sensor, a GMR (Giant Magnetic Resistance) sensor, or a coil sensor is installed between the cores in the double core.
  • a probe having a dual core, a drive coil, and a differential Hall sensor;
  • a pillar generation unit connected to the probe unit to generate a broadband pillar voltage applied to the driving coil;
  • An amplifier connected to the probe part to amplify a measurement signal induced by the flow sensor;
  • An A / D converter connected to the amplifier to convert the measurement signal into a digital signal;
  • a control unit configured to store and display the digital signal while controlling the probe unit, the pillar generation unit, the medium width unit, and the A / D conversion unit.
  • the probe portion the double core consisting of two cores spaced apart from each other; And the driving coils respectively wound around the core
  • the hall sensor includes: a first hall sensor mounted on a core on an upper joint member connecting upper portions of the two driving coils; and a lower portion of the two driving coils. It is preferred that the teeth are toothed with a second Hall sensor mounted in the center on the lower joint member.
  • the core is preferably made of a magnetic permeability magnetic material.
  • the pulse generator generates a square pulse having a pulse width of 20 ysec or more.
  • the pillar generating unit adjusts the pillar width from lOysec to 1 msec and the frequency of generation from 100 Hz to 1 kHz.
  • the amplifying unit preferably includes a differential amplifying circuit electrically connected to the hall sensor of the probe unit.
  • the conductor thickness flaw detection apparatus using a distillation core according to the present invention does not disassemble the insulator by a non-destructive test without changing the thickness caused by the corrosion or corrosion of the pipe covered with the insulator, Through the fill eddy current has the effect of evaluating the loss of the pipe from the outside of the insulator.
  • FIG. 1 is a graph illustrating a calculation of the shape of a single core and the intensity of a magnetic flux generated by the single core.
  • FIG. 2 is a graph showing the calculation of the shape of the double core and the intensity of the magnetic flux made by the middle core.
  • FIG. 3 is a view showing a pipe thinning inspection device using a double core according to a preferred embodiment of the present invention.
  • Figure 4 is a schematic diagram showing the shape of the probe portion for detecting a thickness change in the insulator on the object to be covered with the insulator in the pipe thinning inspection device using a double core according to an embodiment of the present invention.
  • FIG. 5 is a differential diagram from the voltage induced in a differential Hall sensor when a pulse voltage generated from a pulls generator is applied to a driving coil surrounding a diversion core in the pipe thinning flaw detector using the dual core of FIG. 4. Graph showing the signal.
  • FIG. 6 is a graph showing a signal change of a Hall sensor induced in a test piece according to a change in pulse width in the pipe thinning inspection device using the distillation core of FIG. 4.
  • FIG. 7 illustrates the variation of the differential signal voltage according to the thickness change of the test piece as the thickness of the insulator changes in the single-core pipe thinning flaw detector.
  • FIG. 8 illustrates a change in the differential signal voltage according to the change in thickness of the test piece as the thickness of the insulator changes in the pipe thinning inspection device using the double core of FIG.
  • FIG. 9 is a computer screen showing an operation and a flaw detection result of the pipe thinning flaw detector using the double core of FIG. 4. ⁇ 39>
  • the thickness change (decrease) caused by the corrosion or corrosion of the pipe covered with the insulator is not dismantled by non-destructive inspection, and the eddy current is used through the differential probe part having the double cores. Characterized in that configured to evaluate the loss of the pipe from the outside.
  • FIG. 1 is a graph showing the shape of a single core and the strength of the magnetic flux produced by a single core
  • FIG. 2 is a graph showing the shape of the double core and the strength of a magnetic flux produced by the double core. to be .
  • the calculation conditions are the same, and the applied current and the number of windings of the driving coil 40 are equal to 1A and 150 turns, respectively.
  • the maximum magnetic flux is at the center of the core, and when the hall sensor for defect detection is at the center of the core, the hall sensor has the induced magnetic flux by the driving coil rather than the change of magnetic flux due to the defect. It is much larger so it is harder to detect defects.
  • the maximum magnetic flux is in the core of each core, and the magnetic flux in the place where the defect detection hall sensor 61K62 is located is very small so that the magnetic flux change due to the defect signal can be easily detected. Can be.
  • FIG 3 is a view showing a pipe thinning inspection device using a distillation core according to a preferred embodiment of the present invention
  • Figure 4 is an insulator in a pipe thinning inspection device using a double core according to a preferred embodiment of the present invention. Schematic diagram showing the shape of the probe to detect the thickness change inside the insulator on the covered object.
  • a probe part for detecting the thickness of the conductor 1 in contact with the conductor 1 to be detected a pulse generator, an amplification part configured to be electrically connected to the probe part, An A / D converter, and a control unit.
  • the probe portion has a dual core 20, a drive coil 40, and a differential Hall sensor.
  • the probe part includes a double core 20 formed of two cores spaced apart from each other, a driving coil 40 wound around the core, and a hall sensor disposed between the two driving coils 40. 61K62).
  • the Hall sensor 61K62 is a first Hall sensor between the two drive coils (40)
  • the first hall sensor 61 is an upper joint member connecting the upper portions of the two driving coils 40.
  • the second Hall sensor 62 is mounted in the center on the lower joint member 52 connecting the lower portion of the two drive coils (40).
  • the core is preferably made of a high permeability magnetic material.
  • This probe part is mounted on the insulator (2) surrounding the conductor (1) to perform a measurement operation.
  • the pillar generating unit is connected to the probe unit to generate a broadband pillar current applied to the driving coil 40.
  • This pillar generating unit generates a square pulse having a pillar width of 20 ⁇ sec or more, adjusts the pillar width from 10 ⁇ sec to 1 msec, and adjusts the frequency of occurrence from 100 Hz to 1 kHz. .
  • the differential amplifier unit is connected to the probe portion and the two Hall sensors
  • (61) configured to amplify the measurement signal induced in (62).
  • This amplification circuit amplifies the difference between the output voltages of the Hall sensors 61 and 62 applied to the two input terminals. If both input voltages contain in-phase input signals in the in-phase input voltage, the in-phase component on the output side is removed.
  • the A / D conversion unit is connected to the amplifier unit is configured to convert the measurement signal into a digital signal.
  • control unit controls the above-described probe unit, pillar generation unit, amplification unit, and A / D conversion unit, and stores the digital signal converted by the A / D conversion unit and utilizes the display means. Is configured to display.
  • control unit is dedicated for manipulating the components using Lab-View. Windows programs can be utilized.
  • Figure 1 is a graph showing the shape of a single core and the strength of the magnetic flux produced by the single core
  • Figure 2 is a graph showing the shape of the double core and the strength of the magnetic flux generated by the double core to be.
  • the calculation conditions are the same, and the number of times of applying the applied current and the driving coil 40 is equal to 1A and 150 turns, respectively.
  • the maximum magnetic flux is at the core depth, and when the hall sensor for defect detection is located at the center of the core, the hall sensor has the induced magnetic flux by the driving coil rather than the magnetic flux change due to the defect. It is much larger, making it harder to detect defects.
  • the maximum magnetic flux is located at the center of each core, and the magnetic flux at the place where the defect detection hall sensors 61 and 62 are located is very small so that the magnetic flux can be easily changed by the defect signal. Can be detected.
  • FIG 3 is a view showing a pipe thinning inspection device using a double core according to a preferred embodiment of the present invention
  • Figure 4 is an insulator in a pipe thinning inspection device using a double core according to a preferred embodiment of the present invention
  • This is a schematic diagram showing the shape of the tube to detect the thickness change inside the insulator on the sensing object covered with.
  • a probe part for detecting the thickness of the conductor 1 in contact with the conductor 1 to be detected a pulse generator, an amplifier part configured to be electrically connected to the probe part, An A / D converter, and a control unit.
  • the PTU part has a double core 20, a drive coil 40, and a differential Hall sensor. (61) (62).
  • the probe part may include a dip core 20 including two cores spaced apart from each other, a driving coil 40 wound around each of the cores, and a hall sensor 61 disposed between the two driving coils 40. (62).
  • the Hall sensors 61 and 62 are the first Hall sensors between the two drive coils 40.
  • the first Hall sensor 61 is an upper joint member connecting the upper portions of the two driving coils 40.
  • the second Hall sensor 62 is mounted at the center on the lower joint member 52 connecting the lower portions of the two drive coils 40.
  • the core is preferably made of a high permeability magnetic material.
  • This probe part is mounted on the insulator (2) surrounding the conductor (1) to perform the measurement.
  • the pulse generator is connected to the probe part to generate a wideband pulse current applied to the driving coil 40.
  • These pulse generators generate a square pulse with a fill width of 20 ⁇ sec or more, adjust the spread width from 10 y sec to 1 msec, and control the frequency of occurrence from 100 Hz to 1 kHz. do.
  • the differential amplifier unit is connected to the probe portion and the two Hall sensors
  • This amplification circuit is a circuit for amplifying the difference between the output voltages of the Hall sensors 61 and 62 applied to the two input terminals. If both input voltages contain in-phase input signals in the in-phase input voltage, the in-phase component on the output side is removed.
  • the A / D conversion unit is connected to the amplifying unit to convert the measurement signal into a digital signal.
  • control unit controls the above-described probe unit, pillar generation unit, amplification unit, and A / D conversion unit, and stores the digital signal converted by the A / D conversion unit and displays the display unit. Is configured to display. At this time, the control unit is dedicated for manipulating the components using Lab-View.
  • FIG. 5 illustrates a voltage and a differential signal induced in a differential Hall sensor when a pulse voltage generated from a pillar generating unit is applied to a driving coil surrounding a double core in the pipe thinning inspection device using the double core of FIG. 4.
  • 6 is a graph showing a signal change of the Hall sensor induced in the test piece according to the change in the fill width in the pipe thinning inspection device using the double core of FIG.
  • Figure 7 shows a change in the differential signal voltage according to the thickness change of the test piece as the thickness of the insulator, in the pipe thinning flaw detection apparatus consisting of a single core
  • Figure 8 is a double core
  • the differential signal voltage is shown as the thickness of the test specimen changes as the thickness of the insulator changes.
  • the pulse eddy current test method can be applied to thicker test specimens, so that the restriction of the test specimen is relatively small in the case of the differential probe portion. .
  • FIG. 9 is a computer screen illustrating an operation and a flaw detection result of a pipe thinning flaw detector using the double core of FIG. 4.
  • the upper figure shows the signal induced from the differential Hall sensor.
  • the middle figure shows the signal strength according to the thickness of the test piece so that the thickness difference of the test piece can be visually checked.
  • the lower figure shows the signal processing depending on the thickness of the specimen so that the color change can be confirmed.
  • Eddy current flaw detection when the flow of eddy current is affected by blistering, etc., disturbs or changes the direction of eddy current, and the magnetic field of eddy current changes and affects the test coil magnetic field.
  • the stronger the eddy current the stronger the system to detect discontinuities.
  • the resulting eddy currents are concentrated by the skin effect near the surface of the circumference of the coil.
  • the eddy current concentrates on the surface root as the frequency increases, and decreases as it goes deeper.
  • the penetration depth of the eddy current is given by the following equation.
  • f is the frequency ( ⁇ )
  • is the conductivity
  • is the penetration depth (m)
  • is the permeability (H / m).
  • the frequency is treated twice as the fill width, so the penetration depth increases as the fill width increases.
  • the fill width is about 25 times larger than that of the single probe portion, and the penetration depth of the eddy current in the differential probe portion is increased by five times compared to that of the single probe portion.
  • the hall sensor of the probe part of the present invention has an advantage of being easy to manufacture in various forms, easy to apply in the field, and appropriately adjust the reception sensitivity.
  • a thickness change due to corrosion or corrosion of a pipe covered with an insulator without dismantling the insulator by a non-destructive test, using a pulsed eddy current through a differential probe section having a double core at the outside of the insulator Since the loss of the pipe can be evaluated, it can be used more effectively in the field of conductor thickness flaw detector.

