JPS62232558A - Method for inspecting welded part by eddy current flaw detection - Google Patents
Method for inspecting welded part by eddy current flaw detectionInfo
- Publication number
- JPS62232558A JPS62232558A JP61076400A JP7640086A JPS62232558A JP S62232558 A JPS62232558 A JP S62232558A JP 61076400 A JP61076400 A JP 61076400A JP 7640086 A JP7640086 A JP 7640086A JP S62232558 A JPS62232558 A JP S62232558A
- Authority
- JP
- Japan
- Prior art keywords
- inspection
- coil
- impedance
- variable
- welded part
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 238000001514 detection method Methods 0.000 title description 7
- 238000007689 inspection Methods 0.000 claims abstract description 29
- 230000007547 defect Effects 0.000 claims description 15
- 239000000523 sample Substances 0.000 abstract description 12
- 239000011324 bead Substances 0.000 abstract description 7
- 230000001360 synchronised effect Effects 0.000 abstract description 3
- 238000003466 welding Methods 0.000 abstract description 3
- 238000012360 testing method Methods 0.000 description 11
- 230000002950 deficient Effects 0.000 description 6
- 238000010998 test method Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 4
- 230000005291 magnetic effect Effects 0.000 description 3
- 239000006249 magnetic particle Substances 0.000 description 3
- 239000010953 base metal Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 241000219112 Cucumis Species 0.000 description 1
- 235000015510 Cucumis melo subsp melo Nutrition 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は溶接部の欠陥について、被検査物を破壊するこ
となく検査する、いわゆる溶接部非破壊検査方法に関す
る。
(従来の技術〕
従来溶接部の欠陥を検査する方法としては放)1線透過
試験法、超音波探傷試験法、磁粉探1ね試験法、浸透探
(セ試験法等が知られている。放射線透過試験法は被検
査物を透過させた放射線の像をフィルムに@影し、欠陥
部に対応する模様にJ:り検査する方法であるが、放射
線障害を防止するための遮蔽装置が大がかりとなり、4
M造吻等の現場の検査に適さず、又すみ自溶接部の検査
では被検査部のIIl用線透過長さに大きな差が生じる
ため、撮影された像の明・暗に大きな差が生じ、欠陥部
を検出しにくいという問題があった。
超音波探傷試験法は超音波を試験体中に伝え欠陥部より
反射される超音波を検出して欠陥部を認識する方法であ
るが、すみ肉溶接の場合は内部に欠陥でない未溶接部が
存在することがあり、これが欠陥と誤認されることがあ
り、又検査速度が1日に約30M程瓜であり検査に時間
がかかるという問題がある。磁粉探傷試験法は強磁性体
である被検査部を磁化し、欠陥部に生じた磁極による磁
粉の付着を利用して、欠陥を検出する方法であるが、磁
化装置が大きいため、狭い所では作業が行えず、又検査
速匹も1日に50 M 7’J至80M程度と遅いとい
う難点がある。
浸透探1n試験法は、試験体表面に開口している傷を目
で見やずくするために、蛍光物質または可視染料の入っ
た高浸透性の液を浸透させたあと、表面に残った浸透液
を拭き取り、その後現像剤で欠陥中に残存する浸透液を
抽出し、拡大した像の指示模様として欠陥を観察する方
法である。この方法で溶接部を検査するときは溶接ビー
ドの表面に凹凸があり、浸透液を拭き取るのに手間がか
かり1日に数10M程度しか検査できないこと、また表
面に開口している疵でなければ検出できず、また表面が
塗装されたものも検査できないという問題がある。
(発明が解決しようとする問題点)
渦流探傷方法以外の方法で、溶接部を検査しようとする
と上述のJ:うな種々の問題がある。一方渦流深傷方法
で溶接部を検査しにつとすると、母材とビード部とで透
磁率が異なるため、検査コイルが間部とビードとの境界
を超えるとぎインピーダンスに大きな変化が現われるた
め、欠陥部の検出が困難となり、従来渦流探傷は溶接部
の欠陥検査に用いられていなかった。
〔問題点を解決するための手段〕
本発明者は種々実験の結果、上述の透磁率の変化による
ノイズは下記方法で補償され、渦流探傷の方法で実用的
な溶接部の検査が行えることを突きとめ本発明が成され
た。即ち、検査用コイルと、比較用コイルと、少なくと
も1個が可変である2個のインピーダンス素子とで交流
ブリッジ回路を構成し、上記検査用コイルの中心軸を被
検査溶接部平面に垂直に立て、上記ブリッジ回路が平衡
状態になるようインピーダンス素子を調節し、次に検査
用コイルを溶接線方向に走査し、ブリッジの不平衡電圧
を記録して溶接部の欠陥が検査用コイルのインピーダン
スの変化として検出され得る。
〔作 用〕
導電体である溶接部に検査用コイルを近接さV、検査用
コイルに交流電流を流せば溶接部には過電流が流れる。
溶接部に欠陥があると過電流は一部妨げられてその強さ
が変化する。過電流と検査用コイルとの間には相互に誘
導作用が存在するので過?li流の変化は検査用コイル
のインピーダンスの変化として現われる。従って検査用
コイルを要素とする交流ブリッジ回路には不平衡電圧が
発生する。この不平衡電圧を1(’l 【11記録する
ことにより溶接部に欠陥又は割れが存在することを知る
ことが出来る。
〔実施例〕
図面を参照しながら本発明の実施例について説明する。
第1図に示す如く、検査プローブは巻芯3の先端に検査
用コイル4が巻かれ、コード6側に比較用コイル5が巻
かれている。溶接母材2と溶接ビード1とで形成される
溶接部のビードの表面に検査用プローブを図の如く立て
る。この状態に於て第2図に示されているメータを見な
