JP2003270214A - Method for eddy current flaw detection and flaw detection probe - Google Patents
Method for eddy current flaw detection and flaw detection probeInfo
- Publication number
- JP2003270214A JP2003270214A JP2002071307A JP2002071307A JP2003270214A JP 2003270214 A JP2003270214 A JP 2003270214A JP 2002071307 A JP2002071307 A JP 2002071307A JP 2002071307 A JP2002071307 A JP 2002071307A JP 2003270214 A JP2003270214 A JP 2003270214A
- Authority
- JP
- Japan
- Prior art keywords
- eddy current
- flaw detection
- coil
- probe
- current density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、渦電流探傷によっ
て薄板はもとより厚板金属材の表面から、表面、内部及
び裏面のキズ検査を行うことができる渦電流探傷法及び
探傷プローブに関する。本明細書で記載するキズは、き
裂、空孔、窪み、非金属介在物等の渦流探傷により検査
できる金属材の欠陥を意味し、これらの欠陥の全てを対
象とする。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eddy current flaw detection method and flaw detection probe capable of inspecting flaws on the front surface, the inside and the back surface of a thick plate metal material as well as a thin plate by eddy current flaw detection. The flaw described in this specification means a defect of a metal material that can be inspected by eddy current flaw detection such as a crack, a hole, a dent, and a nonmetallic inclusion, and all of these defects are targeted.
【0002】[0002]
【従来の技術】一般に、電磁応用非破壊検査の一つであ
る渦電流探傷試験は、1)表面感度が高い、2)高速か
つ非接触な探傷が可能、3)センサの構造が簡単で設計
が容易、4)信号が直接電気信号として得られるため信
号処理や記録が容易、5)自動探傷・遠隔操作に適して
いる、6)材質や形状の変化などの、雑音因子の影響を
受け易い、といった特徴を有している。渦電流探傷試験
はその原理上表面感度は良いものの、表皮効果により板
厚方向に渦電流が減衰するため、厚板の裏面を探傷する
には不向きであるため、従来は表面探傷もしくは薄板の
探傷に限定されて用いられて来た。2. Description of the Related Art In general, an eddy current flaw detection test, which is one of non-destructive electromagnetic applications, has 1) high surface sensitivity, 2) high-speed non-contact flaw detection is possible, and 3) sensor structure is simple and designed. 4) Easy to process and record because the signal is directly obtained as an electric signal 5) Suitable for automatic flaw detection / remote operation 6) Easy to be affected by noise factors such as change of material and shape , Has the characteristics. Although the eddy current flaw detection test has good surface sensitivity in principle, it is not suitable for flaw detection on the back surface of thick plates because the eddy current is attenuated in the thickness direction due to the skin effect. It has been used limited to.
【0003】渦電流探傷試験の適用例の一つに加圧水型
軽水炉発電プラントの蒸気発生器伝熱管の供用中検査が
挙げられる。とりわけこの蒸気発生器伝熱管の探傷に関
し、渦電流探傷は過去十数年間で数値解析技術や新型プ
ローブの開発において著しい進展を遂げている。現在、
板厚1.27mmの伝熱管の探傷では、裏面20%き裂を検出
し、逆問題解析によりき裂形状を再構築することが可能
となっている。今後、これらの技術を他の検査対象に応
用することが期待される。原子力プラントや航空機など
の構造物では、欠陥許容基準、あるいは損傷許容設計に
基づいて非破壊検査を行うのが望ましいという事情があ
り、高い欠陥検出能力と欠陥の形状評価が必要とされ
る。An example of application of the eddy current flaw detection test is in-service inspection of a steam generator heat transfer tube of a pressurized water type LWR power plant. Especially regarding the flaw detection of the steam generator heat transfer tube, the eddy current flaw detection has made remarkable progress in the numerical analysis technology and the development of the new probe in the past ten years. Current,
In the flaw detection of a heat transfer tube with a plate thickness of 1.27 mm, it is possible to detect a backside 20% crack and reconstruct the crack shape by inverse problem analysis. It is expected that these technologies will be applied to other inspection targets in the future. For structures such as nuclear power plants and aircraft, it is desirable to perform nondestructive inspection based on the defect tolerance standard or damage tolerance design, and thus high defect detection capability and defect shape evaluation are required.
【0004】他方、これらの構造物には蒸気発生器の伝
熱管のような薄板ではなく、厚肉材で構成されている部
分が数多く存在する。こうした箇所には、オーステナイ
ト系ステンレス鋼の溶接部など、従来用いられている超
音波探傷法では探傷困難なき裂もあり、電磁応用非破壊
検査の適用も検討されている。よって、厚肉材へ渦電流
探傷試験を適用し、その特長を検査に反映させ高度化を
図ることが要求される。On the other hand, these structures have a large number of parts made of thick-walled materials instead of thin plates such as heat transfer tubes of steam generators. There are cracks in such places, such as welded parts of austenitic stainless steel, which are difficult to detect by the conventional ultrasonic flaw detection method, and application of electromagnetic non-destructive inspection is also being considered. Therefore, it is required to apply the eddy current flaw detection test to thick-walled materials and reflect the features in the inspection to improve the sophistication.
【0005】厚肉材への渦電流探傷試験の適用に当たり
問題となるのは、探傷面とは反対の裏面キズの検出であ
る。一般に表皮効果による渦電流の減衰に阻まれ裏面の
探傷は難しく、この問題を克服する必要がある。なお、
従来渦電流探傷試験法は、板厚1〜1.5mmの被検査体に適
用されてきたが、それを超える厚さ、特に板厚6mm以上
の厚さでは、渦電流によりキズを検査することが事実上
困難であった。A problem in applying the eddy current flaw detection test to thick-walled materials is the detection of flaws on the back surface opposite to the flaw detection surface. In general, it is difficult to detect flaws on the back surface due to the attenuation of eddy current due to the skin effect, and it is necessary to overcome this problem. In addition,
Conventionally, the eddy current flaw detection test method has been applied to inspected objects with a plate thickness of 1 to 1.5 mm, but if the thickness exceeds that, especially with a plate thickness of 6 mm or more, it is possible to inspect for scratches by eddy current. It was practically difficult.
【0006】[0006]
【発明が解決しようとする課題】本発明は、原子力プラ
ントや航空機などの構造物の、厚板のキズ検査が可能で
あり、表面のみならず内部及び裏面(内面)すなわち、
探傷面とは反対の裏面キズの検出ができる渦電流探傷法
及びそれに最適な探傷プローブを提供することを課題と
する。DISCLOSURE OF THE INVENTION The present invention is capable of inspecting a thick plate for a structure such as a nuclear power plant or an aircraft, and checking not only the front surface but also the inner and back surfaces (inner surface), that is,
An object of the present invention is to provide an eddy current flaw detection method capable of detecting a flaw on the back surface opposite to the flaw detection surface and a flaw detection probe most suitable for the flaw detection method.