Landscapes

  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

According to the present invention, a duct thinning detecting device using a double core is devised so as to evaluate corrosion or changes in thickness (thinning) caused by corrosion of a duct which is covered by an insulator, which is to say losses in the duct, from outside the insulator by using eddy currents by means of a differential probe having a double core without dismantling the insulator in non-destructive testing. More specifically, the present invention comprises: a probe unit having a double core, a drive coil and a differential Hall sensor; a pulse-generating unit which is connected to the probe unit and generates a wide-band pulse voltage that is applied to the drive coil; an amplification unit which is connected to the probe unit and amplifies a measurement signal induced in the Hall sensor; an A/D conversion unit which is connected to the amplification unit and converts the measurement signal to a digital signal; and a control unit which is adapted to control the probe unit, the pulse-generating unit, the amplification unit and the A/D conversion unit while at the same time storing and displaying the digital signal.

Description

【명세서】  【Specification】
【발명의명칭】  [Name of invention]
이중코아를 이용한 도체두께 탐상장치  Conductor thickness flaw detector using double core
【기술분야】  Technical Field
<ι> 본 발명은 도체두께 탐상장치로서, 프루브부의 코아를 이중으로 함으로써, 코아의 크기를 증가시키지 않고 또한 낮은 전류에서도 층분한 자기장의 세기를 얻 어 탐상장치의 감도를 증가시킨 이중코아를 이용한 도체두께 탐상장치에 관한 것이 다.  <ι> The present invention provides a conductor thickness flaw detector, which doubles the core of a probe portion, thereby increasing the sensitivity of the flaw detector by increasing the sensitivity of the flaw detector without increasing the size of the core and at the low current. Concerning conductor thickness flaw detectors.
<2>  <2>
【배경기술】  Background Art
<3> 일반적으로, 고온의 유체를 전송하는 경우에는 열손실을 방지하기 위하여 운 송체 (배관) 주의를 절연체 (보온재)로 둘러싸서 배관을 보호하고 있다.  <3> In general, in the case of transferring high temperature fluids, the pipes are protected by an insulator (insulating material) to prevent heat loss.
<4> 그러나, 이 경우 절연체 밑에 있는 배관의 부식이나 두께 감소에 의한 배관 의 파손을 미연에 검사하기 위해서는 절연체를 해체하여야 한다 .  In this case, however, the insulation must be dismantled in order to inspect the pipe for damage due to corrosion or reduction in thickness of the pipe underneath the insulation.
<5>  <5>
<6> 절연체를 해체하지 않고 배관의 부식을 탐상하기 위하여 필스 와전류 기술이 사용되고 있으나, 피검체와 탐촉자 사이의 거리가 멀어질수록 자기장의 강도가 급 격히 저하되어 탐상감도가 떨어지게 된다.  <6> Although the pill eddy current technique is used to inspect the corrosion of the pipe without dismantling the insulator, the farther the distance between the object and the probe is, the stronger the magnetic field is, the less the flaw detection sensitivity is.
<7> 아울러, 자기장의 침투깊이를 증가시키기 위하여 탐촉자의 자화코아의 크기 나 전류의 강도를 증가시키는 데는 한계가 있다.  In addition, there is a limit in increasing the magnitude of the magnetization core and the intensity of the current to increase the penetration depth of the magnetic field.
<8>  <8>
<9> 단일코아의 경우 코아의 증심에서 최대 자속이 생성되며 이 자속에 의하여 자기센서가 먼저 포화되어 버려 결함을 탐지할수 없는 문제점이 발생한다.  In the case of a single core, a maximum magnetic flux is generated in the core of the core, and the magnetic sensor saturates first due to the magnetic flux.
<ιο> 참고로, JP 제 1998318988호, 및 KR 제 20010064351호와 같은 문헌들이 있으 나, 이는 도체의 외부에서 도체 내부의 손실을 정확하게 측정할 수 없는 한계점이 있다.  <ιο> For reference, there are documents such as JP 1998318988 and KR 20010064351, which have the limitation that the loss inside the conductor can not be accurately measured outside the conductor.
<11>  <11>
【발명의 내용】  [Content of invention]
【기술적 과제】  [Technical problem]
<12> 본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 프루브부 의 코아를 이중으로 함으로써, 코아의 크기를 증가시키지 않고 또한 낮은 전류에서 도 층분한 자기장의 세기를 얻어 탐상장치의 감도를 증가시킨 이중코아를 이용한 도체두께 탐상장치를 제공하는 데에 그 목적이 있다. The present invention was devised to solve the above problems, and by double the core of the probe part, the strength of the flaw detector can be obtained without increasing the size of the core and obtaining the intensity of the magnetic field even at a low current. Using double core with increased The object is to provide a conductor thickness flaw detector.
<13>  <13>
【기술적 해결방법】  Technical Solution
<14> 상기와 같은 목적을 달성하기 위하여 본 발명의 바람직한 실시예에 따른 이 중코아를 이용한 도체두께 탐상장치는, 절연체로 덮혀 있는 배관의 부식 또는 부식 에 의한 두께변화 (감육)를, 비파괴검사로서 절연체를 해체하지 않고, 이중코아를 가진 차동형 프루브부를 통해 와전류를 이용하여 상기 절연체의 외부에서 상기 배 관의 손실을 평가하도록 구성된다.  <14> In order to achieve the above object, the conductor thickness flaw detection apparatus using the heavy core according to the preferred embodiment of the present invention, the non-destructive inspection of the thickness change (thinning) by the corrosion or corrosion of the pipe covered with the insulator And using the eddy currents through the differential probe with double cores to evaluate the loss of the piping outside of the insulator without dismantling the insulator.
<15>  <15>
<16> 이때, 상기 프루브부는, 상기 와전류는 필스 와전류이며, 상기 이중코아에서 의 코아사이에 홀센서, GMR(Giant Magnetic Resistance)센서, 또는 코일센서가 설 치된 것이 바람직하다.  In this case, the probe portion, the eddy current is a fill eddy current, it is preferable that a hall sensor, a GMR (Giant Magnetic Resistance) sensor, or a coil sensor is installed between the cores in the double core.
<17>  <17>
<18> 구체적으로, 본 발명은, 이중코아, 구동코일, 및 차동형 홀센서를 구비하는 프루브 (probe)부; 상기 프루브부와 연결되어 상기 구동코일에 인가되는 광대역 필 스전압을 발생시키는 필스발생부; 상기 프루브부에 연결되어 상기 흘센서에 유도된 측정신호를 증폭하는 증폭부; 상기 증폭부와 연결되어 상기 측정신호를 디지털신호 로 전환하는 A/D변환부; 및 상기 프루브부, 필스발생부, 중폭부, 및 A/D변환부를 제어하면서, 상기 디지털신호를 저장하고 디스플레이하도록 구성되는 제어부;를 포 함한다.  Specifically, the present invention, a probe (probe) having a dual core, a drive coil, and a differential Hall sensor; A pillar generation unit connected to the probe unit to generate a broadband pillar voltage applied to the driving coil; An amplifier connected to the probe part to amplify a measurement signal induced by the flow sensor; An A / D converter connected to the amplifier to convert the measurement signal into a digital signal; And a control unit configured to store and display the digital signal while controlling the probe unit, the pillar generation unit, the medium width unit, and the A / D conversion unit.