がら可変インピーダンス8を調節して交流ブリッジ回路
の平衡をとる。次に可変移相器10をm整して検査用プ
ローブと溶接ビー1〜とのがたにより発生する信号がC
H2及びCH4のみに現われるようにする。次に検査用
プローブ9を第1図の紙面と垂直方向に走査する。この
とき溶接部にυ1れがあると記録計のCH1及びCト1
3の指家1の振れとなって現われる。
第2図に於ける発振器で発生した一定周波数の正弦波交
流は検査用コイル4、比較用コイル5、可変インピーダ
ンス素子8、インピーダンス素子7とで構成される交流
ブリッジ回路に与えられる。
ブリッジ回路の不平衡電圧は増巾3で増11】されメー
タ及び同期検波器に送られる。ブリッジ回路の平衡をと
るにはメータを見ながら可変インピーダンス素子8の抵
抗値及びリアクタンスを調整する。
次に検査コイル4のインピーダンスが変化り−るとブリ
ッジの不平衡電圧は増1[]器で増巾され、種々の位相
成分が同期検波器の出力として臂られる。
実IM VAの場合は2種類の互いに直角な位相の成分
がtlられるようになっている。又C1」1とCH3及
びC112とCH4との増1[」率の比は2対1となつ
ている。これらの位相成分は記録計に記録される。本実
施例によって得られた結果を第3図に示すが、この場合
はCl−11,Cl−13に溶接部の割れが矢印の部分
に明瞭に現われている。尚検査用コイルの巻芯は磁性体
のもの又は非磁性体のものが使用可能である。又検査用
プローブをガイドにセラ1−シて走査し、ガイドを設け
たラックピニオン礪構で検査用プローブが一定距離動く
毎に電気信号は発するようにして、これを検査用プロー
ブより生じる信号と同時に記録すれば欠陥の位置を正確
に知ることができる。
〔発明の効果〕
本発明による方法により、溶接部の検査を行えば、検査
用プローブは小さいので狭い場所で5容易に作業ができ
る。また塗装された部分及び寸み自溶接部も検査を行う
ことができ、検査速度ら1日に数百Mと非常に速い。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a so-called non-destructive inspection method for welds, which inspects defects in welds without destroying the object to be inspected. (Prior Art) Conventionally known methods for inspecting defects in welded parts include a single-ray transmission test method, an ultrasonic flaw detection test method, a magnetic particle probe test method, and a penetrant test method. The radiographic testing method is a method in which the image of the radiation that has passed through the object to be inspected is cast onto a film, and a pattern corresponding to the defective area is created.However, a large-scale shielding device is required to prevent radiation damage. So, 4
It is not suitable for on-site inspection of M-stomosis, etc., and when inspecting self-welded parts, there is a large difference in the length of IIl ray transmission of the inspected part, resulting in a large difference in brightness and darkness of the photographed image. However, there was a problem in that it was difficult to detect defective parts. Ultrasonic flaw detection testing is a method of transmitting ultrasonic waves into the test specimen and detecting the ultrasonic waves reflected from the defective part to identify the defective part, but in the case of fillet welding, there may be unwelded parts inside that are not defective. There is a problem that this may be mistaken as a defect, and that the inspection speed is about 30 million melons per day, which means that the inspection takes time. The magnetic particle testing method is a method of detecting defects by magnetizing the ferromagnetic part to be inspected and using the adhesion of magnetic particles due to the magnetic poles generated in the defective part, but because the magnetization device is large, it cannot be used in narrow spaces. There are disadvantages in that the work cannot be carried out and the inspection speed is slow, ranging from about 50 M 7'J to 80 M per day. The penetrant 1n test method uses a highly permeable liquid containing a fluorescent substance or visible dye to visually hide open scratches on the surface of the specimen, and then detects the remaining penetrant on the surface. In this method, the liquid is wiped off, the penetrating liquid remaining in the defect is extracted using a developer, and the defect is observed as an enlarged image of the indicated pattern. When