【0007】[0007]
【課題を解決するための手段】上記の課題を解決するた
めに、本発明者らは鋭意研究を行った結果、渦電流探傷
プローブの構造を改良することにより、被検査体である
材料表面のみならず、内部及び、特に探傷面と反対の裏
面キズの検出が、より正確に測定できるとの知見を得
た。なお、本発明の探傷方法は厚板材料のキズ検査に特
に有効であるが、薄板材にも適用できることは言うまで
もない。本発明はこの知見に基づき、
1.2個の励磁コイルに互いに逆向きの電流を流し、励
磁コイル間の領域において、それぞれのコイルによる渦
電流を重ね合わせ、該励磁コイル間に配置した検出コイ
ルにより探傷することを特徴とする渦電流探傷法
2.検出コイルが差動形コイルであることを特徴とする
上記1記載の渦電流探傷法
3.検出コイルの直下の裏面渦電流密度と表面渦電流密
度の比裏面(渦電流密度/表面渦電流密度)が0.5以
上となるように、励磁コイル間の距離を設定することを
特徴とする上記1又は2記載の渦電流探傷法
4.励磁コイルの内半径rと高さhの比を、r/h=
0.5〜1.5の範囲とすることを特徴とする上記1〜
3のそれぞれに記載の渦電流探傷法
5.板の表面及び板の表面から板の内部及び裏面のキズ
検査を行うことを特徴とする上記1〜4のそれぞれに記
載の渦電流探傷法
6.板厚6mm以上の厚板のキズ検査を行うことを特徴
とする上記1〜5のそれぞれに記載の渦電流探傷法
7.逆問題解析手法により、き裂形状を再構成すること
を特徴とする上記1〜6のそれぞれに記載の渦電流探傷
法。を提供する。In order to solve the above-mentioned problems, the inventors of the present invention have conducted diligent research, and as a result, improved the structure of the eddy current flaw detection probe so that only the surface of the material to be inspected However, it was found that the detection of scratches inside and especially on the back surface opposite to the flaw detection surface can be more accurately measured. The flaw detection method of the present invention is particularly effective for flaw inspection of thick plate materials, but it goes without saying that it can also be applied to thin plate materials. The present invention is based on this knowledge, and applies currents in opposite directions to 1.2 exciting coils, superimposes eddy currents of the respective coils in a region between the exciting coils, and arranges the detecting coils arranged between the exciting coils. 1. Eddy current flaw detection method characterized by flaw detection by 2. The eddy current flaw detection method according to the above 1, wherein the detection coil is a differential coil. The distance between the exciting coils is set so that the ratio of the back surface eddy current density and the surface eddy current density directly below the detection coil is 0.5 or more (eddy current density / surface eddy current density). 3. The eddy current flaw detection method described in 1 or 2 above. The ratio of the inner radius r of the exciting coil to the height h is r / h =
1 to 1 above, which is in the range of 0.5 to 1.5
4. Eddy current flaw detection method described in each of 3. 5. The eddy current flaw detection method according to each of 1 to 4 above, wherein the surface of the plate and the surface of the plate are inspected for scratches on the inside and the back of the plate. 7. The eddy current flaw detection method according to each of 1 to 5 above, wherein a flaw inspection of a thick plate having a plate thickness of 6 mm or more is performed. The eddy current flaw detection method according to each of the above 1 to 6, wherein the crack shape is reconstructed by an inverse problem analysis method. I will provide a.
【0008】本発明は、また
8.互いに逆向きの電流を流す2個の励磁コイルと、励
磁コイル間の領域において、それぞれの励磁コイルによ
る渦電流が重ね合う位置に配置した検出コイルからなる
ことを特徴とする渦電流探傷用プローブ
9.検出コイルが差動形コイルであることを特徴とする
上記8記載の渦電流探傷用プローブ
10.検出コイルの直下の裏面渦電流密度と表面渦電流
密度の比裏面(渦電流密度/表面渦電流密度)が0.5
以上となる離間位置に励磁コイルを設置したことを特徴
とする上記8又は9記載の渦電流探傷用プローブ
11.励磁コイルの内半径rと高さhの比が、r/h=
0.5〜1.5の範囲であることを特徴とする上記8〜
10のそれぞれに記載の渦電流探傷用プローブ
12.板の表面及び板の表面から板の内部及び裏面のキ
ズ検査を行うことを特徴とする上記8〜11のそれぞれ
に記載の渦電流探傷用プローブ
13.板厚6mm以上の厚板のキズ検査を行うことを特
徴とする上記8〜12のそれぞれに記載の渦電流探傷用
プローブを提供する。The present invention also relates to 8. 8. An eddy current flaw detection probe characterized by comprising two exciting coils for passing currents in opposite directions and a detecting coil arranged in a region between the exciting coils at a position where eddy currents caused by the exciting coils overlap each other. 10. The eddy current flaw detection probe described in the above 8, wherein the detection coil is a differential coil. The ratio of the back surface eddy current density and the surface eddy current density directly below the detection coil is 0.5 (back surface (eddy current density / surface eddy current density)).
11. The eddy current flaw detection probe according to the above 8 or 9, wherein the exciting coil is installed at the above-mentioned separated positions. The ratio of the inner radius r of the exciting coil to the height h is r / h =
The range from 0.5 to 1.5, and the range from 8 to
12. The eddy current flaw detection probe described in each of 10. 13. The probe for eddy current flaw detection according to each of 8 to 11 above, which is for inspecting the surface of the plate and the inside and the back of the plate for flaws. The probe for eddy current flaw detection according to each of the above 8 to 12, wherein a flaw inspection of a thick plate having a plate thickness of 6 mm or more is performed.
【0009】[0009]
【発明の実施の形態】本発明では、渦電流探傷試験の応
用分野の拡大を目指し、厚肉材の裏面キズを検出できる
渦電流探傷プローブを提案する。このために、変形磁気
ベクトルポテンシャル法(A.Kameari, Solution of Asy
mmetric Conductor with a Hole by FEM Using Edge-el
ement, COMPEL, 9, (1999), pp.230-232.)と辺要素有
限要素法(A.Kameari, Three Dimensional Eddy Curren
t Calculation Using Edge Element for Magnetic Vect
or Potential, Applied Electromagnetics in Material
s, pp.225-236, (1988).)による渦電流解析にもとづい
てプローブの各種パラメータを設定し、設計・試作を実
施した。実験により開発したプローブの性能を検証し、
得られた結果を用いて逆問題解析を行い、き裂の定量的
な形状評価を行った。以下に、プローブの設計及びプロ
ーブの実験結果について説明する。また、実験結果に対
する逆問題解析結果を示し、同様にその結果を以下に説
明する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention proposes an eddy current flaw detection probe capable of detecting a flaw on the back surface of a thick-walled material with the aim of expanding the field of application of the eddy current flaw detection test. For this purpose, the modified magnetic vector potential method (A.Kameari, Solution of Asy
mmetric Conductor with a Hole by FEM Using Edge-el
ement, COMPEL, 9, (1999), pp.230-232.) and edge element finite element method (A.Kameari, Three Dimensional Eddy Curren
t Calculation Using Edge Element for Magnetic Vect
or Potential, Applied Electromagnetics in Material
s, pp.225-236, (1988).), based on the eddy current analysis, various parameters of the probe were set, and the design and prototype were carried out. Verify the performance of the probe developed by experiment,
Inverse problem analysis was performed using the obtained results, and quantitative shape evaluation of cracks was performed. The design of the probe and the experimental results of the probe will be described below. Moreover, the inverse problem analysis result with respect to the experimental result is shown, and the result is similarly described below.
【0010】厚板に渦電流探傷試験を適用しようとする
際、問題となるのは渦電流の表皮効果である。具体的に
は下記の事項によって裏面キズの探傷が阻害されると考
えられる。すなわち、1)表皮効果による渦電流の板厚
方向の減衰により、裏面キズを検出するための強大な渦
電流が裏面では得難いこと、2)表皮効果の影響によ
り、表面の渦電流が裏面の渦電流に比べ著しく大きくな
り、裏面の欠陥信号が表面形状あるいは材質の変化によ
るノイズに影響を受ける可能性があること、の2点であ
る。When applying an eddy current flaw detection test to a thick plate, a problem is the skin effect of the eddy current. Specifically, it is considered that the flaws on the back surface are hindered by the following items. That is, 1) it is difficult to obtain a strong eddy current for detecting scratches on the back surface on the back surface due to the attenuation of the eddy current due to the skin effect in the plate thickness direction. 2) Due to the effect of the skin effect, the eddy current on the front surface causes the eddy current on the back surface. It is significantly larger than the current, and the defect signal on the back surface may be affected by noise due to changes in the surface shape or material.
【0011】上記の問題は、薄板であれば周波数を適切
な値に設定することによって解決することができるが、
厚板では2点を同時に解決することが難しくなる。周波
数を小さく設定し表皮深さを増大させれば、渦電流が微
弱なものになってしまう。欠陥検出信号の強度は欠陥が
存在する箇所に誘導された渦電流の強度に大きな影響を
受けるので、それに伴い信号も微弱になってしまう。逆
に、周波数を大きく設定し渦電流の強度を増大させれ
ば、表皮効果による渦電流の減衰が著しくなり裏面の欠
陥信号が表面のノイズに大きな影響を受けてしまう。と
りわけ励磁コイル近傍においてこの傾向は顕著に現れ
る。したがって、厚肉材の探傷には、周波数の調整のみ
ならず、強力な渦電流を板厚方向に平坦に浸透させるこ
とのできるプローブの形状の探索が要求される。The above problem can be solved by setting the frequency to an appropriate value for a thin plate.