<19>  <19>
<20> 여기에서, 상기 프루브부는, 서로 이격된 두 개의 코아로 이루어진 상기 이 중코아 ; 및 상기 코아에 각각 감긴 상기 구동코일 ;을 포함하며, 상기 홀센서는, 두 개의 상기 구동코일의 상부를 잇는 상부이음부재 상의 증심에 장착된 제 1 홀센서 와, 두 개의 상기 구동코일의 하부를 잇는 하부이음부재 상의 중심에 장착된 제 2 홀센서로 이투어진 것이 바람직하다ᅳ  Here, the probe portion, the double core consisting of two cores spaced apart from each other; And the driving coils respectively wound around the core, wherein the hall sensor includes: a first hall sensor mounted on a core on an upper joint member connecting upper portions of the two driving coils; and a lower portion of the two driving coils. It is preferred that the teeth are toothed with a second Hall sensor mounted in the center on the lower joint member.
<21> 이때, 상기 코아는 코투자율 자성재료로 이루어진 것이 바람직하다.  In this case, the core is preferably made of a magnetic permeability magnetic material.
<22>  <22>
<23> 또한, 상기 펄스발생부는, 20ysec 이상의 펄스폭을 가진 사각필스 (square pulse)를 발생시키는 것이 바람직하다.  In addition, it is preferable that the pulse generator generates a square pulse having a pulse width of 20 ysec or more.
<24> 아을러, 상기 필스발생부는, 필스폭을 lOysec에서 1msec까지 조절하며, 발 생흿수를 100Hz에서 1kHz까지 조절가능한 것이 바람직하다. <25> In addition, it is preferable that the pillar generating unit adjusts the pillar width from lOysec to 1 msec and the frequency of generation from 100 Hz to 1 kHz. <25>
<26> 그리고 , 상기 증폭부는, 상기 프루브부의 홀센서와 전기 적으로 연계된 차동 증폭회로를 구비하는 것이 바람직하다 .  In addition, the amplifying unit preferably includes a differential amplifying circuit electrically connected to the hall sensor of the probe unit.
<27>  <27>
【유리한 효과】  Advantageous Effects
<28> 본 발명에 따른 이증코아를 이용한 도체두께 탐상장치는, 절연체로 덮혀 있 는 배관의 부식 또는 부식에 의 한 두께변화를 , 비파괴검사로서 절연체를 해체하지 않고, 이증코아를 가진 차동형 프루브부를 통해 필스 와전류를 이용하여 상기 절연 체의 외부에서 상기 배관의 손실을 평가할 수 있는 효과를 가진다.  <28> The conductor thickness flaw detection apparatus using a distillation core according to the present invention does not disassemble the insulator by a non-destructive test without changing the thickness caused by the corrosion or corrosion of the pipe covered with the insulator, Through the fill eddy current has the effect of evaluating the loss of the pipe from the outside of the insulator.
<29>  <29>
【도면의 간단한 설명】  [Brief Description of Drawings]
<30> 도 1은 단일코아의 모양 및 단일코아에 의하여 만들어진 자속의 세기를 계산 한 것을 나타낸 그래프이다.  FIG. 1 is a graph illustrating a calculation of the shape of a single core and the intensity of a magnetic flux generated by the single core.
<31> 도 2는 이중코아의 모양 및 이 중코아에 의하여 만돌어진 자속의 세기를 계산 한 것을 나타낸 그래프이다 . FIG. 2 is a graph showing the calculation of the shape of the double core and the intensity of the magnetic flux made by the middle core.
<32> 도 3은 본 발명의 바람직한 실시 예에 따른 이중코아를 이용한 배관감육 탐상 장치를 나타낸 도이다.  3 is a view showing a pipe thinning inspection device using a double core according to a preferred embodiment of the present invention.
<33> 도 4는 본 발명의 바람직한 실시 예에 따른 이중코아를 이용한 배관감육 탐상 장치에서 절연체로 덮혀 있는 피탐지체 위에서 절연체 내부의 두께변화를 탐지하는 프루브부의 모양을 나타낸 개략도이다 .  Figure 4 is a schematic diagram showing the shape of the probe portion for detecting a thickness change in the insulator on the object to be covered with the insulator in the pipe thinning inspection device using a double core according to an embodiment of the present invention.
<34> 도 5는 도 4의 이중코아를 이용한 배관감육 탐상장치에서, 펼스발생부로부터 발생된 펄스전압이 이증코아를 둘러싸고 있는 구동코일에 인가되 었을 때, 차동형 홀센서에 유도된 전압과 차동신호를 나타낸 그래프이다.  FIG. 5 is a differential diagram from the voltage induced in a differential Hall sensor when a pulse voltage generated from a pulls generator is applied to a driving coil surrounding a diversion core in the pipe thinning flaw detector using the dual core of FIG. 4. Graph showing the signal.
<35> 도 6은 도 4의 이증코아를 이용한 배관감육 탐상장치에서, 펄스폭의 변화에 따라 시험편에서 유도된 홀센서의 신호변화를 나타낸 그래프이다 .  6 is a graph showing a signal change of a Hall sensor induced in a test piece according to a change in pulse width in the pipe thinning inspection device using the distillation core of FIG. 4.
<36> 도 7은 단일코아로 이루어진 배관감육 탐상장치 에서 , 절연체의 두께가 변화 함에 따라 시험편의 두께 변화에 따른 차등신호 전압의 변화를 나타낸 것 이다. <37> 도 8은 이중코아로 이투어진 도 4의 이중코아를 이용한 배관감육 탐상장치에 서, 절연체의 두께가 변화함에 따라 시험편의 두께 변화에 따른 차등신호 전압의 변화를 나타낸 것이다 .  FIG. 7 illustrates the variation of the differential signal voltage according to the thickness change of the test piece as the thickness of the insulator changes in the single-core pipe thinning flaw detector. FIG. 8 illustrates a change in the differential signal voltage according to the change in thickness of the test piece as the thickness of the insulator changes in the pipe thinning inspection device using the double core of FIG.
<38> 도 9는 도 4의 이중코아를 이용한 배관감육 탐상장치의 작동 및 탐상결과를 나타내는 컴퓨터 화면이다 . <39> FIG. 9 is a computer screen showing an operation and a flaw detection result of the pipe thinning flaw detector using the double core of FIG. 4. <39>
【발명의 실시를 위한 최선의 형 태】  [Best Mode for Implementation of the Invention]
<40> 본 발명은 절연체로 덮혀 있는 배관의 부식 또는 부식에 의한 두께변화 (감 육)를 , 비파괴검사로서 절연체를 해체하지 않고, 이중코아를 가진 차동형 프루브부 를 통해 와전류를 이용하여 상기 절연체의 외부에서 상기 배관의 손실을 평가하도 록 구성되는 것을 특징으로 한다.  According to the present invention, the thickness change (decrease) caused by the corrosion or corrosion of the pipe covered with the insulator is not dismantled by non-destructive inspection, and the eddy current is used through the differential probe part having the double cores. Characterized in that configured to evaluate the loss of the pipe from the outside.
<41 >  <41>
<42> 도 1은 단일코아의 모양 및 단일코아에 의하여 만들어진 자속의 세기를 계산 한 것올 나타낸 그래프이고 , 도 2는 이중코아의 모양 및 이중코아에 의하여 만들어 진 자속의 세기를 계산한 것을 나타낸 그래프이다 .  FIG. 1 is a graph showing the shape of a single core and the strength of the magnetic flux produced by a single core, and FIG. 2 is a graph showing the shape of the double core and the strength of a magnetic flux produced by the double core. to be .
<43> 도면올 참조하면, 계산조건은 모두 동일하며 인가전류와 구동코일 (40)을 감 은 횟수는 각각 1A , 150turn으로 동일하게 하였다.  Referring to the drawings, the calculation conditions are the same, and the applied current and the number of windings of the driving coil 40 are equal to 1A and 150 turns, respectively.
<44>  <44>