inspecting welds using this method, the surface of the weld bead is uneven, and it takes time to wipe off the penetrating liquid, so it is only possible to inspect a few tens of meters per day. There is a problem in that it cannot be detected, and objects with painted surfaces cannot be inspected. (Problems to be Solved by the Invention) When attempting to inspect a welded part by a method other than the eddy current flaw detection method, there are various problems such as those mentioned above. On the other hand, when attempting to inspect a weld using the eddy current deep flaw method, the magnetic permeability differs between the base metal and the bead, so a large change appears in the impedance when the inspection coil crosses the boundary between the weld and the bead, resulting in defects. Conventionally, eddy current flaw detection has not been used for defect inspection of welded parts because it is difficult to detect defects in welded parts. [Means for Solving the Problems] As a result of various experiments, the present inventor has found that the noise caused by the change in magnetic permeability described above can be compensated for by the method described below, and that practical inspection of welds can be performed using the eddy current flaw detection method. As a result, the present invention has been made. That is, an AC bridge circuit is constructed of an inspection coil, a comparison coil, and two impedance elements, at least one of which is variable, and the central axis of the inspection coil is oriented perpendicular to the plane of the weld to be inspected. , adjust the impedance element so that the bridge circuit is in a balanced state, then scan the inspection coil in the direction of the weld line, record the unbalanced voltage of the bridge, and determine if a defect in the weld is caused by a change in the impedance of the inspection coil. can be detected as [Function] When an inspection coil is placed close to a welded part, which is a conductor, and an alternating current is passed through the inspection coil, an overcurrent will flow through the welded part. If there is a defect in the weld, the overcurrent is partially blocked and its strength changes. There is a mutual inductive effect between the overcurrent and the test coil, so there is no overcurrent. Changes in the li current appear as changes in the impedance of the test coil. Therefore, an unbalanced voltage is generated in the AC bridge circuit including the test coil as an element. By recording this unbalanced voltage at 1 (11), it is possible to know whether there is a defect or crack in the weld. [Example] An example of the present invention will be described with reference to the drawings. As shown in Fig. 1, the test probe has a test coil 4 wound around the tip of a winding core 3, and a comparison coil 5 wound around the cord 6 side.It is formed by a weld base metal 2 and a weld bead 1. Place the inspection probe on the surface of the weld bead as shown in the figure. In this state, while watching the meter shown in Figure 2, adjust the variable impedance 8 to balance the AC bridge circuit. Next, After adjusting the variable phase shifter 10, the signal generated by the play between the inspection probe and the welding bead 1 is C.
Make it appear only in H2 and CH4. Next, the inspection probe 9 is scanned in a direction perpendicular to the paper surface of FIG. At this time, if there is a deviation of υ1 in the weld, the recorder's CH1 and C1
It appears as a swing of 3 fingers and 1. The constant frequency sine wave alternating current generated by the oscillator in FIG. The unbalanced voltage of the bridge circuit is amplified by an amplifier 3 and sent to a meter and a synchronous detector. To balance the bridge circuit, adjust the resistance value and reactance of the variable impedance element 8 while watching the meter. Next, when the impedance of the test coil 4 changes, the unbalanced voltage of the bridge is amplified by the amplifier 1, and various phase components are received as the output of the synchronous detector. In the case of a real IM VA, two types of mutually orthogonal phase components are tl. Further, the ratio of the increase rate of C1'1 to CH3 and C112 to CH4 is 2:1. These phase components are recorded on a recorder. The results obtained in this example are shown in FIG. 3. In this case, cracks in the welded parts of Cl-11 and Cl-13 clearly appear in the areas indicated by arrows. The winding core of the testing coil can be made of magnetic material or non-magnetic material. In addition, the inspection probe is scanned by using a guide as a guide, and each time the inspection probe moves a certain distance using a rack and pinion structure provided with a guide, an electric signal is emitted, and this is combined with the signal generated by the inspection probe. If they are recorded at the same time, the location of the defect can be determined accurately. [Effects of the Invention] When a welded part is inspected by the method according to the present invention, the inspection probe is small, so the work can be easily carried out in a narrow space. Painted parts and self-welded parts can also be inspected, and the inspection speed is extremely fast, at several hundred meters per day.
第1図は本発明の一実施例に於ける検査プローブを溶接
部に配置した状態を示Ij断面図、第2図は本発明の一
実施例の装置の構成を示すブロック図、第3図は本発明
の一実施例によって得られた溶接部の欠陥を示すヂャー
トである。
4・・・検査用コイル、5・・・比較用コイル、8・・
・可変インピーダンス素子。
出願人代理人 藤 木 博 光手続?1暑l
正 書 (方式)
昭和61年6月27日
昭和<51年 特許願 第76400号2、発明の名称
渦流探傷による溶接部検査方法
3、補正をJる名
事件との関係 特許出願人
中国エックス線株式会社
4、代 理 人 (郵便番号104)
昭和61年6月4日Fig. 1 is a cross-sectional view showing a state in which an inspection probe is arranged in a welded part according to an embodiment of the present invention, Fig. 2 is a block diagram showing the configuration of an apparatus according to an embodiment of the present invention, and Fig. 3 is a chart showing defects in a welded part obtained according to an embodiment of the present invention. 4... Coil for inspection, 5... Coil for comparison, 8...
・Variable impedance element. Applicant's agent Hiroshi Fujiki Procedure? 1 heat l
Official document (Method) June 27, 1985 (Showa 1951) Patent Application No. 76400 2, Name of the invention Method for inspecting welds by eddy current flaw detection 3, Relationship with the famous case in which amendment was made J Patent applicant China X-ray Co., Ltd. Company 4, Agent (zip code 104) June 4, 1986
Claims (1)
変である2個のインピーダンス素子とで交流ブリッジ回
路を構成し、上記検査用コイルの中心軸を被検査溶接部
平面に垂直に立て、上記ブリッジ回路が平衡状態になる
ようインピーダンス素子を調節し、次に検査用コイルを
溶接線方向に走査し、ブリッジの不平衡電圧を記録する
ことにより溶接部の欠陥を検査する方法。An AC bridge circuit is constituted by an inspection coil, a comparison coil, and two impedance elements, at least one of which is variable. A method of inspecting welds for defects by adjusting the impedance element so that the bridge circuit is in a balanced state, then scanning the inspection coil in the direction of the weld line and recording the unbalanced voltage across the bridge.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61076400A JPS62232558A (en) | 1986-04-02 | 1986-04-02 | Method for inspecting welded part by eddy current flaw detection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61076400A JPS62232558A (en) | 1986-04-02 | 1986-04-02 | Method for inspecting welded part by eddy current flaw detection |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62232558A true JPS62232558A (en) | 1987-10-13 |
Family
ID=13604231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61076400A Pending JPS62232558A (en) | 1986-04-02 | 1986-04-02 | Method for inspecting welded part by eddy current flaw detection |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62232558A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6559892B1 (en) | 1997-10-09 | 2003-05-06 | Sony Corporation | Video signal transmitter |
JP2009014378A (en) * | 2007-07-02 | 2009-01-22 | Hitachi Ltd | Multi-coil probe device for eddy current flaw detection |
CN102483391A (en) * | 2009-08-26 | 2012-05-30 | 住友化学株式会社 | Method for inspecting an austenitic stainless steel weld |
-
1986
- 1986-04-02 JP JP61076400A patent/JPS62232558A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6559892B1 (en) | 1997-10-09 | 2003-05-06 | Sony Corporation | Video signal transmitter |
JP2009014378A (en) * | 2007-07-02 | 2009-01-22 | Hitachi Ltd | Multi-coil probe device for eddy current flaw detection |
CN102483391A (en) * | 2009-08-26 | 2012-05-30 | 住友化学株式会社 | Method for inspecting an austenitic stainless steel weld |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106770636B (en) | A kind of magnetic drives formula Array eddy-current probe and method for defect inspection | |
CA2539086C (en) | Method and apparatus for eddy current detection of material discontinuities | |
KR100218653B1 (en) | Electronic induced type test apparatus | |
US3710236A (en) | Magnetic leakage field flaw detector utilizing partially overlapping hall probes | |
US5473247A (en) | Apparatus for discriminating defects in top and bottom surfaces of objects | |
US3588683A (en) | Method and apparatus for nondestructive testing of ferromagnetic articles,to determine the location,orientation and depth of defects in such articles utilizing the barkhausen effect | |
US4287474A (en) | Method and apparatus for non-destructive quality testing of spot welds | |
RU2566416C1 (en) | Device for eddy-current magnetic examination of ferromagnetic objects | |
JPS62232558A (en) | Method for inspecting welded part by eddy current flaw detection | |
JPS62273447A (en) | Method and apparatus for measuring deterioration degree of material | |
JP2017067743A (en) | Non-destructive inspection device and non-destructive inspection method | |
Edwards | Inspection of welded joints | |
RU2724582C1 (en) | Method of non-contact detection of availability, location and degree of danger of concentrators of mechanical stresses in metal of ferromagnetic structures | |
JP3307220B2 (en) | Method and apparatus for flaw detection of magnetic metal body | |
US2817060A (en) | Non-destructive flaw detection apparatus | |
JP2012112868A (en) | Internal defective measuring method and internal defective measuring device | |
JPS6011492Y2 (en) | Automatic magnetic flaw detection equipment inspection equipment | |
JPH06242076A (en) | Electromagnetic flaw detecting equipment | |
JPH07167839A (en) | Inspection coil for electromagnetic induction flaw detection and flaw detecting method | |
Tajima et al. | Low frequency eddy current testing to measure thickness of double layer plates made of nonmagnetic steel | |
Vigness et al. | Eddy Current Type Flaw Detectors for Non‐Magnetic Metals | |
JPH05203629A (en) | Electromagnetic flaw detection and device | |
JP3145561B2 (en) | Eddy current detector | |
Dmitriev et al. | Scanning the welded joints of aluminium alloys using subminiature eddy-current transducers | |
JPH0210151A (en) | Magnetic flaw detector |