With thick plates, it is difficult to solve two points at the same time. If the frequency is set low and the skin depth is increased, the eddy current becomes weak. Since the intensity of the defect detection signal is greatly influenced by the intensity of the eddy current induced in the location where the defect exists, the signal also weakens accordingly. On the contrary, if the frequency is set large and the strength of the eddy current is increased, the eddy current is significantly attenuated by the skin effect, and the defect signal on the back surface is greatly affected by the noise on the surface. Especially, this tendency is remarkable in the vicinity of the exciting coil. Therefore, not only the frequency adjustment but also the search for the probe shape capable of penetrating the strong eddy current flatly in the plate thickness direction is required for the flaw detection of the thick material.
【0012】強力な渦電流を裏面に発生させるため、本
発明においては、2個の励磁コイルに互いに逆向きの電
流を流し、励磁コイル間の領域においてそれぞれのコイ
ルによる渦電流を重ね合わせた。この励磁方式には、過
度な励磁コイルの巨大化やそれに伴うリフトオフの増大
を軽減できるという著しい利点がある。この点は、本発
明の大きな特徴の一つである。個々の励磁コイルの寸法
は、単体でも裏面に強力な渦電流を発生させることがで
きるよう3次元渦電流解析を用いて選定した。In order to generate a strong eddy current on the back surface, in the present invention, currents in opposite directions are made to flow through the two exciting coils, and the eddy currents by the respective coils are superposed in the region between the exciting coils. This excitation method has a remarkable advantage that it can reduce excessive enlargement of the excitation coil and increase in lift-off accompanying it. This point is one of the major features of the present invention. The dimensions of the individual exciting coils were selected using three-dimensional eddy current analysis so that a strong eddy current can be generated on the back surface even when used alone.
【0013】一方、裏面の欠陥信号が表面のノイズに強
く影響されないようにするため、強大な渦電流を平坦に
浸透させることのできる位置を探し、そこで信号を検知
するようにした。検出コイルは励磁コイル間の領域に配
置しなければならないので、この問題は励磁コイル間の
距離を調節して渦電流分布を変化させることに帰着す
る。ここでも3次元渦電流解析を利用することにより、
励磁コイル間距離を選定した。上記の2点を設計方針と
して開発した渦電流探傷プローブの概念図を、図1に示
す。図1において、符号1は励磁コイル、符号2は検出
コイル(2個の差動式検出コイル)、符号3は電流、符
号4は被検査体10の表面、符号5は被検査体10の裏
面、符号6は磁束を示す。On the other hand, in order to prevent the defect signal on the back surface from being strongly affected by the noise on the surface, a position where a strong eddy current can be flatly permeated is searched for, and the signal is detected there. This problem results in adjusting the distance between the excitation coils to change the eddy current distribution, since the detection coils must be located in the region between the excitation coils. Again, by using 3D eddy current analysis,
The distance between the exciting coils was selected. FIG. 1 shows a conceptual diagram of an eddy current flaw detection probe developed with the above two points as a design policy. In FIG. 1, reference numeral 1 is an exciting coil, reference numeral 2 is a detection coil (two differential detection coils), reference numeral 3 is an electric current, reference numeral 4 is the front surface of the inspection object 10, and reference numeral 5 is the back surface of the inspection object 10. , Reference numeral 6 indicates a magnetic flux.
【0014】(数値解析によるプローブの寸法の決定)
本発明では、プローブの開発において3次元渦電流解析
を用いて寸法値を決定した。この解析手法では、変形磁
気ベクトルポテンシャル法による辺要素有限要素法を採
用したものである。辺要素を用いることにより、支配方
程式から電気スカラーポテンシャルを削除し、渦電流の
発散に関する方程式を連立する必要がなくなる。また、
変形磁気ベクトルポテンシャル法を用いることにより、
励磁コイルを導体やそれを取り巻く空間とは独立に扱う
ことができる。このため、数値解析に要する記憶容量を
大幅に低減できる効果が得られる。この他、この解析手
法にデータベースを適用した高速解法があるが、これを
後述する実験結果と解析結果の比較対照に用いた。これ
は、渦電流探傷信号の計算において、データベースを作
成して解析領域を、き裂があると予測される領域に限定
することにより、計算の高速化を実現したものである。(Determination of probe dimensions by numerical analysis)
In the present invention, dimensional values were determined using three-dimensional eddy current analysis during probe development. In this analysis method, the edge element finite element method based on the modified magnetic vector potential method is adopted. By using edge elements, it is not necessary to remove the electrical scalar potential from the governing equations and to have simultaneous equations for eddy current divergence. Also,
By using the modified magnetic vector potential method,
The exciting coil can be treated independently of the conductor and the space surrounding it. Therefore, it is possible to obtain an effect of significantly reducing the storage capacity required for the numerical analysis. In addition to this, there is a high-speed solution method that applies a database to this analysis method, which was used for comparison and comparison of the experimental results and the analysis results described later. In the calculation of the eddy current flaw detection signal, this is to realize a high-speed calculation by creating a database and limiting the analysis region to a region where a crack is predicted.
【0015】以下に、本発明の具体例を示すが、試験材
(被検査体)として板厚7mmのインコネル(INCONEL)を
用いて厚板用渦電流探傷プローブを設計した。なお、リ
フトオフは0.2mmである。周波数は、5kHzの時表皮深さ
が約7mmとなるが、信号強度を考慮して10kHzに設定し計
算を行った。また、励磁コイルの電流密度は1.0×106[A
/m2]に固定した。以下、これらの値は本具体例における
全ての解析に共通する。A specific example of the present invention will be shown below. An eddy current flaw detection probe for thick plates was designed using INCONEL having a plate thickness of 7 mm as a test material (inspection object). The lift-off is 0.2 mm. When the frequency is 5 kHz, the skin depth is about 7 mm, but the signal strength was taken into consideration and set to 10 kHz for calculation. The current density of the exciting coil is 1.0 × 10 6 [A
fixed to / m 2 ]. Hereinafter, these values are common to all analyzes in this specific example.
【0016】励磁コイルに関しては多数のパラメータが
存在するが、ここではコイルの内径(具体的には内半径
を使用)、巻幅、高さに着目した。既存のプローブの励
磁コイル(内径1mm、巻幅0.5mm、高さ0.5mm)を等倍で
拡大し、拡大後のコイルに関し内部の半径、巻幅、高さ
を対象としてパラメータ・サーベイを行った。図2に励
磁コイル1の寸法形状を示す。図2において、符号7は
高さ、符号8は巻幅、符号9は内半径を示す。符号10
は被検査体である。解析によって得られた各パラメータ
の変化と裏面の渦電流密度の関係から、巻幅が裏面渦電
流に対して大きな影響を与える。本具体例では、空間的
な制約を考慮し、巻幅を6mmに設定した。但し、この巻
幅については、検査対象である材料の種類や大きさ(厚
さ)等及び渦電流探傷プローブの設計に応じて任意に変
えることができる。There are many parameters for the exciting coil, but here we focused on the inner diameter of the coil (specifically, the inner radius is used), the winding width, and the height. The excitation coil (inner diameter 1 mm, winding width 0.5 mm, height 0.5 mm) of the existing probe was magnified at the same size, and a parameter survey was conducted on the expanded coil for the internal radius, winding width, and height. . FIG. 2 shows the dimensional shape of the exciting coil 1. In FIG. 2, reference numeral 7 indicates the height, reference numeral 8 indicates the winding width, and reference numeral 9 indicates the inner radius. Code 10
Is an object to be inspected. The winding width has a great influence on the back surface eddy current from the relationship between the change of each parameter obtained by the analysis and the back surface eddy current density. In this specific example, the winding width is set to 6 mm in consideration of spatial restrictions. However, this winding width can be arbitrarily changed according to the type and size (thickness) of the material to be inspected and the design of the eddy current flaw detection probe.