<45> 도 1의 단일코아의 경우 코아의 중심에서 최 대 자속이 되며 , 결함탐지용 홀 센서가 코아의 중심에 있는 경우, 홀센서는 결함에 의 한 자속변화보다 구동코일에 의한 유도자속이 훨씬 크기 때문에 결함을 탐지하기 힘들다.  In the case of the single core of FIG. 1, the maximum magnetic flux is at the center of the core, and when the hall sensor for defect detection is at the center of the core, the hall sensor has the induced magnetic flux by the driving coil rather than the change of magnetic flux due to the defect. It is much larger so it is harder to detect defects.
<46>  <46>
<47> 이에 반해 , 도 2에서는 최 대 자속은 각각의 코아 증심에 있으며, 결함탐지용 홀센서 (61K62)가 위치하고 있는 곳의 자속은 매우 작아서 결함신호에 의 한 자속변 화를 용이하게 탐지할 수 있다.  In contrast, in Fig. 2, the maximum magnetic flux is in the core of each core, and the magnetic flux in the place where the defect detection hall sensor 61K62 is located is very small so that the magnetic flux change due to the defect signal can be easily detected. Can be.
<48>  <48>
<49> 도 3은 본 발명의 바람직한 실시 예에 따른 이증코아를 이용한 배관감육 탐상 장치를 나타낸 도이고 , 도 4는 본 발명의 바람직한 실시 예에 따른 이중코아를 이용 한 배관감육 탐상장치 에서 절연체로 덮혀 있는 피탐지체 위에서 절연체 내부의 두 께변화를 탐지하는 프루브부의 모양을 나타낸 개략도이다.  3 is a view showing a pipe thinning inspection device using a distillation core according to a preferred embodiment of the present invention, Figure 4 is an insulator in a pipe thinning inspection device using a double core according to a preferred embodiment of the present invention. Schematic diagram showing the shape of the probe to detect the thickness change inside the insulator on the covered object.
<50>  <50>
<51 > 도면을 참조하면, 탐지하고자 하는 도체 (1)에 접하여 도체 (1)의 두께를 탐지 하는 프루브 (probe)부와, 상기 프루브부에 전기적으로 연계되도록 구성되는 펄스발 생부, 증폭부, A/D변환부, 및 제어부를 포함한다 .  Referring to the drawings, a probe part for detecting the thickness of the conductor 1 in contact with the conductor 1 to be detected, a pulse generator, an amplification part configured to be electrically connected to the probe part, An A / D converter, and a control unit.
<52>  <52>
<53> 상기 프루브부는 이중코아 (20)과, 구동코일 (40), 및 차동 (差動)형 홀센서  The probe portion has a dual core 20, a drive coil 40, and a differential Hall sensor.
(61K62)를 구비 한다. <54> 구체적으로, 프루브부는 서로 이격된 두 개의 코아로 이루어진 이중코아 (20) 와, 상기 코아에 각각 감긴 구동코일 (40), 및 두 개의 상기 구동코일 (40) 사이에 배치 된 홀센서 (61K62)로 구성된다. (61K62). In detail, the probe part includes a double core 20 formed of two cores spaced apart from each other, a driving coil 40 wound around the core, and a hall sensor disposed between the two driving coils 40. 61K62).
<55>  <55>
<56> 여기에서, 상기 홀센서 (61K62)는 두 개의 구동코일 (40) 사이에 제 1 홀센서  Here, the Hall sensor 61K62 is a first Hall sensor between the two drive coils (40)
(61)와 제 2 홀센서 (62)가 위치고정된다.  61 and the second hall sensor 62 are fixed.
<57> 상기 제 1 홀센서 (61)는 두 개의 구동코일 (40)의 상부를 잇는 상부이음부재 The first hall sensor 61 is an upper joint member connecting the upper portions of the two driving coils 40.
(51) 상의 중심에 장착되고, 제 2 홀센서 (62)는 두 개의 구동코일 (40)의 하부를 잇 는 하부이음부재 (52) 상의 중심에 장착된다.  It is mounted in the center on the 51, the second Hall sensor 62 is mounted in the center on the lower joint member 52 connecting the lower portion of the two drive coils (40).
<58>  <58>
<59> 아울러, 상기 코아는 고투자율 자성 재료로 이루어진 것이 바람직하다.  In addition, the core is preferably made of a high permeability magnetic material.
<60> 이 와 같은 프루브부는 , 도체 (1)를 감싸는 절연체 (2) 위 에 안착되어 측정작업 을 수행한다 .  This probe part is mounted on the insulator (2) surrounding the conductor (1) to perform a measurement operation.
<61>  <61>
<62> 그리고, 상기 필스발생부는 프루브부와 연결되어 구동코일 (40)에 인가되는 광대역 필스전류를 발생시 키는 역할을 한다 .  In addition, the pillar generating unit is connected to the probe unit to generate a broadband pillar current applied to the driving coil 40.
<63> 이 러한 필스발생부는 20 μ sec 이상의 필스폭을 가진 사각필스 (square pulse) 를 발생시 키며, 필스폭을 10 μ sec에서 1msec까지 조절하며, 발생횟수를 100Hz에서 1kHz까지 조절할 수 있도록 구성 된다.  This pillar generating unit generates a square pulse having a pillar width of 20 μ sec or more, adjusts the pillar width from 10 μ sec to 1 msec, and adjusts the frequency of occurrence from 100 Hz to 1 kHz. .
<64>  <64>
<65> 한편, 차동형 인 상기 증폭부는 프루브부와 연결되어 두 개의 상기 홀센서  On the other hand, the differential amplifier unit is connected to the probe portion and the two Hall sensors
(61) (62)에 유도된 측정신호를 증폭하도록 구성된다 .  (61) configured to amplify the measurement signal induced in (62).
<66> 이 와 같은 증폭회로는 두 개의 입 력단자에 가해진 홀센서 (61) (62) 출력전압 의 차를 증폭하는 회로이다. 두 입 력전압에 동상 입 력 전압에 동상 입 력신호가 포함 된 경우 , 출력측에 생기는 동상성분을 제거하도톡 되어 있다 . This amplification circuit amplifies the difference between the output voltages of the Hall sensors 61 and 62 applied to the two input terminals. If both input voltages contain in-phase input signals in the in-phase input voltage, the in-phase component on the output side is removed.
<67>  <67>
<68> 그리고, 상기 A/D변환부는 증폭부와 연결되 어 상기 측정신호를 디지털신호로 전환하도록 구성 된다.  In addition, the A / D conversion unit is connected to the amplifier unit is configured to convert the measurement signal into a digital signal.
<69> 아울러, 상기 제어부는 상술한 프루브부, 필스발생부, 증폭부, 및 A/D변환부 를 제어하고, A/D변환부에 의해 전환된 디지털신호를 저장하고 이를 디스플레이 수 단을 활용하여 디스플레이하도록 구성된다 .  In addition, the control unit controls the above-described probe unit, pillar generation unit, amplification unit, and A / D conversion unit, and stores the digital signal converted by the A / D conversion unit and utilizes the display means. Is configured to display.
<70> 이 때 , 제어부는 Lab-View를 사용하여 상기 구성요소들을 조작하기 위한 전용 Windows 프로그램이 활용될 수 있다 . At this time, the control unit is dedicated for manipulating the components using Lab-View. Windows programs can be utilized.
<71>  <71>
【발명의 실시를 위한 형 태】  [Form for implementation of invention]
<72> 본 발명은 절연체로 덮혀 있는 배관의 부식 또는 부식에 의한 두께변화 (감 육)를, 비파괴검사로서 절연체를 해체하지 않고, 이중코아를 가진 차동형 프루브부 를 통해 와전류를 이용하여 상기 절연체의 외부에서 상기 배관의 손실을 평가하도 록 구성되는 것을 특징으로 한다.  According to the present invention, the thickness change (decrease) caused by the corrosion or corrosion of the pipe covered with the insulator, without dismantling the insulator by non-destructive inspection, and the eddy current through the differential probe having a double core Characterized in that configured to evaluate the loss of the pipe from the outside.
<73>  <73>