【0017】巻幅の設計値を選定した後、内径、高さを
同時に変化させた時の裏面渦電流の変化を調べた。その
解析結果を図3に示す。同図において(内径)/(高
さ)=1の直線に沿って、裏面渦電流が比較的急勾配で変
化しているのが分かる。概ね、この直線に沿って更に励
磁コイルを拡大して行くのが望ましいが、その好適な範
囲は(内径)/(高さ)=0.5-1.5である。これらの解析
結果を考慮して、本具体例では、最終的に励磁コイルの
寸法を内径10mm、巻幅6mm、高さ12mmとした。なお、こ
の具体的な寸法は検査対象である材料の種類や大きさ
(厚さ)等及び渦電流探傷プローブの設計に応じて任意
に変えることができる。巻数に関しては、巻線の断面積
から1995ターンとした。実施の過程において、上記のプ
ロセスを盛り込むことにより、裏面に強力な渦電流を容
易に誘導することのできる励磁コイルの作製が可能とな
った。After selecting the design value of the winding width, the change of the back surface eddy current when the inner diameter and the height were changed at the same time was examined. The analysis result is shown in FIG. In the figure, it can be seen that the backside eddy current changes relatively steeply along the straight line of (inner diameter) / (height) = 1. Generally, it is desirable to further expand the exciting coil along this straight line, but the preferable range is (inner diameter) / (height) = 0.5-1.5. In consideration of these analysis results, in the present specific example, the dimensions of the exciting coil were finally set to an inner diameter of 10 mm, a winding width of 6 mm, and a height of 12 mm. The specific dimensions can be arbitrarily changed according to the type and size (thickness) of the material to be inspected and the design of the eddy current flaw detection probe. The number of turns was set to 1995 turns based on the cross-sectional area of the winding. By incorporating the above process in the process of implementation, it became possible to manufacture an exciting coil capable of easily inducing a strong eddy current on the back surface.
【0018】励磁コイルの寸法決定後、2個の励磁コイ
ル間の距離を調節して渦電流密度分布を変化させる。励
磁コイル間距離を変化させた時の渦電流の変化を3次元
渦電流解析によって調べた。励磁コイル間距離と表面と
裏面の渦電流密度及びこれらの比(裏面渦電流密度/表
面渦電流密度)の関係を図4に示す。図4より、2個の
励磁コイルを近接させると表面と裏面の渦電流密度に大
きな差異が生じることが分かる。一方、励磁コイル間距
離が、例えば10mm以上、特に12mm以上になると、(裏面
渦電流密度)/(表面渦電流密度)である渦電流密度比
が、微小な増加を続けては行くものの、勾配が緩やかに
なるのが分かる。裏面渦電流密度は漸近的な減少を続け
て行く。裏面渦電流の強度と表皮深さの両者を勘案し、
本具体例においては、励磁コイル間距離を12mmとした。
また、本具体例では、(裏面渦電流密度)/(表面渦電
流密度)が0.7となっているが、通常0.5以上で裏
面き裂検出の良好な感度が得られる。After the size of the exciting coil is determined, the distance between the two exciting coils is adjusted to change the eddy current density distribution. The change of the eddy current when the distance between the exciting coils was changed was investigated by three-dimensional eddy current analysis. Fig. 4 shows the relationship between the distance between the exciting coils, the eddy current densities on the front surface and the back surface, and their ratio (back surface eddy current density / surface eddy current density). It can be seen from FIG. 4 that when two exciting coils are brought close to each other, a large difference occurs in the eddy current densities on the front surface and the back surface. On the other hand, when the distance between the exciting coils is, for example, 10 mm or more, particularly 12 mm or more, the eddy current density ratio of (back surface eddy current density) / (surface eddy current density) increases slightly, but the gradient You can see that becomes slower. The backside eddy current density continues to decrease asymptotically. Considering both the strength of the backside eddy current and the skin depth,
In this example, the distance between the exciting coils was 12 mm.
Further, in this specific example, (back surface eddy current density) / (surface eddy current density) is 0.7, but when it is 0.5 or more, good sensitivity for back surface crack detection is obtained.
【0019】励磁コイルの各種設計値を設定後、検出コ
イルの設計値を選定する。励磁コイルの設計に際して
は、検出コイルの直下の検出強度が高く、かつ裏面渦電
流密度と表面渦電流密度の比(裏面渦電流密度/表面渦
電流密度)が0.5以上となるように、かつ励磁コイル
の内半径rと高さhの比がr/h=0.5〜1.5の範
囲となるように、励磁コイルの内半径、高さ、幅のそれ
ぞれの寸法、及び励磁コイル間の距離を設定する。一般
に、検出コイルに関しては、その巻数が多いほどき裂に
対する感度は向上する。検出コイルに関しては、励磁コ
イル間の領域を充填しその後高さ方向に拡大する方針で
設計した。本具体例においては、最終的に検出コイル高
さを6mmとし、ターン数は1300ターンとした。以上の数
値解析結果で決定したプローブによる渦電流分布から、
ローブの対称面を切断面とした時の面内における渦電流
の様相を表しているが、被試験体に誘導された渦電流の
実数部、振幅に関して、(裏面渦電流密度)/(表面渦
電流密度)がそれぞれ0.75、0.72と高い値を示した。虚
数部は0.35であるが、実数部の方がより支配的であるた
め、探傷に大きな支障を与えることはないと考えられ
る。これにより、仮に表面と裏面の渦電流がほぼ同位相
であったとしても、新たに設計したプローブでは表面の
ノイズに裏面の検出信号が大きな阻害を受けることはな
いものと予測できる。After setting various design values of the exciting coil, the design value of the detecting coil is selected. When designing the excitation coil, the detection intensity immediately below the detection coil is high, and the ratio of the back surface eddy current density to the surface eddy current density (back surface eddy current density / surface eddy current density) is 0.5 or more. The inner radius, height, and width of the exciting coil, and the exciting coil, so that the ratio of the inner radius r of the exciting coil to the height h is in the range of r / h = 0.5 to 1.5. Set the distance between. Generally, with respect to the detection coil, the greater the number of turns, the higher the sensitivity to cracks. The detection coil was designed by filling the area between the exciting coils and then expanding in the height direction. In this example, the height of the detection coil was finally 6 mm, and the number of turns was 1300. From the eddy current distribution by the probe determined by the above numerical analysis results,
The eddy current in the plane is shown when the plane of symmetry of the lobe is taken as the cut surface. Regarding the real part and amplitude of the eddy current induced in the DUT, (back surface eddy current density) / (surface eddy current) The current density) was 0.75 and 0.72, which were high values. The imaginary part is 0.35, but since the real part is more dominant, it is considered that it will not significantly affect flaw detection. Accordingly, even if the eddy currents on the front surface and the back surface are substantially in phase with each other, it can be predicted that the newly designed probe will not significantly hinder the detection signal on the back surface due to the noise on the front surface.
【0020】(渦電流探傷システム)本発明の具体例で
用いた渦電流探傷システムでは、試験片を載せた二次元
電動ステージを、GPIBボードを介してパソコンで制御す
ることにより実施した。プローブは定位置に固定する。
プローブの信号は探傷器で処理され、実数部と虚数部に
分けてA/Dボードによりパソコンに取り込まれる。探傷
器はアスワン電子製のASSORT-PC2を用いた。離散的なデ
ータを取るためステージ制御用パソコンでステージを移
動しながら、探傷信号や測定点の座標といったデータを
同時に取り込むことによって行った。(Eddy current flaw detection system) The eddy current flaw detection system used in the specific example of the present invention was carried out by controlling a two-dimensional electric stage on which a test piece was mounted by a personal computer via a GPIB board. The probe is fixed in place.
The signal from the probe is processed by the flaw detector, and divided into a real part and an imaginary part, and is taken into the personal computer by the A / D board. ASSORT-PC2 made by Aswan Electronics was used as the flaw detector. In order to obtain discrete data, the stage control PC was used to move the stage while simultaneously capturing data such as flaw detection signals and coordinates of measurement points.
【0021】(試験及びその結果)本具体例において用
いた試験片は、純国産のH-IIAロケットの配管を同じ材
料(材質はINCONEL718)及び同じ板厚(7mm)の平板で
模擬したものを使用した。試験片中央に長手方向の溶接
線が存在し、溶接線は余盛を除去した。この厚さ7mmの
試験片に対し、溶接線と母材の境界上に3個の半楕円形
人工き裂が存在する。いずれもき裂の長さは10mm、幅は
0.2mmである。楕円の短半径をき裂の深さとした時、そ
れぞれのき裂の深さは1.00mm(14.3%)、0.50mm(7.1
%)、0.25mm(3.6%)であった。これらのき裂を、き裂
が開口している面から、あるいは開口していない面から
探傷することにより、内面き裂(ID)、外面き裂(OD)
の探傷とする。実験における探傷器の設定は、試験周波
数を10kHz、ゲインを79dBとした。ステージ制御の設定
は、スキャンピッチをX、Y方向共に0.5mmとし、プロー
ブと試験片のリフトオフは0.2mmとした。(Tests and Results) The test pieces used in this example were pipes of a purely domestic H-IIA rocket simulated by using the same material (INCONEL718) and a flat plate of the same plate thickness (7 mm). used. There was a weld line in the longitudinal direction at the center of the test piece, and the weld line had a surplus removed. For this 7 mm thick test piece, there are three semi-elliptical artificial cracks on the boundary between the weld line and the base metal. The crack length is 10 mm and the width is
It is 0.2 mm. When the short radius of the ellipse is the crack depth, the depth of each crack is 1.00 mm (14.3%), 0.50 mm (7.1
%) And 0.25 mm (3.6%). Internal cracks (ID) and external cracks (OD) can be obtained by detecting these cracks from the surface where cracks are open or from the surface where they are not open.
And the flaw detection. The settings of the flaw detector in the experiment were a test frequency of 10 kHz and a gain of 79 dB. The setting of stage control was such that the scan pitch was 0.5 mm in both X and Y directions, and the lift-off between the probe and the test piece was 0.2 mm.
【0022】(比較−絶対値型コイル)比較のため、絶
対値型コイルで実験を行った。このプローブの欠陥検出
能力は、板厚1.25mmのINCONEL600板においてID20%、OD6
0%である。試験周波数は10kHz以外に5kHz、1kHzを適用
し、深さ1mmの外面き裂の探傷を行った。10kHz、5kHz、
1kHzのいずれの場合も、き裂が検出できないことが確認
できた。この結果、絶対値型コイルは厚肉材の探傷に不
向きであると言える。さらにこの試験片において溶接部
と母材とでは、導電率、透磁率といった物性値の変化が
微小であることが分かる。(Comparison-Absolute value type coil) For comparison, an experiment was conducted using an absolute value type coil. The defect detection capability of this probe is 20% ID, OD6
It is 0%. In addition to 10 kHz, 5 kHz and 1 kHz were applied as test frequencies, and flaw detection was performed on external cracks with a depth of 1 mm. 10kHz, 5kHz,
It was confirmed that cracks could not be detected in any of the cases of 1 kHz. As a result, it can be said that the absolute value type coil is not suitable for flaw detection of thick-walled materials. Further, in this test piece, it can be seen that the changes in the physical properties such as the electric conductivity and the magnetic permeability between the welded portion and the base material are minute.
【0023】(本発明のプローブを用いた検出結果)本
発明の具体例であるプローブを用いて、本プローブによ
る深さ0.25mmの半楕円形内面き裂の実験を行った。検出
の条件としては、周波数:10kHz、リフトオフ:0.2mm、
位相:283.0度とした。2次元走査して得た Vy 信号の
2次元表示を行った結果、1個のき裂に対し4個のピー
クが存在する。これは2個の検出コイルの差動を検出信
号としているためであり、さらにプローブが左右対称で
自己差動特性を備えているからである。き裂は4個のピ
ークの中心に存在するが、き裂を挟んでX方向に現れる
ピークの組は検出コイルの差動特性によるものである。
一方、Y方向に現れるピークの組は自己差動特性による
ものである。本実験ではき裂も左右対称なため、自己差
動特性により信号の絶対値はき裂の中心で最小となる。
なお、探傷信号がy方向に顕著に表れるよう設定してお
り、x方向ではノイズを含む信号が得られた。同様に外
面き裂に関しても、同様に4個のピークが確認できる。
深さ0.5mmの外面き裂の実験結果を図5に示す。また、
同図に示される線に沿った B スキャン信号を抽出し、
図6及び図7に示す。ここで2個の B スキャン信号そ
れぞれにおいて正負2個のピークが確認できる。これに
より、開発したプローブによって深さ0.5mmの外面き裂
を検出できたことが分かる。(Detection Results Using the Probe of the Present Invention) Using a probe which is a specific example of the present invention, an experiment of a semi-elliptical inner surface crack having a depth of 0.25 mm was conducted by the present probe. As detection conditions, frequency: 10 kHz, lift-off: 0.2 mm,
Phase: 283.0 degrees. As a result of two-dimensional display of Vy signal obtained by two-dimensional scanning, there are four peaks for one crack. This is because the differential between the two detection coils is used as the detection signal, and the probe is bilaterally symmetric and has a self-differential characteristic. The crack exists at the center of the four peaks, but the set of peaks appearing in the X direction across the crack is due to the differential characteristics of the detection coil.
On the other hand, the set of peaks appearing in the Y direction is due to the self-differential characteristic. In this experiment, the crack is also symmetrical, and the absolute value of the signal is the smallest at the center of the crack due to the self-differential characteristic.
Note that the flaw detection signal was set so as to appear significantly in the y direction, and a signal containing noise was obtained in the x direction. Similarly, for the external crack, four peaks can be confirmed.
Figure 5 shows the experimental results for an outer surface crack with a depth of 0.5 mm. Also,
Extract the B-scan signal along the line shown in the figure,
This is shown in FIGS. 6 and 7. Two positive and negative peaks can be confirmed in each of the two B scan signals. This shows that the developed probe was able to detect an external crack with a depth of 0.5 mm.
【0024】(数値解析結果と実験結果の比較)実験と
同条件で、データベースを用いた辺要素変形磁気ベクト
ルポテンシャル法による順問題解析で渦電流探傷信号を
計算し、実験信号と比較した。ここで、人工き裂の幅は
0.2mmと分かっているので、き裂の弁別にはき裂方向の
1次元信号を用いれば十分である。き裂信号は、2個の
検出コイルの片方がき裂の延長線上にある時最大となる
ので、き裂方向のき裂中心を0mmとして、片方の検出コ
イルの中心点が+17.5mmから−17.5mmまで移動する時の
1mm間隔(一部間隔2mm)の1次元データ22点の信号を以
下の比較に用いる。(Comparison of Numerical Analysis Results with Experimental Results) Under the same conditions as the experiments, eddy current flaw detection signals were calculated by forward problem analysis by the edge element deformation magnetic vector potential method using a database and compared with the experimental signals. Where the width of the artificial crack is
Since it is known to be 0.2 mm, it is sufficient to use a one-dimensional signal in the crack direction for crack discrimination. The crack signal becomes maximum when one of the two detection coils is on the extension line of the crack, so the center of the crack in the crack direction is 0 mm, and the center point of one of the detection coils is +17.5 mm to -17.5 mm. when moving up to mm
The signals of 22 one-dimensional data at 1 mm intervals (partial intervals of 2 mm) are used for the following comparison.