<74> 도 1은 단일코아의 모양 및 단일코아에 의하여 만들어진 자속의 세기를 계산 한 것을 나타낸 그래프이고 , 도 2는 이중코아의 모양 및 이중코아에 의하여 만들어 진 자속의 세기를 계산한 것을 나타낸 그래프이다.  1 is a graph showing the shape of a single core and the strength of the magnetic flux produced by the single core, Figure 2 is a graph showing the shape of the double core and the strength of the magnetic flux generated by the double core to be.
<75> 도면을 참조하면, 계산조건은 모두 동일하며 인가전류와 구동코일 (40)을 감 은 횟수는 각각 1A, 150turn으로 동일하게 하였다.  Referring to the drawings, the calculation conditions are the same, and the number of times of applying the applied current and the driving coil 40 is equal to 1A and 150 turns, respectively.
<76>  <76>
<77> 도 1의 단일코아의 경우 코아의 증심에서 최 대 자속이 되며, 결함탐지용 홀 센서가 코아의 중심에 있는 경우, 홀센서는 결함에 의 한 자속변화보다 구동코일에 의한 유도자속이 훨씬 크기 때문에 결함을 탐지하기 힘들다 .  In the case of the single core of FIG. 1, the maximum magnetic flux is at the core depth, and when the hall sensor for defect detection is located at the center of the core, the hall sensor has the induced magnetic flux by the driving coil rather than the magnetic flux change due to the defect. It is much larger, making it harder to detect defects.
<78>  <78>
<79> 이에 반해 , 도 2에서는 최 대 자속은 각각의 코아 중심에 있으며, 결함탐지용 홀센서 (61) (62)가 위치하고 있는 곳의 자속은 매우 작아서 결함신호에 의 한 자속변 화를 용이하게 탐지할 수 있다.  In contrast, in Fig. 2, the maximum magnetic flux is located at the center of each core, and the magnetic flux at the place where the defect detection hall sensors 61 and 62 are located is very small so that the magnetic flux can be easily changed by the defect signal. Can be detected.
<80>  <80>
<81 > 도 3은 본 발명 의 바람직 한 실시 예에 따른 이중코아를 이용한 배관감육 탐상 장치를 나타낸 도이고, 도 4는 본 발명의 바람직한 실시 예에 따론 이중코아를 이용 한 배관감육 탐상장치에서 절연체로 덮혀 있는 피탐지체 위에서 절연체 내부의 두 께변화를 탐지하는 프투브부의 모양을 나타낸 개략도이다.  3 is a view showing a pipe thinning inspection device using a double core according to a preferred embodiment of the present invention, Figure 4 is an insulator in a pipe thinning inspection device using a double core according to a preferred embodiment of the present invention This is a schematic diagram showing the shape of the tube to detect the thickness change inside the insulator on the sensing object covered with.
<82>  <82>
<83> 도면을 참조하면 , 탐지하고자 하는 도체 (1)에 접하여 도체 (1)의 두께를 탐지 하는 프루브 (probe)부와, 상기 프루브부에 전기적으로 연계되도록 구성되는 펄스발 생부, 증폭부, A/D변환부, 및 제어부를 포함한다 .  Referring to the drawings, a probe part for detecting the thickness of the conductor 1 in contact with the conductor 1 to be detected, a pulse generator, an amplifier part configured to be electrically connected to the probe part, An A / D converter, and a control unit.
<84>  <84>
<85> 상기 프투브부는 이중코아 (20)과 , 구동코일 (40) , 및 차동 (差動)형 홀센서 (61) (62)를 구비한다 . The PTU part has a double core 20, a drive coil 40, and a differential Hall sensor. (61) (62).
<86> 구체적으로 , 프루브부는 서로 이격된 두 개의 코아로 이루어진 이증코아 (20) 와, 상기 코아에 각각 감긴 구동코일 (40) 및 두 개의 상기 구동코일 (40) 사이에 배치된 홀센서 (61) (62)로 구성된다.  In detail, the probe part may include a dip core 20 including two cores spaced apart from each other, a driving coil 40 wound around each of the cores, and a hall sensor 61 disposed between the two driving coils 40. (62).
<87>  <87>
<88> 여기에서, 상기 홀센서 (61) (62)는 두 개의 구동코일 (40) 사이에 제 1 홀센서  Here, the Hall sensors 61 and 62 are the first Hall sensors between the two drive coils 40.
(61)와 제 2 홀센서 (62)가 위치고정된다.  61 and the second Hall sensor 62 are fixed.
<89> 상기 계 1 홀센서 (61)는 두 개의 구동코일 (40)의 상부를 잇는 상부이음부재 The first Hall sensor 61 is an upper joint member connecting the upper portions of the two driving coils 40.
(51) 상의 중심 에 장착되고, 제 2 홀센서 (62)는 두 개의 구동코일 (40)의 하부를 잇 는 하부이음부재 (52) 상의 중심에 장착된다 .  It is mounted at the center on the 51, and the second Hall sensor 62 is mounted at the center on the lower joint member 52 connecting the lower portions of the two drive coils 40.
<90>  <90>
<91> 아울러 상기 코아는 고투자율 자성 재료로 이루어진 것이 바람직하다 .  In addition, the core is preferably made of a high permeability magnetic material.
<92> 이와 같은 프루브부는 도체 (1)를 감싸는 절연체 (2) 위 에 안착되어 측정작업 을 수행한다 .  This probe part is mounted on the insulator (2) surrounding the conductor (1) to perform the measurement.
<93>  <93>
<94> 그리고, 상기 펄스발생부는 프루브부와 연결되어 구동코일 (40)에 인가되는 광대역 펄스전류를 발생시 키는 역할을 한다 .  In addition, the pulse generator is connected to the probe part to generate a wideband pulse current applied to the driving coil 40.
<95> 이 러한 펄스발생부는 20 μ sec 이상의 필스폭올 가진 사각필스 (square pul se) 를 발생시 키며, 펼스폭을 10 y sec에서 1msec까지 조절하며, 발생횟수를 100Hz에서 1kHz까지 조절할 수 있도특 구성된다.  These pulse generators generate a square pulse with a fill width of 20 μ sec or more, adjust the spread width from 10 y sec to 1 msec, and control the frequency of occurrence from 100 Hz to 1 kHz. do.
<96>  <96>
<97> 한편, 차동형 인 상기 증폭부는 프루브부와 연결되어 두 개의 상기 홀센서  On the other hand, the differential amplifier unit is connected to the probe portion and the two Hall sensors
(61K62)에 유도된 측정신호를 증폭하도록 구성된다 .  It is configured to amplify the measurement signal induced in (61K62).
<98> 이와 같은 증폭회로는 두 개의 입 력단자에 가해진 홀센서 (61) (62) 출력 전압 의 차를 증폭하는 회로이다. 두 입 력전압에 동상 입 력 전압에 동상 입 력신호가 포함 된 경우, 출력측에 생기는 동상성분을 제거하도록 되어 있다 . This amplification circuit is a circuit for amplifying the difference between the output voltages of the Hall sensors 61 and 62 applied to the two input terminals. If both input voltages contain in-phase input signals in the in-phase input voltage, the in-phase component on the output side is removed.
<99>  <99>
:too> 그리고, 상기 A/D변환부는 증폭부와 연결되어 상기 측정신호를 디지털신호로 전환하도록 구성된다 .  and the A / D conversion unit is connected to the amplifying unit to convert the measurement signal into a digital signal.
:ΐοι> 아을러, 상기 제어부는 상술한 프루브부, 필스발생부, 증폭부 , 및 A/D변환부 를 제어하고, A/D변환부에 의해 전환된 디지털신호를 저장하고 이를 디스플레이 수 단을 활용하여 디스플레이하도록 구성된다. <i02> 이때, 제어부는 Lab-View를 사용하여 상기 구성요소들을조작하기 위한 전용In addition, the control unit controls the above-described probe unit, pillar generation unit, amplification unit, and A / D conversion unit, and stores the digital signal converted by the A / D conversion unit and displays the display unit. Is configured to display. At this time, the control unit is dedicated for manipulating the components using Lab-View.
Windows 프로그램이 활용될 수 있다. Windows programs can be utilized.
<103>  <103>
<104> 도 5는 도 4의 이중코아를 이용한 배관감육 탐상장치에서, 필스발생부로부터 발생된 펄스전압이 이중코아를 둘러싸고 있는 구동코일에 인가되었을 때, 차동형 홀센서에 유도된 전압과 차동신호를 나타낸 그래프이고, 도 6은 도 4의 이중코아를 이용한 배관감육 탐상장치에서, 필스폭의 변화에 따라 시험편에서 유도된 홀센서의 신호변화를 나타낸 그래프이다.  FIG. 5 illustrates a voltage and a differential signal induced in a differential Hall sensor when a pulse voltage generated from a pillar generating unit is applied to a driving coil surrounding a double core in the pipe thinning inspection device using the double core of FIG. 4. 6 is a graph showing a signal change of the Hall sensor induced in the test piece according to the change in the fill width in the pipe thinning inspection device using the double core of FIG.
<105> 그리고, 도 7은 단일코아로 이루어진 배관감육 탐상장치에서, 절연체의 두께 가 변화함에 따라 시험편의 두께 변화에 따른 차등신호 전압의 변화를 나타낸 것이 고, 도 8은 이중코아로 이루어진 도 4의 이중코아를 이용한 배관감육 탐상장치에 서, 절연체의 두께가 변화함에 따라 시험편의 두께 변화에 따른 차등신호 전압의 변화를 나타낸 것이다. And, Figure 7 shows a change in the differential signal voltage according to the thickness change of the test piece as the thickness of the insulator, in the pipe thinning flaw detection apparatus consisting of a single core, Figure 8 is a double core In the pipe thinning inspection apparatus using the double core of, the differential signal voltage is shown as the thickness of the test specimen changes as the thickness of the insulator changes.
<106>  <106>
<107> 도면을 참조하면, 단일코아에 비하여 이증코아의 경우 신호의 감도를 나타내 는 출력전압이 20배 이상 증가되었고, lift-off도 크게 증가되었음을 알 수 있다. Referring to the drawings, it can be seen that the output voltage indicating the sensitivity of the signal was increased more than 20 times and the lift-off was greatly increased compared to the single core.
<108> 따라서, 펄스폭이 증가할수록 와전류의 투과 깊이가 증가하여, 보다 두꺼운 시험편의 경우에도 펄스 와전류 시험법을 적용할 수 있으므로, 차동형 프루브부의 경우에 상대적으로 시험편의 제약을 작게 받음을 알수 있다. Therefore, as the pulse width increases, the penetration depth of the eddy current increases, and the pulse eddy current test method can be applied to thicker test specimens, so that the restriction of the test specimen is relatively small in the case of the differential probe portion. .
<109>  <109>
<ιιο> 도 9는 도 4의 이중코아를 이용한 배관감육 탐상장치의 작동 및 탐상결과를 나타내는 컴퓨터 화면이다.  <ιιο> FIG. 9 is a computer screen illustrating an operation and a flaw detection result of a pipe thinning flaw detector using the double core of FIG. 4.
<111>  <111>
<112> 도면을 참조하면, 상측 그림은 차동형 홀센서에서 유도된 신호를 나타낸 것 이다. 그리고, 가운데 그림은 시험편의 두께차이를 육안으로 확인할 수 있게 시험 편의 두께에 따라 신호의 세기를 나타낸 것으로서, 신호의 세기가 실제 시험편의 두께에 따라 변화하는 것을 확인할 수 있다 . 또한, 하측 그림은 시험편의 두께에 따론 신호를 신호 처리하여 색깔의 변화로 확인할수 있게 한 것이다.  Referring to the figure, the upper figure shows the signal induced from the differential Hall sensor. The middle figure shows the signal strength according to the thickness of the test piece so that the thickness difference of the test piece can be visually checked. In addition, the lower figure shows the signal processing depending on the thickness of the specimen so that the color change can be confirmed.
<113>  <113>
<114> 와전류 탐상은 와전류의 흐름이 블연속부등에 영향을 받아 와전류의 방향이 방해되거나 변화되면, 와전류의 자장이 변하고 시험코일 자장에 영향을주게 된다 . <115> 또한ᅳ 와전류가 강할수록 불연속부를 탐상할 수 있는 강도가 높은 시스템을 갖게 되몌 와전류는 표피효과에 의하여 코일이 위치한 원주의 표면 부근에 집중하 게 된다. Eddy current flaw detection, when the flow of eddy current is affected by blistering, etc., disturbs or changes the direction of eddy current, and the magnetic field of eddy current changes and affects the test coil magnetic field. In addition, the stronger the eddy current, the stronger the system to detect discontinuities. The resulting eddy currents are concentrated by the skin effect near the surface of the circumference of the coil.
<116> 표피효과를 나타내는 식에 의하면 주파수가 증가할수록 표면 근체에 와전류 가 집중하게 되고, 내부에 깊숙이 들어갈수록 감소된다.  According to the formula for the epidermal effect, the eddy current concentrates on the surface root as the frequency increases, and decreases as it goes deeper.
<117>  <117>
<118> 와전류의 침투깊이는 다음식에 의하여 주어진다.
Figure imgf000011_0001
The penetration depth of the eddy current is given by the following equation.
Figure imgf000011_0001
<120> 여기에서, f:주파수 (Ηζ), σ :전도율, δ :침투깊이 (m), μ:투자율 (H/m)을 나 타낸다.  Where f is the frequency (Ηζ), σ is the conductivity, δ is the penetration depth (m), and μ is the permeability (H / m).
<121>  <121>
<122> 필스 와전류에 있어서 주파수는 필스폭의 2배로 취급하므로 필스폭이 증가 할수록 침투깊이가 증가한다.  In the fill eddy current, the frequency is treated twice as the fill width, so the penetration depth increases as the fill width increases.
<123> 따라서, 차동형 프루브부를사용하는 경우 필스폭이 단일형 프루브부에 비해 서 25배 정도 크므로, 차동형 프루브부의 경우 와전류의 침투깊이는 단일형 프루브 부의 경우에 비해 5배 정도 늘어난다. Therefore, when the differential probe portion is used, the fill width is about 25 times larger than that of the single probe portion, and the penetration depth of the eddy current in the differential probe portion is increased by five times compared to that of the single probe portion.
<124> 아울러, 본 발명의 프루브부의 홀센서는 다양한 형태로 제작하기 쉽고, 현장 적용이 용이하며, 수신감도를 적절하게 조절할수 있는 장점을 지닌다.  In addition, the hall sensor of the probe part of the present invention has an advantage of being easy to manufacture in various forms, easy to apply in the field, and appropriately adjust the reception sensitivity.
<125>  <125>
<126> 이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지 식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범 위 내에서 다양한수정 및 변형 가능함은 물론이다.  As described above, although the present invention has been described by means of a limited embodiment and drawings, the present invention is not limited thereto and is described by those of ordinary skill in the art to which the present invention pertains. Various modifications and variations are possible, without departing from the spirit and scope of the appended claims.
<127>  <127>
【산업상 이용 가능성】  [Industrial availability]
<128> 본 발명에 따르면, 절연체로 덮혀 있는 배관의 부식 또는 부식에 의한 두께 변화를, 비파괴검사로서 절연체를 해체하지 않고, 이중코아를 가진 차동형 프루브 부를 통해 펄스 와전류를 이용하여 상기 절연체의 외부에서 상기 배관의 손실을 평 가할 수 있으므로, 도체두께 탐상장치 관련 분야에 보다 효과적으로 이용될 수 있 다.  According to the present invention, a thickness change due to corrosion or corrosion of a pipe covered with an insulator, without dismantling the insulator by a non-destructive test, using a pulsed eddy current through a differential probe section having a double core at the outside of the insulator Since the loss of the pipe can be evaluated, it can be used more effectively in the field of conductor thickness flaw detector.
<129>  <129>

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
절연체로 덮혀 있는 배관의 부식 또는 부식에 의한 두께변화 (감육)를, 비파 괴검사로서 절연체를 해체하지 않고, 와전류를 이용하여 상기 절연체의 외부에서 상기 배관의 손실을 평가하도록 구성되는 이중코아를 가진 차동형 프루브부.  Corrosion or thickness change due to corrosion of the pipes covered by the insulator, with double cores configured to evaluate the loss of the pipe outside of the insulator using eddy currents without dismantling the insulator by non-destructive testing. Differential probe part.
【청구항 2] [Claim 2]
저 U항에 있어서,  In that U term,
상기 프루브부는,  The probe portion,
상기 와전류는 펄스 와전류이며, 상기 이중코아에서의 코아 사이에 홀센서, GMR센서, 또는 코일센서가 설치된 것을 특징으로 하는 이중코아를 가진 차동형 프 루브부.  The eddy current is a pulse eddy current, differential probe with a double core, characterized in that a hall sensor, a GMR sensor, or a coil sensor is installed between the core in the double core.
【청구항 3] [Claim 3]
절연체로 덮혀 있는 배관의 부식 또는 부식에 의한 두깨변화 (감육)를, 비파 괴검사로서 절연체를 해체하지 않고, 이중코아를 가진 차동형 프루브부를 통해 와 전류를 이용하여 상기 절연체의 외부에서 상기 배관의 손실을 평가하도록 구성되는 것을 특징으로 하는 이중코아를 이용한 배관감육 탐상장치 .  The loss of the pipe from the outside of the insulator by using eddy currents through the differential probe with double cores, without dismantling the insulator by corrosion or corrosion of the pipe covered by the insulator, or by removing the thickness by thinning. Pipe thinning inspection device using a double core, characterized in that configured to evaluate the.
【청구항 4】 [Claim 4]
제 3항에 있어서,  The method of claim 3,
상기 프루브부는,  The probe portion,
상기 와전류는 펄스 와전류이며, 상기 이중코아에서의 코아 사이에 홀센서, GMR센서, 또는 코일센서가 설치된 것을 특징으로 하는 이중코아를 이용한 배관감육 탐상장치ᅳ  The eddy current is a pulse eddy current, pipe thinning inspection device using a double core characterized in that the hall sensor, GMR sensor, or coil sensor is installed between the core in the double core ᅳ
【청구항 5] [Claim 5]
이중코아, 구동코일, 및 차동형 홀센서를 구비하는 프루브 (probe)부;  A probe part having a dual core, a driving coil, and a differential hall sensor;
상기 프루브부와 연결되어 상기 구동코일에 인가되는 광대역 필스전압을 발 생시키는 펄스발생부;  A pulse generator connected to the probe part to generate a broadband fill voltage applied to the driving coil;
상기 프루브부에 연결되어 상기 홀센서에 유도된 측정신호를 증폭하는 증폭 부 " 상기 증폭부와 연결되어 상기 측정신호를 디지털신호로 전환하는 A/D변환부; 상기 프루브부, 펄스발생부, 증폭부, 및 A/D변환부를 제어하면서, 상기 디지 털신호를 저장하고 디스플레이하도록 구성되는 제어부; An amplification section connected to said probe portion for amplifying the measured signal induced in the Hall sensor " An A / D converter connected to the amplifier to convert the measurement signal into a digital signal; A control unit configured to store and display the digital signal while controlling the probe unit, the pulse generator, the amplifier, and the A / D converter;
를 포함하는 것을 특징으로 하는 이중코아를 이용한 배관감육 탐상장치.  Pipe thinning flaw detection device using a double core, characterized in that it comprises a.
【청구항 6】 [Claim 6]
제 5항에 있어서,  The method of claim 5,
상기 프루브부는,  The probe portion,
서로 이격된 두 개의 코아로 이루어진 상기 이중코아; 및  The double core consisting of two cores spaced apart from each other; And
상기 코아에 각각 감긴 상기 구동코일 ;을 포함하며,  Including; the driving coils respectively wound around the cores;
상기 홀센서는,  The Hall sensor is,
두 개의 상기 구동코일의 상부를 잇는 상부이음부재 상의 중심에 장착된 거 U 홀센서와, 두 개의 상기 구동코일의 하부를 잇는 하부이음부재 상의 중심에 장착된 제 2 홀센서로 이루어진 것을 특징으로 하는 이중코아를 이용한 배관감육 탐상장치 .  A U-hall sensor mounted in the center on the upper joint member connecting the two upper parts of the drive coil, and a second hall sensor mounted in the center on the lower joint member connecting the lower parts of the two driving coils. Pipe Thinning Inspection Device Using Double Core.
【청구항 7】 [Claim 7]
제 5항에 있어서,  The method of claim 5,
상기 코아는 고투자율 자성재료로 이루어진 것을 특징으로 하는 이중코아를 이용한 배관감육 탐상장치 .  The core thin-walled flaw detection apparatus using a double core, characterized in that made of a high permeability magnetic material.
【청구항 8】 [Claim 8]
제 5항에 있어서,  The method of claim 5,
상기 펄스발생부는,  The pulse generator,
20 μ sec 이상의 필스폭을 가진 사각펄스 (square pulse)를 발생시키는 것을 특징으로 하는 이중코아를 이용한 배관감육 탐상장치 .  Pipe thinning inspection device using a double core, characterized in that for generating a square pulse having a fill width of 20 μ sec or more.
【청구항 9】 [Claim 9]
제 5항에 있어서,  The method of claim 5,
상기 펄스발생부는,  The pulse generator,
펄스폭을 10 ysec에서 1msec까지 조절하며, 발생횟수를 100Hz에서 1kHz까지 조절가능한 것을 특징으로 하는 이중코아를 이용한 배관감육 탐상장치. 【청구항 10】 The pipe thinning inspection device using a double core, characterized in that the pulse width is adjusted from 10 ysec to 1msec, the frequency of occurrence is adjustable from 100Hz to 1kHz. [Claim 10]
제 5항에 있어서,  The method of claim 5,
상기 증폭부는,  The amplifier,
상기 프루브부의 홀센서와 전기 적으로 연계된 차동증폭회로를 구비하는 것을 특징으로 하는 이중코아를 이용한 배관감육 탐상장치 .  Pipe thinning inspection device using a double core characterized in that it comprises a differential amplifier circuit electrically connected with the hall sensor of the probe portion.
PCT/KR2011/005962 2010-08-12 2011-08-12 Conductor thickness detecting device using a double core WO2012021034A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0077752 2010-08-12
KR1020100077752A KR101254300B1 (en) 2010-08-12 2010-08-12 Apparatus for detecting thickness of the conductor using dual core

Publications (2)

Publication Number Publication Date
WO2012021034A2 true WO2012021034A2 (en) 2012-02-16
WO2012021034A3 WO2012021034A3 (en) 2012-05-10

Family

ID=45568078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/005962 WO2012021034A2 (en) 2010-08-12 2011-08-12 Conductor thickness detecting device using a double core

Country Status (2)

Country Link
KR (1) KR101254300B1 (en)
WO (1) WO2012021034A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108709488A (en) * 2018-03-29 2018-10-26 清华大学 The multrirange dual probe device measured for metal film thickness
CN108961223A (en) * 2018-06-20 2018-12-07 西安交通大学 A kind of dielectric function gradient insulation bimodal lossless detection method
CN112098316A (en) * 2019-06-18 2020-12-18 中国石油化工股份有限公司 Nonlinear compensation method and device for inductance probe

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101601204B1 (en) * 2014-06-20 2016-03-09 한국원자력연구원 Apparatus and method for thinning pulse detection using eddy current probes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0332048A2 (en) * 1988-03-11 1989-09-13 Westinghouse Electric Corporation Multiple coil eddy current probe and method of flaw detection
EP0819944A1 (en) * 1996-07-16 1998-01-21 Lucent Technologies Inc. Eddy current sensor
JP2001141698A (en) * 1999-11-09 2001-05-25 Cosmo Oil Co Ltd Method for judging hydrogen embrittlement
KR20010045270A (en) * 1999-11-04 2001-06-05 김덕중 Method and apparatus for detecting a leakge position in water pipes embedded in under ground
JP2003270214A (en) * 2002-03-15 2003-09-25 ▲高▼木 敏行 Method for eddy current flaw detection and flaw detection probe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0332048A2 (en) * 1988-03-11 1989-09-13 Westinghouse Electric Corporation Multiple coil eddy current probe and method of flaw detection
EP0819944A1 (en) * 1996-07-16 1998-01-21 Lucent Technologies Inc. Eddy current sensor
KR20010045270A (en) * 1999-11-04 2001-06-05 김덕중 Method and apparatus for detecting a leakge position in water pipes embedded in under ground
JP2001141698A (en) * 1999-11-09 2001-05-25 Cosmo Oil Co Ltd Method for judging hydrogen embrittlement
JP2003270214A (en) * 2002-03-15 2003-09-25 ▲高▼木 敏行 Method for eddy current flaw detection and flaw detection probe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108709488A (en) * 2018-03-29 2018-10-26 清华大学 The multrirange dual probe device measured for metal film thickness
CN108709488B (en) * 2018-03-29 2020-08-07 清华大学 Multi-range double-probe device for measuring thickness of metal film
CN108961223A (en) * 2018-06-20 2018-12-07 西安交通大学 A kind of dielectric function gradient insulation bimodal lossless detection method
CN108961223B (en) * 2018-06-20 2020-08-18 西安交通大学 Dielectric function gradient insulation bimodal nondestructive testing method
CN112098316A (en) * 2019-06-18 2020-12-18 中国石油化工股份有限公司 Nonlinear compensation method and device for inductance probe

Also Published As

Publication number Publication date
KR20120015566A (en) 2012-02-22
WO2012021034A3 (en) 2012-05-10
KR101254300B1 (en) 2013-04-12

Similar Documents

Publication Publication Date Title
Angani et al. The pulsed eddy current differential probe to detect a thickness variation in an insulated stainless steel
JP4756409B1 (en) Nondestructive inspection apparatus and nondestructive inspection method using alternating magnetic field
WO2012021034A2 (en) Conductor thickness detecting device using a double core
KR101150486B1 (en) Apparatus and Method for detecting the wall thinning of pipeline using pulse magnetic field
WO2008072508A1 (en) Nondestructive test instrument and nondestructive test method
JP6242155B2 (en) Nondestructive inspection apparatus and nondestructive inspection method
KR101746072B1 (en) Nondestructive inspection apparatus for ferromagnetic steam generator tubes and method thereof
KR101339117B1 (en) Apparatus and method for detecting the defects of reverse side using pulsed eddy current
Dmitriev et al. Application of an eddy-current method to measure electrical conductivity of thin films
CN112945427A (en) Method for measuring two-dimensional stress at welding seam by utilizing Barkhausen effect and detection instrument
JP6378554B2 (en) Nondestructive inspection apparatus and nondestructive inspection method
KR101988887B1 (en) Lissajour curve display apparatus using magnetic sensor array
KR101158411B1 (en) Apparatus for detecting thickness of the conductor using differential pulsed eddy current probe
KR100626228B1 (en) Apparatus and Method for detecting defect with magnetic flux inducted by AC magnetic field
Singh et al. Thickness evaluation of aluminium plate using pulsed eddy current technique
EP1877767A2 (en) Near fieldtm and combination near fieldtm - remote field electromagnetic testing (et) probes for inspecting ferromagnetic pipes and tubes such as those used in heat exchangers
KR100934615B1 (en) Eddy Current Testing Device and Method
KR20210085277A (en) Sensor Probe tesing System for Eddy Current Nondestructive Testing
Angani et al. Dual core differential pulsed eddy current probe to detect the wall thickness variation in an insulated stainless steel pipe
JP5011056B2 (en) Eddy current inspection probe and eddy current inspection device
JPH05203629A (en) Electromagnetic flaw detection and device
KR101173760B1 (en) Detection method of eddy current signal of small amplitude
KR101138359B1 (en) Nondestructive inspection apparatus generating gradient electromagnetic field
KR101250559B1 (en) Crack detection device
JPS6021445A (en) Eddy current detecting apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11816650

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31.05.2013)

122 Ep: pct application non-entry in european phase

Ref document number: 11816650

Country of ref document: EP

Kind code of ref document: A2