【0025】探傷器出力では励磁電流、フィルタによる
位相差などが不明であるため、計算信号との絶対値及び
位相の比較は不可能である。このため、まず実験結果か
ら計算結果で得られる電圧値への換算を行う必要があ
る。先の22点の信号に対し、実験結果と計算結果のピー
クの振幅及び位相が合うように次式で回転拡大する。
S’=αejθS (1)
ここで、S及びS’は換算前後の実験信号であり、αは
拡大係数、θは回転角度である。深さ1mmの半楕円形内
面き裂の実験信号が解析信号と一致するよう係数を下記
の通りとした。
α=2.15 (2)
θ=−52.1[degree]Since the exciting current and the phase difference due to the filter are unknown in the flaw detector output, it is impossible to compare the absolute value and the phase with the calculated signal. Therefore, first, it is necessary to convert the experimental result into a voltage value obtained from the calculation result. Rotational expansion is performed by the following equation so that the amplitudes and phases of the peaks of the experimental results and the calculated results match the signals of the previous 22 points. S ′ = αe jθ S (1) Here, S and S ′ are experimental signals before and after conversion, α is an expansion coefficient, and θ is a rotation angle. The coefficients were set as follows so that the experimental signal of a semi-elliptical inner surface crack with a depth of 1 mm would match the analytical signal. α = 2.15 (2) θ = −52.1 [degree]
【0026】(1)式及び(2)式の係数を使って、それ
ぞれの実験結果を変換した。対応する計算結果と換算し
た実験結果を比較して図8(a)-(d)に示す。図8(a)-(d)
に示されるように、内面き裂に関しては実験結果と計算
結果が良好な一致を見せていることが分かる。裏面き裂
に関しては振幅や位相に多少の誤差が見られるが、逆問
題解析に支障を来たすほど大きな違いは見られない。実
験結果よりき裂形状の再構築を行うことが可能であると
考えることが出来る。The respective experimental results were converted using the coefficients of the equations (1) and (2). The corresponding calculation results and converted experimental results are compared and shown in FIGS. 8 (a)-(d). Figure 8 (a)-(d)
As shown in Fig. 5, it can be seen that the experimental results and the calculated results show good agreement regarding the internal crack. There are some errors in the amplitude and phase of the backside crack, but not so large that it hinders the inverse problem analysis. From the experimental results, it can be considered that the crack shape can be reconstructed.
【0027】(逆問題解析手法)き裂形状の定量的評価
に用いた逆問題解析の計算手順を以下に示す。
1)解析モデルにき裂形状を与え、先の高速順問題解析
で渦電流探傷信号を求める。
2)実験信号と解析信号を比較し、整合しないようなら
最急降下法により形状を修正し、再度信号の計算を行
う。
3)実験と解析の信号の誤差が所定の値よりも小さくな
るか、もしくはその変化が小さくなるまでこの手続きを
行う。
この解析では、データベースを用いた高速順問題解析を
利用しているため、逆問題解析自体も高速であるという
特徴がある。(Inverse Problem Analysis Method) The calculation procedure of the inverse problem analysis used for the quantitative evaluation of the crack shape is shown below. 1) The crack shape is given to the analysis model, and the eddy current flaw detection signal is obtained by the previous high-speed forward problem analysis. 2) Compare the experimental signal with the analytic signal, and if they do not match, correct the shape by the steepest descent method and calculate the signal again. 3) Perform this procedure until the error between the experimental and analytical signals becomes smaller than a predetermined value or the change becomes smaller. Since this analysis uses high-speed forward problem analysis using a database, the inverse problem analysis itself is also characterized by being high-speed.
【0028】(き裂形状の再構成)前記において変換し
た信号を用いて、き裂形状の推定を行う。き裂の再構成
は、変換された入力信号を目標に、酷似した信号が得ら
れるまで反復計算を行うことにより実現される。き裂の
幅は0.2mmに固定し、18mm×0.2mm×7mmの矩形をき裂が
存在する領域であるSuspect Regionとする。き裂の形状
を長方形の並びで近似表現し、1mm毎(一部2mm)に16個
のパラメータを設定する。計測点は、前記のように検出
コイルの中心線上を通る方向の22点ある。Huangらによ
って開発された逆問題解析手法(H.Huang, T.Takagi,
H.Fukutomiand J.Tani, Forward and Inverse Analysis
of ECT Signals Based on Reduced Vector Potential
Method Using A Database, Electromagnetic Nondestru
ctive Evaluation(II), IOS press, (2001), pp.313-32
1)を利用し、き裂形状を推定した。この推定結果を、
図9(a)-(d)に示す。(Reconstruction of Crack Shape) The crack shape is estimated using the signal converted in the above. Crack reconstruction is achieved by iterative computations targeting the transformed input signal until a closely resembling signal is obtained. The width of the crack is fixed at 0.2 mm, and a rectangle of 18 mm × 0.2 mm × 7 mm is set as the Suspect Region where the crack exists. Approximately represent the shape of a crack with a rectangular array, and set 16 parameters for each 1 mm (2 mm in part). There are 22 measurement points in the direction passing on the center line of the detection coil as described above. Inverse problem analysis method developed by Huang et al. (H. Huang, T. Takagi,
H.Fukutomi and J. Tani, Forward and Inverse Analysis
of ECT Signals Based on Reduced Vector Potential
Method Using A Database, Electromagnetic Nondestru
ctive Evaluation (II), IOS press, (2001), pp.313-32
Using 1), the crack shape was estimated. This estimation result is
Shown in FIGS. 9 (a)-(d).
【0029】内面き裂に関しては、き裂長さが多少ずれ
てしまうものがあるものの、き裂深さは実際のき裂と良
好な一致を見せた。き裂長さの方向の誤差が最大18%で
あるのに対して、き裂深さの誤差は最大1.1%と極めて小
さい。一方、外面き裂の推定に関しては、検出可能であ
った2個のき裂に対し、き裂形状を精度よく再構成する
ことができた。深さの誤差は最大4.1%、長さの誤差は9%
である。これらのき裂形状の再構築により、開発したプ
ローブは厚肉材の探傷において、裏面のき裂に対する逆
問題解析にも適していると言える。Regarding the inner surface cracks, although some crack lengths were slightly deviated, the crack depths showed good agreement with the actual cracks. The maximum error in the crack length direction is 18%, whereas the maximum error in the crack depth is 1.1%. On the other hand, with regard to the estimation of external cracks, the crack shape could be reconstructed accurately for the two detectable cracks. Maximum depth error is 4.1%, length error is 9%
Is. By reconstructing these crack shapes, the developed probe can be said to be suitable for inverse problem analysis for cracks on the back surface in flaw detection of thick materials.
【0030】[0030]
【発明の効果】本発明は、3次元渦電流解析を利用して
薄板はもとより、厚肉平板の表面から、該板の表面、内
部及び裏面に存在するき裂等の欠陥を精度良く検出でき
る渦電流探傷法及びそのための渦電流プローブを提供す
るものである。渦電流探傷法の特徴は、2個の励磁コイ
ルに互いに逆向きの電流を流すことにより、強力かつ板
厚方向に平坦に浸透する渦電流を発生させるものであ
り、この結果、裏面にも強力な渦電流を発生させ、かつ
裏面の欠陥信号が表面のノイズに影響されない渦電流探
傷プローブを提供できる。検出コイルの位置では、本プ
ローブの場合(裏面渦電流密度)/(表面渦電流密度)
は0.5以上、さらには0.7以上を示し、強大な渦電
流密度を保った状態で高い値を示す。本プローブを用い
て実験を行った結果、厚さ7mmのINCONEL試験片における
検出能力は、内面き裂は深さ0.25mm、外面き裂は0.5mm
であるというレベルに達することができる。さらに、実
験結果と解析結果を比較し、逆問題解析が可能であり、
この逆問題解析を行うことによって、外面き裂に対して
も良好にき裂形状を復元できるという優れた利点があ
る。以上から、本発明のプローブは厚肉材の探傷におい
て、高い欠陥検出能力を有し、欠陥の寸法評価にも優
れ、欠陥検出に適している著しい効果を有する。INDUSTRIAL APPLICABILITY The present invention can accurately detect defects such as cracks existing on the surface, inside and back surface of a thin plate as well as the surface of a thick plate by utilizing three-dimensional eddy current analysis. An eddy current flaw detection method and an eddy current probe therefor are provided. The feature of the eddy current flaw detection method is that strong eddy currents that penetrate flatly in the plate thickness direction are generated by passing currents in opposite directions to the two exciting coils. It is possible to provide an eddy current flaw detection probe which generates a large eddy current and in which the defect signal on the back surface is not affected by the noise on the front surface. For the position of the detection coil, in the case of this probe (back surface eddy current density) / (surface eddy current density)
Shows 0.5 or more, and further shows 0.7 or more, and shows a high value in a state where a strong eddy current density is maintained. As a result of conducting an experiment using this probe, the detection capability of the INCONEL test piece with a thickness of 7 mm was 0.25 mm for the internal crack and 0.5 mm for the external crack.
You can reach the level of being. Furthermore, it is possible to analyze the inverse problem by comparing the experimental results with the analysis results.
By performing this inverse problem analysis, there is an excellent advantage that the crack shape can be restored well even for the outer surface crack. From the above, the probe of the present invention has a high defect detection capability in flaw detection of a thick material, is excellent in defect dimension evaluation, and has a remarkable effect suitable for defect detection.
【図1】本発明の渦電流探傷プローブの概観を示す図で
ある。FIG. 1 is a diagram showing an overview of an eddy current flaw detection probe of the present invention.
【図2】励磁コイルの寸法形状の説明図であるFIG. 2 is an explanatory diagram of dimensions and shapes of an exciting coil.
【図3】内径、高さを同時に変化させた時の裏面渦電流
の変化を調べた解析結果を示す図である。FIG. 3 is a diagram showing an analysis result of a change in backside eddy current when the inner diameter and the height are simultaneously changed.
【図4】励磁コイル間距離と表面と裏面の渦電流密度及
びこれらの比の関係を示す図である。FIG. 4 is a diagram showing a relationship between a distance between exciting coils, an eddy current density on a front surface and a back surface, and a ratio thereof.
【図5】本発明のプローブを用いて、半楕円形内面(裏
面)き裂を2次元走査(Cスキャン)して得たVy信号の
画像を示す図である。FIG. 5 is a diagram showing an image of a Vy signal obtained by two-dimensionally scanning (C scan) a semi-elliptical inner surface (back surface) crack using the probe of the present invention.
【図6】図5に示される線に沿ったBスキャン(走査線
1の)信号を抽出したVy信号のグラフである。6 is a graph of the Vy signal extracted from the B-scan (scan line 1) signal along the line shown in FIG.
【図7】図5に示される線に沿ったBスキャン(走査線
2の)信号を抽出したVy信号のグラフである。7 is a graph of the Vy signal extracted from the B-scan (scan line 2) signal along the line shown in FIG.
【図8】数値解析結果と実験結果の比較を示す図であ
る。FIG. 8 is a diagram showing a comparison between numerical analysis results and experimental results.
【図9】逆問題解析による欠陥形状の再構成の結果を示
す図である。FIG. 9 is a diagram showing a result of defect shape reconstruction by inverse problem analysis.
1 励磁コイル 2 検出コイル 3 電流 4 被検査体の表面 5 被検査体の裏面 6 磁束 7 高さ 8 幅 9 内半径 10 被検査体 1 Excitation coil 2 detection coil 3 current 4 Surface of inspection object 5 Back side of the object 6 magnetic flux 7 height 8 width 9 Inner radius 10 Inspected object
───────────────────────────────────────────────────── フロントページの続き (72)発明者 内一 哲哉 宮城県仙台市青葉区片平2−1−1 東北 大学流体科学研究所内 (72)発明者 佐藤 一彦 宮城県仙台市青葉区片平2−1−1 東北 大学流体科学研究所内 (72)発明者 黄 皓宇 宮城県仙台市青葉区片平2−1−1 東北 大学流体科学研究所内 Fターム(参考) 2G053 AA11 AB07 AB21 AB27 BA02 BA15 BB11 BC02 BC07 BC11 BC14 CA03 DA01 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Tetsuya Uchiichi 2-1-1 Katahira, Aoba-ku, Sendai City, Miyagi Prefecture Inside the Institute for Fluid Science, University (72) Inventor Kazuhiko Sato 2-1-1 Katahira, Aoba-ku, Sendai City, Miyagi Prefecture Inside the Institute for Fluid Science, University (72) Inventor Huang Kou 2-1-1 Katahira, Aoba-ku, Sendai City, Miyagi Prefecture Inside the Institute for Fluid Science, University F-term (reference) 2G053 AA11 AB07 AB21 AB27 BA02 BA15 BB11 BC02 BC07 BC11 BC14 CA03 DA01
Claims (13)
を流し、励磁コイル間の領域において、それぞれのコイ
ルによる渦電流を重ね合わせ、該励磁コイル間に配置し
た検出コイルにより探傷することを特徴とする渦電流探
傷法。1. A method in which currents in opposite directions are applied to two exciting coils, eddy currents caused by the respective coils are superposed in a region between the exciting coils, and flaw detection is performed by a detecting coil arranged between the exciting coils. Characteristic eddy current flaw detection method.
特徴とする請求項1記載の渦電流探傷法。2. The eddy current flaw detection method according to claim 1, wherein the detection coil is a differential coil.
面渦電流密度の比裏面(渦電流密度/表面渦電流密度)
が0.5以上となるように、励磁コイル間の距離を設定
することを特徴とする請求項1又は2記載の渦電流探傷
法。3. The ratio of the back surface eddy current density and the surface eddy current density immediately below the detection coil to the back surface (eddy current density / surface eddy current density).
The eddy current flaw detection method according to claim 1 or 2, wherein the distance between the exciting coils is set so that is 0.5 or more.
r/h=0.5〜1.5の範囲とすることを特徴とする
請求項1〜3のそれぞれに記載の渦電流探傷法。4. The ratio of the inner radius r of the exciting coil to the height h is
4. The eddy current flaw detection method according to claim 1, wherein r / h is in the range of 0.5 to 1.5.
裏面のキズ検査を行うことを特徴とする請求項1〜4の
それぞれに記載の渦電流探傷法。5. The eddy current flaw detection method according to claim 1, wherein the surface of the plate and the surface of the plate are inspected for scratches on the inside and the back of the plate.
ことを特徴とする請求項1〜5のそれぞれに記載の渦電
流探傷法。6. The eddy current flaw detection method according to claim 1, wherein a flaw inspection of a thick plate having a thickness of 6 mm or more is performed.
成することを特徴とする請求項1〜6のそれぞれに記載
の渦電流探傷法。7. The eddy current flaw detection method according to claim 1, wherein the crack shape is reconstructed by an inverse problem analysis method.
イルと、励磁コイル間の領域において、それぞれの励磁
コイルによる渦電流が重ね合う位置に配置した検出コイ
ルからなることを特徴とする渦電流探傷用プローブ。8. An eddy current comprising two exciting coils for passing currents in opposite directions, and a detection coil arranged at a position where eddy currents caused by the exciting coils overlap in a region between the exciting coils. Probe for flaw detection.
特徴とする請求項8記載の渦電流探傷用プローブ。9. The eddy current flaw detection probe according to claim 8, wherein the detection coil is a differential coil.
表面渦電流密度の比裏面(渦電流密度/表面渦電流密
度)が0.5以上となる離間位置に励磁コイルを設置し
たことを特徴とする請求項8又は9記載の渦電流探傷用
プローブ。10. The exciting coil is installed at a separated position where the ratio of the back surface eddy current density and the surface eddy current density directly below the detection coil is 0.5 or more (eddy current density / surface eddy current density). The probe for eddy current flaw detection according to claim 8 or 9.
が、r/h=0.5〜1.5の範囲であることを特徴と
する請求項8〜10のそれぞれに記載の渦電流探傷用プ
ローブ。11. The vortex according to each of claims 8 to 10, wherein the ratio of the inner radius r of the exciting coil to the height h is in the range of r / h = 0.5 to 1.5. Current flaw detection probe.
び裏面のキズ検査を行うことを特徴とする請求項8〜1
1のそれぞれに記載の渦電流探傷用プローブ。12. The scratch inspection of the inside and the back of the plate is performed from the front surface of the plate and the front surface of the plate.
1. The probe for eddy current flaw detection according to each of 1.
うことを特徴とする請求項8〜12のそれぞれに記載の
渦電流探傷用プローブ。13. The probe for eddy current flaw detection according to claim 8, wherein a flaw inspection of a thick plate having a plate thickness of 6 mm or more is performed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002071307A JP3796570B2 (en) | 2002-03-15 | 2002-03-15 | Eddy current flaw detection method and flaw detection probe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002071307A JP3796570B2 (en) | 2002-03-15 | 2002-03-15 | Eddy current flaw detection method and flaw detection probe |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003270214A true JP2003270214A (en) | 2003-09-25 |
JP3796570B2 JP3796570B2 (en) | 2006-07-12 |
Family
ID=29201624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002071307A Expired - Fee Related JP3796570B2 (en) | 2002-03-15 | 2002-03-15 | Eddy current flaw detection method and flaw detection probe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3796570B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005345157A (en) * | 2004-05-31 | 2005-12-15 | Toshiba Corp | Crack depth inspection method of metallic material |
JP2007163372A (en) * | 2005-12-15 | 2007-06-28 | Nikon Corp | Physical property analytical method, and physical property analytical system using the same |
JP2009216559A (en) * | 2008-03-11 | 2009-09-24 | Hitachi-Ge Nuclear Energy Ltd | Eddy current inspecting device |
JP2010197174A (en) * | 2009-02-24 | 2010-09-09 | Toyota Motor Corp | Sensor for eddy current measurement and inspection method by the same |
JP2011145176A (en) * | 2010-01-14 | 2011-07-28 | Toyota Motor Corp | Eddy current measuring sensor, and inspection method using the same |
JP2012026806A (en) * | 2010-07-21 | 2012-02-09 | Toshiba Corp | Remote field eddy current flow detector, and method |
WO2012021034A2 (en) * | 2010-08-12 | 2012-02-16 | 한국원자력연구원 | Conductor thickness detecting device using a double core |
WO2017006589A1 (en) * | 2015-07-09 | 2017-01-12 | 株式会社日立ハイテクノロジーズ | Rail inspection device and rail inspection system |
JP2017015569A (en) * | 2015-07-01 | 2017-01-19 | 日鉄住金テクノロジー株式会社 | Vortex flaw detection device |
WO2018003460A1 (en) * | 2016-06-28 | 2018-01-04 | 株式会社日立ハイテクファインシステムズ | Rail inspection system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5011056B2 (en) * | 2007-10-10 | 2012-08-29 | 株式会社日立製作所 | Eddy current inspection probe and eddy current inspection device |
-
2002
- 2002-03-15 JP JP2002071307A patent/JP3796570B2/en not_active Expired - Fee Related
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005345157A (en) * | 2004-05-31 | 2005-12-15 | Toshiba Corp | Crack depth inspection method of metallic material |
JP2007163372A (en) * | 2005-12-15 | 2007-06-28 | Nikon Corp | Physical property analytical method, and physical property analytical system using the same |
JP2009216559A (en) * | 2008-03-11 | 2009-09-24 | Hitachi-Ge Nuclear Energy Ltd | Eddy current inspecting device |
JP2010197174A (en) * | 2009-02-24 | 2010-09-09 | Toyota Motor Corp | Sensor for eddy current measurement and inspection method by the same |
US8604782B2 (en) | 2009-02-24 | 2013-12-10 | Toyota Jidosha Kabushiki Kaisha | Eddy current sensor |
CN102713598A (en) * | 2010-01-14 | 2012-10-03 | 丰田自动车株式会社 | Eddy current measuring sensor and inspection method using this eddy current measuring sensor |
JP2011145176A (en) * | 2010-01-14 | 2011-07-28 | Toyota Motor Corp | Eddy current measuring sensor, and inspection method using the same |
JP2012026806A (en) * | 2010-07-21 | 2012-02-09 | Toshiba Corp | Remote field eddy current flow detector, and method |
WO2012021034A2 (en) * | 2010-08-12 | 2012-02-16 | 한국원자력연구원 | Conductor thickness detecting device using a double core |
WO2012021034A3 (en) * | 2010-08-12 | 2012-05-10 | 한국원자력연구원 | Conductor thickness detecting device using a double core |
KR101254300B1 (en) * | 2010-08-12 | 2013-04-12 | 한국원자력연구원 | Apparatus for detecting thickness of the conductor using dual core |
JP2017015569A (en) * | 2015-07-01 | 2017-01-19 | 日鉄住金テクノロジー株式会社 | Vortex flaw detection device |
WO2017006589A1 (en) * | 2015-07-09 | 2017-01-12 | 株式会社日立ハイテクノロジーズ | Rail inspection device and rail inspection system |
JP2017020862A (en) * | 2015-07-09 | 2017-01-26 | 株式会社日立ハイテクノロジーズ | Rail inspection system, and rail inspection system |
EP3321671A4 (en) * | 2015-07-09 | 2019-01-09 | Hitachi High-Technologies Corporation | Rail inspection device and rail inspection system |
US10591442B2 (en) | 2015-07-09 | 2020-03-17 | Hitachi High-Technologies Corporation | Rail check device and rail check system |
WO2018003460A1 (en) * | 2016-06-28 | 2018-01-04 | 株式会社日立ハイテクファインシステムズ | Rail inspection system |
JP2018004295A (en) * | 2016-06-28 | 2018-01-11 | 株式会社日立ハイテクファインシステムズ | Rail inspection system |
US10739311B2 (en) | 2016-06-28 | 2020-08-11 | Hitachi High-Tech Fine Systems Corporation | Rail inspection system |
Also Published As
Publication number | Publication date |
---|---|
JP3796570B2 (en) | 2006-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Song et al. | Detection of damage and crack in railhead by using eddy current testing | |
Deng et al. | A permeability-measuring magnetic flux leakage method for inner surface crack in thick-walled steel pipe | |
Buck et al. | Pulsed eddy current inspection of support structures in steam generators | |
Grimberg | Electromagnetic nondestructive evaluation: present and future | |
Le et al. | Quantitative evaluation of corrosion in a thin small-bore piping system using bobbin-type magnetic camera | |
Singh et al. | Detection of localized damage in water wall tubes of thermal power plants using GMR sensor array based magnetic flux leakage technique | |
JP3796570B2 (en) | Eddy current flaw detection method and flaw detection probe | |
Yusa et al. | Application of eddy current inversion technique to the sizing of defects in Inconel welds with rough surfaces | |
Li et al. | A funnel-shaped probe for sensitivity enhancement in pulse-modulation eddy current inspection of subsurface flaws in conductors | |
Efremov et al. | Generalized multifrequency fusion algorithm for defect detection in eddy current inspection data | |
Joubert et al. | Experimental validation of an eddy current probe dedicated to the multi-frequency imaging of bore holes | |
Ye et al. | Novel transceiver rotating field nondestructive inspection probe | |
Pasadas et al. | Open crack depth evaluation using eddy current methods and GMR detection | |
Aoukili et al. | Damage detection of surface cracks in metallic parts by pulsed Eddy-Current probe | |
Betta et al. | Fast 2D crack profile reconstruction by image processing for Eddy-Current Testing | |
Le et al. | Electromagnetic testing of a welding area using a magnetic sensor array | |
Nagaya et al. | Identification of multiple cracks from eddy-current testing signals with noise sources by image processing and inverse analysis | |
Hatsukade et al. | Eddy-current-based SQUID-NDE for detection of surface flaws on copper tubes | |
Wang et al. | Eddy current testing on weld defect based on the dual frequency independent component analysis | |
Takagi et al. | Development of Eddy Current Probe for Thick‐Walled Plates and Quantitative Evaluation of Cracks | |
Yuan et al. | Frequency optimisation of circumferential current field testing system for highly-sensitive detection of longitudinal cracks on a pipe string | |
Li et al. | An electromagnetic Helmholtz-coil probe for arbitrary orientation crack detection on the surface of pipeline | |
Wang et al. | Low frequency eddy current inspection of wall-thinning of large pipes by bobbin coils | |
Wu et al. | The influence of support plate on MFL testing for a heat exchanger tube | |
Kishore et al. | Detection of deep subsurface cracks in thick stainless steel plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060104 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060116 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060206 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060228 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20060317 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060328 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060317 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090428 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090428 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090428 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100428 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110428 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120428 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120428 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120428 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130428 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130428 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140428 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |