WO2002097425A1 - Mutual-induction insertion probe - Google Patents

Mutual-induction insertion probe Download PDF

Info

Publication number
WO2002097425A1
WO2002097425A1 PCT/JP2002/005131 JP0205131W WO02097425A1 WO 2002097425 A1 WO2002097425 A1 WO 2002097425A1 JP 0205131 W JP0205131 W JP 0205131W WO 02097425 A1 WO02097425 A1 WO 02097425A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
pipe
coil
flaw
mutual
Prior art date
Application number
PCT/JP2002/005131
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Hoshikawa
Kiyoshi Koyama
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2003500555A priority Critical patent/JPWO2002097425A1/en
Publication of WO2002097425A1 publication Critical patent/WO2002097425A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9013Arrangements for scanning
    • G01N27/902Arrangements for scanning by moving the sensors

Definitions

  • the present invention relates to a mutual induction probe for detecting a flaw of a detection object by eddy current, and more particularly to a mutual induction probe which eliminates the influence of noise due to a support plate of the detection object.
  • an eddy current flaw detection method has been provided as a method for detecting a flaw in a pipe.
  • a high frequency of a predetermined frequency is supplied to an upper probe mounted on a pipe, and a detection signal from the upper probe is amplified and processed, and then displayed or hard copy is obtained. It was made.
  • the eddy current flaw detection method it is possible to detect a flaw in a pipe in an axial direction or a circumferential direction.
  • An object of the present invention is to solve the above-mentioned drawbacks and to provide a mutual induction probe that is not affected by noise.
  • an invention of a mutual induction probe according to claim 1 of the present application is directed to a mutual induction probe for detecting a flaw of an object to be detected by eddy current, It is characterized by comprising an exciting coil in which two coils for exciting the object to be detected face each other at a predetermined interval, and a detecting coil wound in a direction orthogonal to the exciting coil.
  • the exciting coil faces two coils wound in a circle, a polygon, or a rectangle at a predetermined interval.
  • the detection coil is wound inside the two coils of the exciting coil, or is wound outside the two coils of the exciting coil. is there.
  • the exciting coil is disposed in an axial direction of the pipe or It is characterized by being arranged in the circumferential direction.
  • FIG. 1 is a diagram for explaining the principle of a mutual guiding interpolation probe according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a mutual guiding interpolation probe according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing a mutual guiding interpolation probe according to a second embodiment of the present invention.
  • FIG. 4 is a diagram for explaining a detection operation of the mutual guidance interpolation probe according to the second embodiment of the present invention.
  • FIG. 5 is a diagram showing a mutual guiding interpolation probe according to a third embodiment of the present invention.
  • FIG. 6 shows a cross-guided inner probe according to a second embodiment of the present invention. It is a figure for explaining a detecting operation.
  • FIG. 7 is a characteristic diagram of the first embodiment when two-dimensional scanning is performed when there is no flaw in the tube.
  • FIG. 8 is a characteristic diagram of the first embodiment when two-dimensional scanning is performed when a pipe has a flaw.
  • FIG. 9 is a characteristic diagram of the second embodiment when two-dimensional scanning is performed by the upper probe.
  • FIG. 10 is a characteristic diagram of the second embodiment when two-dimensional scanning is performed by the mutual guidance interpolation probe according to the present invention.
  • FIG. 11 is a characteristic diagram showing a pattern of a flaw detection signal by the upper probe and the mutual induction inner probe according to the second embodiment.
  • FIG. 12 is a characteristic diagram of the third embodiment when two-dimensional scanning is performed by the mutual guidance probe according to the present invention.
  • FIG. 13 is a characteristic diagram when two-dimensional scanning is performed by the self-guided comparison type probe or the mutual guidance inner probe according to the present invention, which is the third embodiment.
  • FIG. 1 is a diagram for explaining the principle of the mutual guiding interpolation probe according to the embodiment of the present invention.
  • FIG. 1 (a) is an explanatory diagram of the upper surface of the piping
  • FIG. 1 (b) is an explanatory diagram of the lower surface of the piping.
  • FIG. 1 (a) is an explanatory diagram of the upper surface of the piping
  • FIG. 1 (b) is an explanatory diagram of the lower surface of the piping.
  • an eddy current Cda, an eddy current Cdb, and an eddy current Cdd, Cde are generated on the lower surface of the tube 1 as shown in FIG. 1 (b).
  • the eddy current C db flows in a shape as shown in Fig. 1 (b) because there is no damage.
  • the eddy currents Cdd and Cde flow in the same shape as in FIG. 1 (a) by the support plate 3, as shown in FIG. 1 (b).
  • FIG. 2 is a diagram showing a mutual induction internal probe according to the first embodiment of the present invention.
  • the mutual induction inner probe 11 includes two coils 13 a, which are wound in a rectangular shape to excite the pipe 1 as the object to be detected.
  • the detection coil 15 is, as shown in FIG. It is wound near the center of the coils 13a and 13b and outside the coils 13a and 13b.
  • the coils 13 a and 13 b of the exciting coil 13 are wound so that they are arranged in the axial direction of the pipe 1.
  • the above-described mutual induction probe 11 supplies the coils 13a and 13b of the excitation coil 13 with a high frequency of a predetermined frequency. Eddy currents are generated on the a side and the coil 13 b side, respectively.
  • Flaw detection of a flaw having a complicated shape can be reliably detected.
  • the shape of the exciting coil 13 has been described as being rectangular.
  • the detection coil 15 has been described as being arranged in a direction orthogonal to the excitation coil 13.
  • the present invention is not limited to this. Within range Can be set to
  • FIG. 3 is a diagram showing a mutual induction internal probe according to a second embodiment of the present invention.
  • a mutual induction inner probe 21 includes two coils 23 a wound in a rectangular shape for exciting the pipe 1 as the object to be detected. , 23 b facing each other at a predetermined distance L, and the two coils 13 a in a direction orthogonal to the two coils 23 a, 23 b of the excitation coil 23. , 13b, and a detection coil 25 wound near the center.
  • the detection coil 25 is wound near the center of the coils 23a and 23b of the excitation coil 23 and inside the coils 23a and 23b. Turned and configured.
  • the coils 23a and 23b of the exciting coil 23 are wound around the pipe 1 in the axial direction. The detection effect of such a mutual induction probe will be described.
  • FIG. 4 is a diagram for explaining the detection operation of the mutual guiding interpolation probe according to the second embodiment, and FIG. 4 (a) is an explanatory diagram when there is no flaw, and FIG. 4 (b) It is explanatory drawing in case there is a flaw.
  • FIG. 4 the state of the eddy current flowing in the pipe 1 and the detection coil 25 are shown.
  • the eddy current C ua is generated on one surface of the pipe 1 by the coil 23 a of the exciting coil 23, and the eddy current C da is generated on the other surface of the pipe 1 by the coil 23 b of the exciting coil 23.
  • the flaw detection signal by the detection coil 25 draws a locus of figure eight.
  • the shape of the exciting coil 23 has been described as a rectangular shape. However, the shape is not limited to this, and may be another shape, for example, a deformed hexagon. Further, in the second embodiment, the detection coil 25 has been described as being arranged in a direction orthogonal to the excitation coil 23.However, the present invention is not limited to this, and if conditions such as sensitivity are allowed. It can be set within a predetermined range.
  • FIG. 5 is a diagram showing a mutual guiding interpolation probe according to the third embodiment of the present invention.
  • the mutual induction inner probe 31 includes two coils 33 a wound in a circular shape that excites the pipe 1 as the object to be detected. , 33 b facing each other at a predetermined interval L, and two coils 33 a in a direction orthogonal to two coils 33 a, 33 b of the excitation coil 33. , 33 Wound around the center of b And a detection coil 35.
  • the detection coil 35 is wound near the center of the coils 33a and 33b of the excitation coil 33 and inside the coils 33a and 33b. Turned and configured.
  • the coils 33 a and 33 b of the excitation coil 33 are wound so as to be arranged in the circumferential direction of the pipe 1. The detection operation of such a mutual guiding interpolation probe will be described.
  • FIG. 6 is a diagram for explaining the detection operation of the mutual guiding interpolation probe according to the second embodiment
  • FIG. 6 (a) is an explanatory diagram in the case where there is no scratch and there is a support plate
  • FIG. 6 (b) is an explanatory diagram when there is a flaw. Note that FIG. 6 shows only a state where the eddy current flows in the pipe 1.
  • an eddy current flows as shown in FIGS. 6 (a) and 6 (b), and the same operation as in the second embodiment is performed.
  • the mutual guiding interpolation probe 21 according to the above-described second embodiment there is an advantage similar to that of the first embodiment.
  • the shape of the exciting coil 33 is described as being circular. However, the shape is not limited to this, and the exciting coil 33 may have another shape, for example, a hexagon. Further, in the third embodiment, the detection coil 35 has been described as being arranged in a direction orthogonal to the excitation coil 33.However, the detection coil 35 is not limited to this, and if conditions such as sensitivity are allowed. Set within the specified range.
  • the mutual induction inner probe 11 was configured as follows. First, each of the coils 13a and 13b of the exciting coil 13 was 8 mm in length and 25 mm in width, and the winding cross-sectional area was 2 X 2 [mm 2 ]. Ma The detection coil 15 had a length of 6 mm and a width of 18 mm, and a winding cross-sectional area of 1 X 1 mm 2 .
  • the upper probe had an outer diameter of 6 [mm] and a winding cross-sectional area of IX 2 [mm 2 ].
  • pipe 1 is a brass tube with an outer diameter of ⁇ 22 (mm) and a wall thickness of 1.5 (mm), with a length of 15 (mm) and a width of 0.5 (mm) in the circumferential direction.
  • a slit-shaped scratch with a depth of 80 [percent] was subjected to electrical discharge machining.
  • a ring-shaped steel having an inner diameter of 22.5 [mm], a thickness of 26 [mm], and a width of 15 [mm] was used as the support plate 3 of the pipe 1.
  • Figure 7 is a characteristic diagram when two-dimensional scanning is performed when there is no damage on the pipe 1.
  • Figure 7 (a) shows the scanning result of the upper probe
  • Figure 7 (b) shows the mutual induction inner probe 1 1
  • FIG. 6 is a characteristic diagram showing scanning results by the respective methods.
  • the horizontal axis represents the rotation angle 0
  • the vertical axis represents the movement direction Z
  • the orthogonal axis represents the probe detection value.
  • FIG. 7 (a) In the upper probe, as shown in FIG. 7 (a), it can be seen that noise is large in the portion of the support plate 3 supporting the pipe 1.
  • FIG. 7 (b) In the mutual induction inner probe 11 of the present invention, as shown in FIG. 7 (b), the effect of the noise is not significant, but appears only slightly at the end of the support plate 3. is there.
  • Fig. 8 is a characteristic diagram of two-dimensional scanning when the pipe 1 is damaged.
  • Fig. 8 (a) shows the scanning result of the upper probe
  • Fig. 8 (b) shows the mutual induction interpolation probe.
  • FIG. 6 is a characteristic diagram showing scanning results by the respective methods.
  • the horizontal axis represents the rotation angle 0
  • the vertical axis represents the moving direction Z
  • the orthogonal axis represents the probe detection value.
  • the support plate In the upper probe, as shown in Fig. 8 (a), the support plate It can be seen that noise is large in the part 3 and it is difficult to detect the scratch.
  • the mutual induction probe 11 of the present invention As shown in FIG. 8 (b), there is almost no influence of noise, and the flaw detection signal clearly appears.
  • the reason why the flaw detection signal appears at two points is that the direction of the eddy current generated on both sides of the flaw is reversed, so that the flaw detection signal becomes zero at the flaw and slightly deviates from the flaw. Occasionally, a flaw detection signal having a maximum value is generated, and a flaw signal that gradually decreases as the distance from the flaw is obtained.
  • the mutual guidance interpolation probe 11 can perform flaw detection on the pipe 1 without being affected by the support plate.
  • the mutual guiding interpolation probe 21 was configured as follows. First, the coils 23 a, 23 b of the excitation coil 23, the vertical 8 Cmm)'s horizontal 2 5 mm and was winding cross-sectional area 2 X 2 [mm 2].
  • the detection coil 25 has a length of 6 Cmm) ⁇ a width of 18 Cmm] and a winding cross-sectional area of 1 ⁇ 1 Cmm 2 ].
  • the upper probe had an outer diameter of 6 (mm) and a winding cross-sectional area of IX 2 [mm 2 ].
  • the pipe 1 is a brass tube with an outer diameter of ⁇ 22 [nmi] and a wall thickness of 1.5 Cmm), with a length of 15 Cmm), a width of 0.5 [mm] and a width of 0.5 [mm]. % Of the slit-shaped scratch was subjected to electrical discharge machining.
  • a ring-shaped steel having an inner diameter of 22.5 [mm], a thickness of 26 [mm], and a width of 15 [mm] was used as the support plate 3 for the pipe 1.
  • Fig. 9 is a characteristic diagram when two-dimensional scanning is performed with the upper probe.
  • Fig. 9 (a) shows the flaw detection signal obtained by scanning the damaged pipe 1 with the upper probe.
  • (b) is a characteristic diagram showing a flaw detection signal as a result of scanning the vicinity of the support plate of the pipe 1 with the upper probe.
  • the horizontal axis represents the rotation angle 0
  • the vertical axis represents the moving direction Z
  • the orthogonal axis represents the probe detection value.
  • Fig. 10 is a characteristic diagram when two-dimensional scanning is performed by the mutual guidance internal probe 21.
  • Fig. 10 (a) shows a flaw detection signal obtained by scanning the damaged pipe 1 with the mutual guidance interpolation probe 21.
  • FIG. 10 (b) is a characteristic diagram showing a flaw detection signal as a result of scanning the vicinity of the support plate of the pipe 1 with the upper probe.
  • the horizontal axis represents the rotation angle 0
  • the vertical axis represents the moving direction Z
  • the orthogonal axis represents the detected value of the probe.
  • the support plate 3 has no influence. That is, it can be seen that the mutual guidance inner probe 21 has no influence of the support plate as compared with the upper probe.
  • Fig. 11 is a characteristic diagram showing the pattern of the flaw detection signal by the probe.
  • Fig. 11 (a) shows the pattern of the flaw detection signal by the upper probe
  • Fig. 11 (b) shows the pattern of the mutual induction inner probe 21. It is a figure which shows the pattern of a flaw detection signal, respectively.
  • the solid line indicates the flaw detection signal
  • the dotted line indicates the noise due to the support plate.
  • both the flaw detection signal and the noise simply appear in a curved shape.
  • both the flaw detection signal and the noise appear in the shape of a figure eight.
  • the S / N ratio is calculated as the ratio between the flaw detection signal and noise
  • the S / N ratio is 1.19 for the upper probe
  • the S / N ratio is 3.41 for the mutual induction interpolation probe 21.
  • the mutual guiding interpolation probe 21 is It can be seen that the signal-to-noise ratio is higher than that of the probe and the effect of noise from the support plate is small.
  • the mutual guiding interpolation probe 21 can perform flaw detection on the pipe 1 without being affected by the support plate.
  • each coil 3 3 a, 3 3 b of the excitation coil 33 has an outer diameter 1 8 [mm] in the circumferential direction, and the circular coil winding cross-sectional area 2 X 2 [mm 2] arranged to be a predetermined distance apart.
  • the detection coil 35 a rectangular coil having a length of 6 [mm] and a width of 7 [mm] and a winding cross-sectional area of 1 X 1 (mm 2 ) was arranged in the axial direction.
  • pipe 1 is a brass tube with an outer diameter of ⁇ 22 (mm) and a wall thickness of 1.5 (mm) that is 15 (mm) long and 0.5 (mm) wide in the axial direction.
  • a slit-shaped scratch with a depth of 80 [percent] was subjected to electric discharge machining.
  • a ring-shaped steel having an inner diameter of 22.5 [mm], a thickness of 26 [mm], and a width of 15 [mm] was used as the support plate 3 of the pipe 1.
  • an alternating current having a frequency of 9 [kHz] was applied to the coils 33a and 33b of the exciting coil 33 in opposite directions.
  • FIG. 12 is a characteristic diagram when two-dimensional scanning is performed with the mutual guidance interpolation probe 31.
  • FIG. 12 (a) shows the damage as a result of scanning the pipe 1 with only the damage with the mutual guidance interpolation probe 31.
  • FIG. 12 (b) is a characteristic diagram showing a detection signal
  • FIG. 12 (b) is a flaw detection signal as a result of scanning a portion where the pipe 1 of the support plate has a flaw with the mutual guiding interpolation probe 31.
  • the horizontal axis represents the rotation angle 0
  • the vertical axis represents the moving direction Z
  • the orthogonal axis represents the probe detection value.
  • the flaw detection signal appears as shown in Fig. 12 (a) and Fig. 12 (b). This means that the support plate has almost no effect.
  • the flaw detection signal appears as a positive / negative characteristic centering on the flaw.
  • Fig. 13 is a characteristic diagram when two-dimensional scanning is performed with the self-guided comparison type probe or the mutual guidance interpolation probe 31.
  • Fig. 13 (a) shows the result of scanning pipe 1 with the self-guided comparison type probe.
  • FIG. 13 (b) is a characteristic diagram showing a flaw detection signal obtained by scanning the pipe 1 with the mutual guiding interpolation probe 31.
  • the solid line is a flaw detection signal when there is only a flaw
  • the dotted line is a flaw detection signal when there is a flaw in the support plate.
  • the self-guided comparison type probe has a large flaw detection signal when there is only a flaw (solid line) and when there is a flaw in the support plate (dotted line). Make a difference.
  • the probe 31 for the mutual induction detects a flaw when there is only a flaw (solid line) and when there is a flaw on the support plate (dotted line). It can be seen that the signal change is small.
  • the mutual guiding interpolation probe 31 can perform the flaw detection of the pipe 1 without being affected by the support plate. Industrial applicability.
  • an exciting coil in which two coils of a predetermined shape are opposed to each other at a predetermined interval, and a detection coil arranged in a direction orthogonal to the exciting coil have the following effects. There is.
  • Flaw detection of a flaw having a complicated shape can be reliably detected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

A mutual-induction insertion probe free from any noise effect. The mutual-induction insertion probe (11) detects any flaw (5) in an object (a pipe (1)) by eddy current. The mutual-induction insertion probe (11) comprises an excitation coil (13) having two coils (13a) and (13b) for exciting the object (the pipe (1)) facing each other with a predetermined spacing and a detection coil (15) which is coiled in a direction orthogonal to the excitation coil (13). Eddy currents of the same value in the opposite directions to each other are generated in the object (the pipe (1)) by the coils (13a) and (13b). If there is no flaw in the pipe (1), no electromotive force is generated in the detection coil (15). If there is any flaw in the pipe (1), the eddy current flows parallel to the plane of the detection coil (15) at the flaw, and the electromotive force is generated in the detection coil.

Description

明 細 書 相互誘導内揷プローブ 技術分野  Description Mutual guidance internal probe Technical field
本発明は渦電流により被検出体の傷を検出する相互誘導プローブに関 し、 特に被検出体の支持板による雑音の影響をなくした相互誘導内揷プ ローブに関するものである。 背景技術  The present invention relates to a mutual induction probe for detecting a flaw of a detection object by eddy current, and more particularly to a mutual induction probe which eliminates the influence of noise due to a support plate of the detection object. Background art
従来、 配管の傷を検出する方法として、 例えば渦流探傷法が提供され ている。 この渦流探傷法は、 配管に載置した上置プローブに所定の周波 数の高周波を供給し、 前記上置プローブからの検出信号を増幅し処理等 をした後に表示しあるいはハ一ドコピーを得るようにしたものである。 この渦流探傷法によれば、 配管の軸方向や周方向の傷を検出すること ができる。  Conventionally, for example, an eddy current flaw detection method has been provided as a method for detecting a flaw in a pipe. In this eddy current flaw detection method, a high frequency of a predetermined frequency is supplied to an upper probe mounted on a pipe, and a detection signal from the upper probe is amplified and processed, and then displayed or hard copy is obtained. It was made. According to the eddy current flaw detection method, it is possible to detect a flaw in a pipe in an axial direction or a circumferential direction.
しかしながら、 従来の上置プローブを用いた渦流探傷法によれば、 配 管が支持板で支持されている場合、支持板部分において渦電流が発生し、 これが雑音となつて傷探傷ができなくなることがあった。 発明の開示  However, according to the conventional eddy current flaw detection method using an upper probe, if the pipe is supported by a support plate, eddy currents are generated in the support plate, which causes noise and makes flaw detection impossible. was there. Disclosure of the invention
本発明は、 上述した欠点を解消し、 雑音の影響を受けない相互誘導内 揷プローブを提供することを目的としている。  An object of the present invention is to solve the above-mentioned drawbacks and to provide a mutual induction probe that is not affected by noise.
上記目的を達成するために、 本願請求項 1に係る相互誘導内揷プロ一 ブの発明は、 渦電流により被検出体の傷を検出する相互誘導プローブに おいて、 前記被検出体を励磁する二つのコイルを所定間隔で対峙させてなる励 磁コイルと、 前記励磁コイルに対して直交方向に捲回された検出コイル とからなることを特徴とするものである。 In order to achieve the above object, an invention of a mutual induction probe according to claim 1 of the present application is directed to a mutual induction probe for detecting a flaw of an object to be detected by eddy current, It is characterized by comprising an exciting coil in which two coils for exciting the object to be detected face each other at a predetermined interval, and a detecting coil wound in a direction orthogonal to the exciting coil.
また、 本願請求項 2に係る発明では、 前記請求項 1に係る相互誘導 内挿プローブの発明において、 前記励磁コイルは、 円形、 多角形または 矩形に捲回された二つのコイルを所定間隔で対峙配置させてなり、 前記検出コイルは、前記励磁コイルの二つのコイルの内側に捲回され、 または、 前記励磁コイルの二つのコイルの外側に捲回されたものである ことを特徴とするものである。  Also, in the invention according to claim 2 of the present application, in the invention of the mutual induction interpolation probe according to claim 1, the exciting coil faces two coils wound in a circle, a polygon, or a rectangle at a predetermined interval. The detection coil is wound inside the two coils of the exciting coil, or is wound outside the two coils of the exciting coil. is there.
さらに、 本願請求項 3に係る発明では、 前記請求項 1または 2に係 る相互誘導内揷プローブの発明において、 前記励磁コイルは、 被検出体 が配管である場合に、 当該配管の軸方向または周方向に配置されたもの であることを特徴とするものである。 図面の簡単な説明  Furthermore, in the invention according to claim 3 of the present application, in the invention of the mutual induction inner probe according to claim 1 or 2, when the detection target is a pipe, the exciting coil is disposed in an axial direction of the pipe or It is characterized by being arranged in the circumferential direction. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の実施の形態に係る相互誘導内挿プローブの原理を 説明するための図である。  FIG. 1 is a diagram for explaining the principle of a mutual guiding interpolation probe according to an embodiment of the present invention.
第 2図は、 本発明の第 1の実施の形態に係る相互誘導内挿プローブを 示す図である。  FIG. 2 is a diagram showing a mutual guiding interpolation probe according to the first embodiment of the present invention.
第 3図は、 本発明の第 2の実施の形態に係る相互誘導内挿プローブを 示す図である。  FIG. 3 is a diagram showing a mutual guiding interpolation probe according to a second embodiment of the present invention.
第 4図は、 本発明の第 2.の実施の形態に係る相互誘導内挿プローブの 検出作用を説明するための図である。  FIG. 4 is a diagram for explaining a detection operation of the mutual guidance interpolation probe according to the second embodiment of the present invention.
第 5図は、 本発明の第 3の実施の形態に係る相互誘導内挿プローブを 示す図である。  FIG. 5 is a diagram showing a mutual guiding interpolation probe according to a third embodiment of the present invention.
第 6図は、 本発明の第 2の実施の形態に係る相互誘導内揷プロープの 検出作用を説明するための図である。 FIG. 6 shows a cross-guided inner probe according to a second embodiment of the present invention. It is a figure for explaining a detecting operation.
第 7図は、 第 1の実施例であって 管に傷がない場合に 2次元走査し た場合の特性図である。  FIG. 7 is a characteristic diagram of the first embodiment when two-dimensional scanning is performed when there is no flaw in the tube.
第 8図は、 第 1の実施例であって配管に傷がある場合に 2次元走査し た場合の特性図である。  FIG. 8 is a characteristic diagram of the first embodiment when two-dimensional scanning is performed when a pipe has a flaw.
第 9図は、 第 2の実施例であって上置プローブで 2次元走査した場合 の特性図である。  FIG. 9 is a characteristic diagram of the second embodiment when two-dimensional scanning is performed by the upper probe.
第 1 0図は、 第 2の実施例であって本発明に係る相互誘導内挿プロ一 ブで 2次元走査した場合の特性図である。  FIG. 10 is a characteristic diagram of the second embodiment when two-dimensional scanning is performed by the mutual guidance interpolation probe according to the present invention.
第 1 1図は、 第 2の実施例であって上置プローブ及び相互誘導内揷プ ローブによる傷検出信号のパターンを示す特性図である。  FIG. 11 is a characteristic diagram showing a pattern of a flaw detection signal by the upper probe and the mutual induction inner probe according to the second embodiment.
第 1 2図は、 第 3の実施例であって本発明に係る相互誘導内揷プロ一 ブで 2次元走査した場合の特性図である。  FIG. 12 is a characteristic diagram of the third embodiment when two-dimensional scanning is performed by the mutual guidance probe according to the present invention.
第 1 3図は、 第 3の実施例であって自己誘導型比較方式プローブある いは本発明に係る相互誘導内揷プローブで 2次元走査した場合の特性図 である。 発明を実施するための最良の形態  FIG. 13 is a characteristic diagram when two-dimensional scanning is performed by the self-guided comparison type probe or the mutual guidance inner probe according to the present invention, which is the third embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態について図面を参照して説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[本発明の原理]  [Principle of the present invention]
図 1は本発明の実施の形態に係る相互誘導内挿プローブの原理を説明 するための図であり、 図 1 ( a ) が配管上面の説明図、 図 1 ( b ) が配 管下面の説明図である。  FIG. 1 is a diagram for explaining the principle of the mutual guiding interpolation probe according to the embodiment of the present invention. FIG. 1 (a) is an explanatory diagram of the upper surface of the piping, and FIG. 1 (b) is an explanatory diagram of the lower surface of the piping. FIG.
これらの図において、配管 1は支持板 3で支持されいてるものとする。 また、 配管 1の上面には図 1 ( a ) に示すように傷 5があり、 配管 1の 下面には図 1 ( b ) に示すように傷がないものとする。 このような状態において、 配管 1の上面には、 図 1 (a) に示すよう に、 渦電流 Cu a、 渦電流 Cub, Cu e, 渦電流 Cud, C u eが発 生する。 渦電流 Cub, Cu eは、 傷 5により図 1 (a) に示すような 形状に流れている。 また、 渦電流 Cud, Cu eは、 支持板 3により図 1 (a) に示すような形状に流れている。 In these figures, it is assumed that the pipe 1 is supported by the support plate 3. Also, it is assumed that the upper surface of the pipe 1 has a flaw 5 as shown in FIG. 1 (a), and the lower surface of the pipe 1 has no flaw as shown in FIG. 1 (b). In such a state, an eddy current Cua, eddy currents Cub, Cue, and eddy currents Cud, Cue are generated on the upper surface of the pipe 1, as shown in Fig. 1 (a). The eddy currents Cub and Cue flow in the shape shown in Fig. 1 (a) due to flaw 5. In addition, the eddy currents Cud and Cue flow in the shape shown in FIG.
一方、 管 1の下面には、 図 1 (b) に示すように、 渦電流 Cd a、 渦 電流 C d b、 渦電流 C d d, C d eが発生する。 渦電流 C d bは、 傷が ないため、 図 1 (b) に示すような形状に流れている。 また、 渦電流 C d d, Cd eは、 支持板 3により図 1 (b) に示すように、 図 1 (a) と全く同様な形状で流れている。  On the other hand, an eddy current Cda, an eddy current Cdb, and an eddy current Cdd, Cde are generated on the lower surface of the tube 1 as shown in FIG. 1 (b). The eddy current C db flows in a shape as shown in Fig. 1 (b) because there is no damage. The eddy currents Cdd and Cde flow in the same shape as in FIG. 1 (a) by the support plate 3, as shown in FIG. 1 (b).
これらを差動検出することにより、配管 1の配管上面の渦電流 C u d, Cu eと配管 1の配管下面の渦電流 C d d, Cd eとは打ち消されるが、 配管 1の配管上面の渦電流 C u b, Cu eと配管 1の配管下面の渦電流 C d bとは打ち消されないので、 傷探傷が確実にできることになる。 そこで、 このような考え方に基づき、 以下に説明する本発明の実施の 形態が提案された。  By detecting these differentially, the eddy currents C ud and C e on the upper surface of the pipe 1 and the eddy currents C dd and C de on the lower surface of the pipe 1 are canceled out. Since C ub, Cu e and the eddy current C db on the lower surface of the pipe 1 are not canceled out, flaw detection can be surely performed. Therefore, based on such a concept, an embodiment of the present invention described below has been proposed.
[第 1の実施の形態]  [First Embodiment]
図 2は、 本発明の第 1の実施の形態に係る相互誘導内揷プローブを示 す図である。  FIG. 2 is a diagram showing a mutual induction internal probe according to the first embodiment of the present invention.
この図 2において、 本発明の第 1の実施の形態に係る相互誘導内揷プ ローブ 1 1は、 前記被検出体である配管 1を励磁する矩形状に捲回され た二つのコイル 13 a, 13 bを所定間隔 Lで対峙させてなる励磁コィ ル 13と、 前記励磁コイル 13の二つのコイル 13 a, 13 bに対して 直交方向でかつ前記二つのコイル 13 a, 1 3 bの中央部付近に捲回さ れた検出コイル 1 5とから構成されている。  In FIG. 2, the mutual induction inner probe 11 according to the first embodiment of the present invention includes two coils 13 a, which are wound in a rectangular shape to excite the pipe 1 as the object to be detected. An exciting coil 13 in which 13b faces each other at a predetermined distance L; and a center portion of the two coils 13a and 13b in a direction orthogonal to the two coils 13a and 13b of the exciting coil 13. It consists of a detection coil 15 wound around it.
前記検出コイル 15は、 図 2に示すように、 前記励磁コイル 1 3のコ ィル 1 3 a , 1 3 bの中央部付近でかつ当該コイル 1 3 a, 1 3 bの外 側に捲回されて構成されている。 The detection coil 15 is, as shown in FIG. It is wound near the center of the coils 13a and 13b and outside the coils 13a and 13b.
また、 上記励磁コイル 1 3のコイル 1 3 a, 1 3 bは、 配管 1の軸方 向に配置されるよ ·捲回されている。  Further, the coils 13 a and 13 b of the exciting coil 13 are wound so that they are arranged in the axial direction of the pipe 1.
上記相互誘導内揷プローブ 1 1は、 励磁コイル 1 3のコイル 1 3 a , 1 3 bに所定の周波数の高周波を供給してやると、 コイル 1 3 a, 1 3 bにより、 配管 1のコイル 1 3 a側とコイル 1 3 b側とにそれぞれ渦電 流が発生する。  The above-described mutual induction probe 11 supplies the coils 13a and 13b of the excitation coil 13 with a high frequency of a predetermined frequency. Eddy currents are generated on the a side and the coil 13 b side, respectively.
配管 1に傷がない場合や支持板 3がある場合には、 両コイル 1 3 a , 1 3 bにより配管 1のコイル 1 3 a側に発生する渦電流とコイル 1 3 b 側に発生する渦電流が流れる方向が反対方向でかつ同一値であるため、 検出コイル 1 5には検出電流が発生しない。  If there is no damage on the pipe 1 or if there is a support plate 3, the eddy current generated on the coil 13a side of the pipe 1 and the vortex generated on the coil 13b side by both coils 13a and 13b Since the directions in which the current flows are opposite and have the same value, no detection current is generated in the detection coil 15.
一方、 配管 1の例えばコイル 1 3 a側の面に傷があったときには、 コ ィル 1 3 a, 1 3 bにより発生する渦電流に相違ができ、 当該渦電流に より検出コイル 1 5に誘導起電力が発生し、 これにより傷の検出が可能 になる。  On the other hand, if the surface of the pipe 1 on the coil 13a side is damaged, for example, the eddy currents generated by the coils 13a and 13b differ, and the eddy currents cause the detection coil 15 to be damaged. An induced electromotive force is generated, which makes it possible to detect flaws.
上述した第 1の実施の形態に係る相互誘導内挿プローブ 1 1によれば、 次のような利点がある。  According to the mutual guiding interpolation probe 11 according to the above-described first embodiment, the following advantages are provided.
( 1 ) 支持板による雑音の影響を小さくすることができる。  (1) The influence of noise due to the support plate can be reduced.
( 2 ) 信号対雑音比が高く傷を検出することができる。  (2) The signal-to-noise ratio is high and flaws can be detected.
( 3 ) 複雑な形状をした傷の探傷も確実に検出することができる。 なお、 上記第 1の実施の形態において、 励磁コイル 1 3の形状を矩形 と説明したが、 これに限定されることなく、 他の形状、 例えば変形 6角 形等にしてもよい。 また上記第 1の実施の形態において、 検出コイル 1 5は、 励磁コイル 1 3に対して直交方向に配置するものとして説明した が、 これに限定されるものではなく感度等の条件が許せば所定の範囲内 に設定することができる。 (3) Flaw detection of a flaw having a complicated shape can be reliably detected. In the above-described first embodiment, the shape of the exciting coil 13 has been described as being rectangular. In the first embodiment, the detection coil 15 has been described as being arranged in a direction orthogonal to the excitation coil 13. However, the present invention is not limited to this. Within range Can be set to
[第 2の実施の形態]  [Second embodiment]
図 3は、 本発明の第 2の実施の形態に係る相互誘導内揷プローブを示 す図である。  FIG. 3 is a diagram showing a mutual induction internal probe according to a second embodiment of the present invention.
この図 3において、 本発明の第 2の実施の形態に係る相互誘導内揷プ ローブ 2 1は、 前記被検出体である配管 1を励磁する矩形状に捲回され た二つのコイル 2 3 a , 2 3 bを所定間隔 Lで対峙させてなる励磁コィ ル 2 3と、 前記励磁コイル 2 3の二つのコイル 2 3 a, 2 3 bに対して 直交方向でかつ前記二つのコイル 1 3 a , 1 3 bの中央部付近に捲回さ れた検出コイル 2 5とから構成されている。  In FIG. 3, a mutual induction inner probe 21 according to a second embodiment of the present invention includes two coils 23 a wound in a rectangular shape for exciting the pipe 1 as the object to be detected. , 23 b facing each other at a predetermined distance L, and the two coils 13 a in a direction orthogonal to the two coils 23 a, 23 b of the excitation coil 23. , 13b, and a detection coil 25 wound near the center.
前記検出コイル 2 5は、 図 3に示すように、 前記励磁コイル 2 3のコ ィル 2 3 a, 2 3 bの中央部付近でかつ当該コイル 2 3 a, 2 3 bの内 側に捲回されて構成されている。  As shown in FIG. 3, the detection coil 25 is wound near the center of the coils 23a and 23b of the excitation coil 23 and inside the coils 23a and 23b. Turned and configured.
また、 この第 2の実施の形態でも、 上記励磁コイル 2 3のコイル 2 3 a , 2 3 bは、 配管 1の軸方向に配置さ黷驍謔、に捲回されている。 このような相互誘導内揷プローブの検出作用を説明する。  Also in the second embodiment, the coils 23a and 23b of the exciting coil 23 are wound around the pipe 1 in the axial direction. The detection effect of such a mutual induction probe will be described.
図 4は、 上記第 2の実施の形態に係る相互誘導内挿プローブの検出作 用を説明するための図であり、 図 4 ( a ) が傷がない場合の説明図、 図 4 ( b ) が傷がある場合の説明図である。 なお、 図 4では配管 1に流れ る渦電流の状態と、 検出コイル 2 5を示してある。  FIG. 4 is a diagram for explaining the detection operation of the mutual guiding interpolation probe according to the second embodiment, and FIG. 4 (a) is an explanatory diagram when there is no flaw, and FIG. 4 (b) It is explanatory drawing in case there is a flaw. In FIG. 4, the state of the eddy current flowing in the pipe 1 and the detection coil 25 are shown.
これらの図 4において、 励磁コイル 2 3のコイル 2 3 aにより配管 1 の一面には渦電流 C u aが、 励磁コイル 2 3のコイル 2 3 bにより配管 1の他面には渦電流 C d aがそれぞれ発生する。  In FIG. 4, the eddy current C ua is generated on one surface of the pipe 1 by the coil 23 a of the exciting coil 23, and the eddy current C da is generated on the other surface of the pipe 1 by the coil 23 b of the exciting coil 23. Each occurs.
この図 4 ( a ) に示すように配管 1に傷がない場合には、 渦電流 C u aと渦電流 C d aとは、 流れる方向が逆方向で、 かつ、 同一値であるの で、 検出コイル 2 5には起電力が発生しない。 一方、 この図 4 ( b ) に示すように配管 1に傷 5がある場合には、 配 管 1の傷 5の部分の両側に検出コイル 2 5と同方向に渦電流 C p, C m が流れて、 検出コイル 2 5に起電力を発生させる。 As shown in FIG. 4 (a), when the pipe 1 is not damaged, the eddy current Cua and the eddy current Cda flow in opposite directions and have the same value. No electromotive force is generated in 25. On the other hand, if there is a flaw 5 on the pipe 1 as shown in FIG. 4 (b), eddy currents C p and C m are generated on both sides of the flaw 5 of the pipe 1 in the same direction as the detection coil 25 Flows to generate an electromotive force in the detection coil 25.
傷 5に近づく場合と、 離れる場合とでは、 渦電流 C p, C mの方向が 逆になるので、 検出コイル 2 5に発生する起電力の極性は逆になる。 また、 検出コイル 2 5が傷 5の真上にあるときには、 渦電流 C p , C mが逆方向でかつ同一値であるので、 検出コイル 2 5に発生する起電力 が相殺し、 検出コイル 2 5には起電力が発生しない。  Since the directions of the eddy currents C p and C m are reversed between approaching and leaving the flaw 5, the polarity of the electromotive force generated in the detection coil 25 is reversed. Also, when the detection coil 25 is directly above the scratch 5, the eddy currents C p and C m are in the opposite direction and have the same value, so that the electromotive force generated in the detection coil 25 cancels out and the detection coil 2 No electromotive force is generated in 5.
したがって、 検出コイル 2 5による探傷信号は、 8の字状の軌跡を描 くことになる。  Therefore, the flaw detection signal by the detection coil 25 draws a locus of figure eight.
上述した第 2の実施の形態に係る相互誘導内揷プローブ 2 1によれば、 第 1の実施の形態と同様な利点がある。  According to the mutual induction internal probe 21 according to the above-described second embodiment, there is an advantage similar to that of the first embodiment.
なお、 上記第 2の実施の形態においても、 励磁コイル 2 3の形状を矩 形と説明したが、 これに限定されることなく、 他の形状、 例えば変形 6 角形等にしてもよい。 また上記第 2の実施の形態において、 検出コイル 2 5は、 励磁コイル 2 3に対して直交方向に配置するものとして説明し たが、 これに限定されるものではなく感度等の条件が許せば所定の範囲 内に設定できる。  In the above-described second embodiment, the shape of the exciting coil 23 has been described as a rectangular shape. However, the shape is not limited to this, and may be another shape, for example, a deformed hexagon. Further, in the second embodiment, the detection coil 25 has been described as being arranged in a direction orthogonal to the excitation coil 23.However, the present invention is not limited to this, and if conditions such as sensitivity are allowed. It can be set within a predetermined range.
[第 3の実施の形態]  [Third Embodiment]
図 5は、 本発明の第 3の実施の形態に係る相互誘導内挿プローブを示 す図である。  FIG. 5 is a diagram showing a mutual guiding interpolation probe according to the third embodiment of the present invention.
この図 5において、 本発明の第 3の実施の形態に係る相互誘導内揷プ ローブ 3 1は、 前記被検出体である配管 1を励磁する円形状に捲回され た二つのコイル 3 3 a , 3 3 bを所定間隔 Lで対峙させてなる励磁コィ ル 3 3と、 前記励磁コイル 3 3の二つのコイル 3 3 a, 3 3 bに対して 直交方向でかつ前記二つのコイル 3 3 a , 3 3 bの中央部付近に捲回さ れた検出コイル 3 5とから構成されている。 In FIG. 5, the mutual induction inner probe 31 according to the third embodiment of the present invention includes two coils 33 a wound in a circular shape that excites the pipe 1 as the object to be detected. , 33 b facing each other at a predetermined interval L, and two coils 33 a in a direction orthogonal to two coils 33 a, 33 b of the excitation coil 33. , 33 Wound around the center of b And a detection coil 35.
前記検出コイル 3 5は、 図 5に示すように、 前記励磁コイル 3 3のコ ィル 3 3 a, 3 3 bの中央部付近でかつ当該コイル 3 3 a , 3 3 bの内 側に捲回されて構成されている。  As shown in FIG. 5, the detection coil 35 is wound near the center of the coils 33a and 33b of the excitation coil 33 and inside the coils 33a and 33b. Turned and configured.
また、 この第 3の実施の形態では、 上記励磁コイル 3 3のコイル 3 3 a , 3 3 bは、 配管 1の周方向に配置されるように捲回されている。 このような相互誘導内挿プローブの検出作用を説明する。  Further, in the third embodiment, the coils 33 a and 33 b of the excitation coil 33 are wound so as to be arranged in the circumferential direction of the pipe 1. The detection operation of such a mutual guiding interpolation probe will be described.
図 6は、 上記第 2の実施の形態に係る相互誘導内挿プローブの検出作 用を説明するための図であり、 図 6 ( a ) が傷がなくかつ支持板がある 場合の説明図、 図 6 ( b ) が傷がある場合の説明図である。 なお、 図 6 では配管 1に渦電流の流れる状態のみをを示してある。  FIG. 6 is a diagram for explaining the detection operation of the mutual guiding interpolation probe according to the second embodiment, and FIG. 6 (a) is an explanatory diagram in the case where there is no scratch and there is a support plate, FIG. 6 (b) is an explanatory diagram when there is a flaw. Note that FIG. 6 shows only a state where the eddy current flows in the pipe 1.
この第 3の実施の形態でも、 図 6 ( a ) 及び図 6 ( b ) に示すような 渦電流が流れ、第 2の実施の形態の作用と同様の作用をすることになる。 上述した第 2の実施の形態に係る相互誘導内挿プローブ 2 1によれば、 第 1の実施の形態と同様な利点がある。  Also in the third embodiment, an eddy current flows as shown in FIGS. 6 (a) and 6 (b), and the same operation as in the second embodiment is performed. According to the mutual guiding interpolation probe 21 according to the above-described second embodiment, there is an advantage similar to that of the first embodiment.
なお、 上記第 3の実施の形態では、 励磁コイル 3 3の形状を円形と説 明したが、 これに限定されることなく、 他の形状、 例えば 6角形等にし てもよい。 また上記第 3の実施の形態において、 検出コイル 3 5は、 励 磁コイル 3 3に対して直交方向に配置するものとして説明したが、 これ に限定されるものではなく感度等の条件が許せば所定の範囲内に設定で さる。  In the third embodiment, the shape of the exciting coil 33 is described as being circular. However, the shape is not limited to this, and the exciting coil 33 may have another shape, for example, a hexagon. Further, in the third embodiment, the detection coil 35 has been described as being arranged in a direction orthogonal to the excitation coil 33.However, the detection coil 35 is not limited to this, and if conditions such as sensitivity are allowed. Set within the specified range.
実施例  Example
[第 1の実施例]  [First embodiment]
上記第 1の実施の形態に係る相互誘導内揷プローブ 1 1について、 次 のように構成した。 まず、 励磁コイル 1 3の各コイル 1 3 a, 1 3 bは、 縦 8 〔mm〕 横2 5 〔mm〕、 巻線断面積 2 X 2 〔mm2〕 とした。 ま た、 検出コイル 1 5は、 縦 6 〔mm〕 X横 18 〔mm〕、 巻線断面積 1 X 1 〔mm2〕 とした。 The mutual induction inner probe 11 according to the first embodiment was configured as follows. First, each of the coils 13a and 13b of the exciting coil 13 was 8 mm in length and 25 mm in width, and the winding cross-sectional area was 2 X 2 [mm 2 ]. Ma The detection coil 15 had a length of 6 mm and a width of 18 mm, and a winding cross-sectional area of 1 X 1 mm 2 .
この相互誘導内挿プローブ 1 1の作用と対比するため、 上置プローブ は、 外径 6 〔mm〕、 巻線断面積 I X 2 [mm2] とした。 For comparison with the operation of the mutual induction interpolation probe 11, the upper probe had an outer diameter of 6 [mm] and a winding cross-sectional area of IX 2 [mm 2 ].
さらに、 配管 1は、 外径 Φ 22 〔mm〕、 肉厚 1. 5 〔mm〕 の黄銅管 に周方向に長さ 1 5 〔mm〕、 幅 0. 5 〔mm〕、 肉厚に対して 80 [パ —セント] の深さのスリット状の傷を放電加工した。  In addition, pipe 1 is a brass tube with an outer diameter of Φ22 (mm) and a wall thickness of 1.5 (mm), with a length of 15 (mm) and a width of 0.5 (mm) in the circumferential direction. A slit-shaped scratch with a depth of 80 [percent] was subjected to electrical discharge machining.
また、 配管 1の支持板 3としては、 内径 22. 5 〔mm〕、 厚さ 26 〔mm〕、 幅 1 5 [mm) のリング状の鋼鉄を使用した。  Further, as the support plate 3 of the pipe 1, a ring-shaped steel having an inner diameter of 22.5 [mm], a thickness of 26 [mm], and a width of 15 [mm] was used.
なお、 コイル 13 a, 13 bには、 周波数 9 [kHz] の交流をそれ ぞれ逆方向に流した。  Note that alternating current with a frequency of 9 [kHz] was applied to the coils 13a and 13b in opposite directions.
図 Ίは配管 1に傷がない場合に 2次元走査した場合の特性図であり、 図 7 (a) が上置プローブの走査結果を、 図 7 (b) が相互誘導内揷プ ローブ 1 1による走査結果を、 それぞれ示す特性図である。 また、 図 7 において、 横軸は回転角度 0を、 縦軸は移動方向 Zを、 直交軸はプロ一 ブの検出値を、 それぞれとったものである。  Figure 7 is a characteristic diagram when two-dimensional scanning is performed when there is no damage on the pipe 1.Figure 7 (a) shows the scanning result of the upper probe, and Figure 7 (b) shows the mutual induction inner probe 1 1 FIG. 6 is a characteristic diagram showing scanning results by the respective methods. In FIG. 7, the horizontal axis represents the rotation angle 0, the vertical axis represents the movement direction Z, and the orthogonal axis represents the probe detection value.
上置プローブでは、 図 7 (a) に示すように、 配管 1を支える支持板 3の部分に雑音が大きくでていることがわかる。 これに対して、 本発明 の相互誘導内揷プローブ 1 1では、 図 7 (b) に示すように、 雑音の影 響がほとんでなく、 支持板 3の端部にわずかに現れているのみである。 図 8は配管 1に傷がある場合に 2次元走査した場合の特性図であり、 図 8 (a) が上置プローブの走査結果を、 図 8 (b) が相互誘導内挿プ ローブ 1 1による走査結果を、 それぞれ示す特性図である。 また、 図 8 において、 横軸は回転角度 0を、 縦軸は移動方向 Zを、 直交軸はプロ一 ブの検出値を、 それぞれとったものである。  In the upper probe, as shown in FIG. 7 (a), it can be seen that noise is large in the portion of the support plate 3 supporting the pipe 1. On the other hand, in the mutual induction inner probe 11 of the present invention, as shown in FIG. 7 (b), the effect of the noise is not significant, but appears only slightly at the end of the support plate 3. is there. Fig. 8 is a characteristic diagram of two-dimensional scanning when the pipe 1 is damaged.Fig. 8 (a) shows the scanning result of the upper probe, and Fig. 8 (b) shows the mutual induction interpolation probe. FIG. 6 is a characteristic diagram showing scanning results by the respective methods. In Fig. 8, the horizontal axis represents the rotation angle 0, the vertical axis represents the moving direction Z, and the orthogonal axis represents the probe detection value.
上置プローブでは、 図 8 (a) に示すように、 配管 1を支える支持板 3の部分に雑音が大きくでて傷の検出が困難なことがわかる。 これに対 して、 本発明の相互誘導内揷プローブ 1 1では、 図 8 (b) に示すよう に、 雑音の影響がほとんどなく、 傷検出信号が明確に現れている。 なお、 傷検出信号が 2箇所に現れる理由は、 傷の両側に発生している渦電流の 流れる方向が逆であるため、 傷の部分で傷検出信号がゼロとなり、 傷か ら僅かにはずれた時に最大値の傷検出信号が発生し、 傷から遠ざかるに 従って徐々に小さくなる傷信号が得られることになる。 In the upper probe, as shown in Fig. 8 (a), the support plate It can be seen that noise is large in the part 3 and it is difficult to detect the scratch. On the other hand, in the mutual induction probe 11 of the present invention, as shown in FIG. 8 (b), there is almost no influence of noise, and the flaw detection signal clearly appears. The reason why the flaw detection signal appears at two points is that the direction of the eddy current generated on both sides of the flaw is reversed, so that the flaw detection signal becomes zero at the flaw and slightly deviates from the flaw. Occasionally, a flaw detection signal having a maximum value is generated, and a flaw signal that gradually decreases as the distance from the flaw is obtained.
以上のことから相互誘導内挿プローブ 1 1は、 支持板の影響を受けず に、 配管 1の探傷を行なうことができる。  From the above, the mutual guidance interpolation probe 11 can perform flaw detection on the pipe 1 without being affected by the support plate.
[第 2の実施例]  [Second embodiment]
上記第 2の実施の形態に係る相互誘導内挿プローブ 2 1について、 次 のように構成した。 まず、 励磁コイル 23の各コイル 23 a, 23 bは、 縦 8 Cmm) ズ横2 5 〔mm〕、 巻線断面積 2 X 2 〔mm2〕 とした。 ま た、 検出コイル 25は、 縦 6 Cmm) X横 1 8 Cmm], 巻線断面積 1 X 1 Cmm2 ] とした。 The mutual guiding interpolation probe 21 according to the second embodiment was configured as follows. First, the coils 23 a, 23 b of the excitation coil 23, the vertical 8 Cmm)'s horizontal 2 5 mm and was winding cross-sectional area 2 X 2 [mm 2]. The detection coil 25 has a length of 6 Cmm) × a width of 18 Cmm] and a winding cross-sectional area of 1 × 1 Cmm 2 ].
この相互誘導内揷プローブ 11の作用と対比するため、 上置プローブ は、 外径 6 (mm), 巻線断面積 I X 2 〔mm2〕 とした。 For comparison with the operation of the mutual induction inner probe 11, the upper probe had an outer diameter of 6 (mm) and a winding cross-sectional area of IX 2 [mm 2 ].
さらに、 配管 1は、 外径 Φ 22 〔nmi〕、 肉厚 1. 5 Cmm) の黄銅管 に周方向に長さ 1 5 Cmm), 幅 0. 5 〔mm〕、 肉厚に対して 80 [パ 一セント] の深さのスリット状の傷を放電加工した。  In addition, the pipe 1 is a brass tube with an outer diameter of Φ22 [nmi] and a wall thickness of 1.5 Cmm), with a length of 15 Cmm), a width of 0.5 [mm] and a width of 0.5 [mm]. % Of the slit-shaped scratch was subjected to electrical discharge machining.
また、 配管 1の支持板 3としては、 内径 22. 5 〔mm〕、 厚さ 26 〔mm〕、 幅 1 5 [mm] のリング状の鋼鉄を使用した。  As the support plate 3 for the pipe 1, a ring-shaped steel having an inner diameter of 22.5 [mm], a thickness of 26 [mm], and a width of 15 [mm] was used.
なお、 コイル 1 3 a, 13 bには、 周波数 9 [kHz] の交流をそれ ぞれ逆方向に流した。  An alternating current with a frequency of 9 [kHz] was applied to the coils 13a and 13b in the opposite directions.
図 9は上置プローブで 2次元走査した場合の特性図であり、図 9 (a) が上置プローブで傷のある配管 1を走査した結果の傷検出信号を、 図 9 (b) が上置プローブで配管 1の支持板付近を走査した結果の傷検出信 号を、 それぞれ示す特性図である。 また、 図 9において、 横軸は回転角 度 0を、 縦軸は移動方向 Zを、 直交軸はプローブの検出値を、 それぞれ とったものである。 Fig. 9 is a characteristic diagram when two-dimensional scanning is performed with the upper probe.Fig. 9 (a) shows the flaw detection signal obtained by scanning the damaged pipe 1 with the upper probe. (b) is a characteristic diagram showing a flaw detection signal as a result of scanning the vicinity of the support plate of the pipe 1 with the upper probe. In FIG. 9, the horizontal axis represents the rotation angle 0, the vertical axis represents the moving direction Z, and the orthogonal axis represents the probe detection value.
上置プローブでは、 図 9 (a) に示す傷検出信号に対して、 図 9 (b) に示す支持板 3の影響による雑音が大きいことがわかる。  In the upper probe, it can be seen that the noise due to the effect of the support plate 3 shown in FIG. 9B is larger than the flaw detection signal shown in FIG. 9A.
図 10は相互誘導内揷プローブ 21で 2次元走査した場合の特性図で あり、 図 10 (a) が相互誘導内挿プローブ 21で傷のある配管 1を走 査した結果の傷検出信号を、 図 10 (b) が上置プローブで配管 1の支 持板付近を走査した結果の傷検出信号を、 それぞれ示す特性図である。 また、 図 10において、 横軸は回転角度 0を、 縦軸は移動方向 Zを、 直 交軸はプローブの検出値を、 それぞれとったものである。  Fig. 10 is a characteristic diagram when two-dimensional scanning is performed by the mutual guidance internal probe 21.Fig. 10 (a) shows a flaw detection signal obtained by scanning the damaged pipe 1 with the mutual guidance interpolation probe 21. FIG. 10 (b) is a characteristic diagram showing a flaw detection signal as a result of scanning the vicinity of the support plate of the pipe 1 with the upper probe. In FIG. 10, the horizontal axis represents the rotation angle 0, the vertical axis represents the moving direction Z, and the orthogonal axis represents the detected value of the probe.
これらの図に示すように、 相互誘導内揷プローブ 21によれば、 支持 板 3の影響がないことがわかる。 すなわち、 相互誘導内揷プローブ 2 1 は、 上置プローブに比べて支持板の影響がないことがわかる。  As shown in these figures, according to the mutual induction inner probe 21, it is understood that the support plate 3 has no influence. That is, it can be seen that the mutual guidance inner probe 21 has no influence of the support plate as compared with the upper probe.
図 1 1はプローブによる傷検出信号のパターンを示す特性図であり、 図 1 1 (a)が上置プローブによる傷検出信号のパターンを、図 1 1 (b) が相互誘導内揷プローブ 21による傷検出信号のパターンを、 ぞれぞれ 示す図である。 これらの図において、 実線が傷検出信号を示し、 点線が 支持板による雑音を示す。  Fig. 11 is a characteristic diagram showing the pattern of the flaw detection signal by the probe. Fig. 11 (a) shows the pattern of the flaw detection signal by the upper probe, and Fig. 11 (b) shows the pattern of the mutual induction inner probe 21. It is a figure which shows the pattern of a flaw detection signal, respectively. In these figures, the solid line indicates the flaw detection signal, and the dotted line indicates the noise due to the support plate.
上置プローブの場合、 図 1 1 (a) に示すように、 傷検出信号も雑音 も、 単に曲線状に現れる。 これに対して、 相互誘導内揷プローブ 2 1は、 傷検出信号も雑音も、 8の字状に現れることになる。  In the case of the upper probe, as shown in Fig. 11 (a), both the flaw detection signal and the noise simply appear in a curved shape. On the other hand, in the mutual induction inner probe 21, both the flaw detection signal and the noise appear in the shape of a figure eight.
ここで、 傷検出信号と雑音との比として SN比を求めれば、 上置プロ ーブは SN比 = 1. 1 9で、 また、 相互誘導内挿プローブ 21は SN比 =3. 41であった。 これにより、 相互誘導内挿プローブ 21は、 上置 プロ一ブに比べて SN比が高く、 かつ、 支持板による雑音の影響が小さ いことがわかる。 Here, if the S / N ratio is calculated as the ratio between the flaw detection signal and noise, the S / N ratio is 1.19 for the upper probe, and the S / N ratio is 3.41 for the mutual induction interpolation probe 21. Was. As a result, the mutual guiding interpolation probe 21 is It can be seen that the signal-to-noise ratio is higher than that of the probe and the effect of noise from the support plate is small.
以上のことから相互誘導内挿プローブ 2 1は、 支持板の影響を受けず に、 配管 1の探傷を行なうことができる。  From the above, the mutual guiding interpolation probe 21 can perform flaw detection on the pipe 1 without being affected by the support plate.
[第 3の実施例]  [Third embodiment]
上記第 3の実施の形態に係る相互誘導内挿プローブ 3 1について、 次 のように構成した。 まず、 励磁コイル 33の各コイル 3 3 a, 3 3 bは、 周方向に外径 1 8 〔mm〕、 巻線断面積 2 X 2 〔mm2〕 の円形コイルを 所定間隔離して配置した。 また、 検出コイル 3 5は、 縦 6 [mm] X横 7 〔mm〕、 巻線断面積 1 X 1 (mm2) の矩形コイルを軸方向に配置し た。 The mutual guiding interpolation probe 31 according to the third embodiment was configured as follows. First, each coil 3 3 a, 3 3 b of the excitation coil 33 has an outer diameter 1 8 [mm] in the circumferential direction, and the circular coil winding cross-sectional area 2 X 2 [mm 2] arranged to be a predetermined distance apart. As the detection coil 35, a rectangular coil having a length of 6 [mm] and a width of 7 [mm] and a winding cross-sectional area of 1 X 1 (mm 2 ) was arranged in the axial direction.
さらに、 配管 1は、 外径 Φ 22 〔mm〕、 肉厚 1. 5 〔mm〕 の黄銅管 に軸方向に長さ 1 5 〔mm〕、 幅 0. 5 〔mm〕、 肉厚に対して 8 0 [パ 一セント] の深さのスリット状の傷を放電加工した。  In addition, pipe 1 is a brass tube with an outer diameter of Φ22 (mm) and a wall thickness of 1.5 (mm) that is 15 (mm) long and 0.5 (mm) wide in the axial direction. A slit-shaped scratch with a depth of 80 [percent] was subjected to electric discharge machining.
また、 配管 1の支持板 3としては、 内径 2 2. 5 〔mm〕、 厚さ 2 6 〔mm〕、 幅 1 5 〔mm〕 のリング状の鋼鉄を使用した。  Further, as the support plate 3 of the pipe 1, a ring-shaped steel having an inner diameter of 22.5 [mm], a thickness of 26 [mm], and a width of 15 [mm] was used.
なお、 励磁コイル 33のコイル 3 3 a, 33 bには、 周波数 9 [kH z] の交流をそれぞれ逆方向に流した。  In addition, an alternating current having a frequency of 9 [kHz] was applied to the coils 33a and 33b of the exciting coil 33 in opposite directions.
図 1 2は相互誘導内挿プローブ 3 1で 2次元走査した場合の特性図で あり、 図 1 2 (a) が相互誘導内挿プローブ 3 1で傷のみのある配管 1 を走査した結果の傷検出信号を、 図 1 2 (b) が相互誘導内挿プローブ 3 1で支持板部分の配管 1に傷がある部分を走査した結果の傷検出信号 を、 それぞれ示す特性図である。 また、 図 1 2において、 横軸は回転角 度 0を、 縦軸は移動方向 Zを、 直交軸はプローブの検出値を、 それぞれ とったものである。  Fig. 12 is a characteristic diagram when two-dimensional scanning is performed with the mutual guidance interpolation probe 31.Fig. 12 (a) shows the damage as a result of scanning the pipe 1 with only the damage with the mutual guidance interpolation probe 31. FIG. 12 (b) is a characteristic diagram showing a detection signal, and FIG. 12 (b) is a flaw detection signal as a result of scanning a portion where the pipe 1 of the support plate has a flaw with the mutual guiding interpolation probe 31. In FIG. 12, the horizontal axis represents the rotation angle 0, the vertical axis represents the moving direction Z, and the orthogonal axis represents the probe detection value.
傷検出信号は、 図 1 2 (a) 及び図 1 2 (b) で示すように、 現れる ことになり、 支持板の影響がほとんどないことがわかる。 The flaw detection signal appears as shown in Fig. 12 (a) and Fig. 12 (b). This means that the support plate has almost no effect.
また、 傷検出信号は、 これらの図からもわかるように、 傷を中心とし て正負の特性として現れる。  Further, as can be seen from these figures, the flaw detection signal appears as a positive / negative characteristic centering on the flaw.
図 1 3は自己誘導型比較方式プローブあるいは相互誘導内挿プローブ 3 1で 2次元走査した場合の特性図であり、 図 1 3 ( a ) が自己誘導型 比較方式プローブで配管 1を走査した結果の傷検出信号を、図 1 3 ( b ) が相互誘導内挿プローブ 3 1で配管 1を走査した結果の傷検出信号を、 それぞれ示す特性図である。 また、 これらの図において、 実線は傷のみ がある場合の傷検出信号であり、 点線は支持板部分に傷がある場合の傷 検出信号である。  Fig. 13 is a characteristic diagram when two-dimensional scanning is performed with the self-guided comparison type probe or the mutual guidance interpolation probe 31.Fig. 13 (a) shows the result of scanning pipe 1 with the self-guided comparison type probe. FIG. 13 (b) is a characteristic diagram showing a flaw detection signal obtained by scanning the pipe 1 with the mutual guiding interpolation probe 31. FIG. In these figures, the solid line is a flaw detection signal when there is only a flaw, and the dotted line is a flaw detection signal when there is a flaw in the support plate.
自己誘導型比較方式プローブは、 図 1 3 ( a ) に示すように、 傷のみ がある場合 (実線) と、 支持板部分に傷がある塲合 (点線) 場合とで、 傷検出信号に大きな違いを生じる。  As shown in Fig. 13 (a), the self-guided comparison type probe has a large flaw detection signal when there is only a flaw (solid line) and when there is a flaw in the support plate (dotted line). Make a difference.
これに対して、 相互誘導内揷プローブ 3 1は、 図 1 3 ( b ) に示すよ うに、 傷のみの場合 (実線) と、 支持板部分に傷がある場合 (点線) と で、 傷検出信号の変化が小さいことがわかる。  On the other hand, as shown in Fig. 13 (b), the probe 31 for the mutual induction detects a flaw when there is only a flaw (solid line) and when there is a flaw on the support plate (dotted line). It can be seen that the signal change is small.
以上のことから相互誘導内挿プローブ 3 1は、 支持板の影響を受けず に、 配管 1の探傷を行なうことができる。 産業上の利用可能性 .  From the above, the mutual guiding interpolation probe 31 can perform the flaw detection of the pipe 1 without being affected by the support plate. Industrial applicability.
以上説明したように本発明によれば、 所定形状の二つのコイルを所定 間隔で対峙させてなる励磁コイルと、 当該励磁コイルに直交方向に配置 した検出コィルとからなるので、 次のような効果がある。  As described above, according to the present invention, an exciting coil in which two coils of a predetermined shape are opposed to each other at a predetermined interval, and a detection coil arranged in a direction orthogonal to the exciting coil, have the following effects. There is.
( 1 ) 支持板による雑音の影響を小さくすることができる。  (1) The influence of noise due to the support plate can be reduced.
( 2 ) 信号対雑音比が高く傷を検出することができる。  (2) The signal-to-noise ratio is high and flaws can be detected.
( 3 ) 複雑な形状をした傷の探傷も確実に検出することができる。  (3) Flaw detection of a flaw having a complicated shape can be reliably detected.

Claims

請 求 の 範 囲 The scope of the claims
1 . 渦電流により被検出体の傷を検出する相互誘導プローブにおいて、 前記被検出体を励磁する二つのコイルを所定間隔で対峙させてなる励磁 コイルと、 前記励磁コイルに対して直交方向に捲回された検出コイルと からなることを特徴とする相互誘導内揷プローブ。 1. In a mutual induction probe for detecting a flaw of a detected object by eddy current, an exciting coil formed by opposing two coils for exciting the detected object at a predetermined interval, and a coil wound in a direction orthogonal to the exciting coil. A mutual induction inner probe, comprising: a turned detection coil.
2 . 前記励磁コイルは、 円形、 多角形または矩形に捲回された二つのコ ィルを所定間隔で対峙配置させてなり、 前記検出コイルは、 前記励磁コ ィルの二つのコイルの内側に捲回され、 または、 前記励磁コイルの二つ のコイルの外側に捲回されたものであることを特徴とする請求項 1記載 の相互誘導内揷プローブ。  2. The excitation coil is formed by arranging two coils wound in a circle, a polygon or a rectangle at a predetermined interval, and the detection coil is provided inside the two coils of the excitation coil. The mutual induction probe according to claim 1, wherein the probe is wound or wound outside two coils of the excitation coil.
3 . 前記励磁コイルは、 被検出体が配管である場合に、 当該配管の軸方 向または周方向に配置されたものであることを特徴とする請求項 1また は 2記載の相互誘導内挿プローブ。  3. The mutual induction interpolation according to claim 1 or 2, wherein, when the object to be detected is a pipe, the excitation coil is arranged in an axial direction or a circumferential direction of the pipe. probe.
PCT/JP2002/005131 2001-05-29 2002-05-27 Mutual-induction insertion probe WO2002097425A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003500555A JPWO2002097425A1 (en) 2001-05-29 2002-05-27 Mutual lead interpolation probe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-161206 2001-05-29
JP2001161206 2001-05-29

Publications (1)

Publication Number Publication Date
WO2002097425A1 true WO2002097425A1 (en) 2002-12-05

Family

ID=19004519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005131 WO2002097425A1 (en) 2001-05-29 2002-05-27 Mutual-induction insertion probe

Country Status (2)

Country Link
JP (1) JPWO2002097425A1 (en)
WO (1) WO2002097425A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263946A (en) * 2006-03-03 2007-10-11 Hitachi Ltd Sensor and method for eddy current flaw detection
CN103868986A (en) * 2012-12-13 2014-06-18 上海海事大学 Eddy detection probe for detecting internal surface defects in metal pipelines and detection method thereof
CN107167516A (en) * 2017-05-24 2017-09-15 昆明理工大学 Double difference dynamic formula pulse eddy current probe unit, array probe and detection means
CN107941904A (en) * 2017-12-21 2018-04-20 西安交通大学 Inspection probe and detection method in aerial metal path defective tube
CN111879852A (en) * 2020-08-18 2020-11-03 西安交通大学 Interpolation type TR probe and method for eddy current testing of tubular structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04221757A (en) * 1990-12-25 1992-08-12 Hitachi Ltd Defect detecting device
JPH06242076A (en) * 1993-02-12 1994-09-02 Toshiba Corp Electromagnetic flaw detecting equipment
JPH06294775A (en) * 1993-04-12 1994-10-21 Nippon Steel Corp Detector and detecting apparatus for nonoriented defect
JPH08261991A (en) * 1995-03-22 1996-10-11 Ichiro Sasada Eddy current probe
JPH10197493A (en) * 1997-01-14 1998-07-31 Mitsubishi Heavy Ind Ltd Eddy-current flow detecting probe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04221757A (en) * 1990-12-25 1992-08-12 Hitachi Ltd Defect detecting device
JPH06242076A (en) * 1993-02-12 1994-09-02 Toshiba Corp Electromagnetic flaw detecting equipment
JPH06294775A (en) * 1993-04-12 1994-10-21 Nippon Steel Corp Detector and detecting apparatus for nonoriented defect
JPH08261991A (en) * 1995-03-22 1996-10-11 Ichiro Sasada Eddy current probe
JPH10197493A (en) * 1997-01-14 1998-07-31 Mitsubishi Heavy Ind Ltd Eddy-current flow detecting probe

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HIDEYUKI EZAWA ET AL.: "Haikan no karyu tanshoyo shingata naiso probe ni tsuite", GENERAL OUTLINE OF THE JAPANESE SOCIETY FOR NON-DESTRUCTIVE INSPECTION (JSNDI) HEISEI 11 NEN SHUKI TAIKAI KOEN GAIYOSHU, 27 October 1999 (1999-10-27), pages 173 - 174, XP002953535 *
HIDEYUKI EZAWA ET AL.: "Karyu tansho ni okeru haikan no shohoku kizu kenshutsuyo shingata naiso probe ni tsuite", GENERAL OUTLINE OF THE JAPANESE SOCIETY FOR NON-DESTRUCTIVE INSPECTION )JSNDI) HEISEI 12 NEN SHUNKI TAIKAI KOEN GYIYOSHU, 16 May 2000 (2000-05-16), pages 97 - 98, XP002953534 *
HIROSHI WAKAUME ET AL.: "Haikan no karyu tansho ni okeru shijiban ni yoru zatsuon no chiisana sogo yudo naiso probe ni tsuite", GENERAL OUTLINE OF THE JAPANESE SOCIETY FOR NON-DESTRUCTIVE INSPECTION (JSNDI) HEISE 39 NEN SHUNKI TAIKAI KOEN GAIYOSHU, 30 May 2001 (2001-05-30), pages 53 - 54, XP002953536 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263946A (en) * 2006-03-03 2007-10-11 Hitachi Ltd Sensor and method for eddy current flaw detection
CN103868986A (en) * 2012-12-13 2014-06-18 上海海事大学 Eddy detection probe for detecting internal surface defects in metal pipelines and detection method thereof
CN107167516A (en) * 2017-05-24 2017-09-15 昆明理工大学 Double difference dynamic formula pulse eddy current probe unit, array probe and detection means
CN107167516B (en) * 2017-05-24 2023-09-26 昆明理工大学 Double differential pulse eddy current probe unit, array probe and detection device
CN107941904A (en) * 2017-12-21 2018-04-20 西安交通大学 Inspection probe and detection method in aerial metal path defective tube
CN111879852A (en) * 2020-08-18 2020-11-03 西安交通大学 Interpolation type TR probe and method for eddy current testing of tubular structure
CN111879852B (en) * 2020-08-18 2022-10-25 西安交通大学 Interpolation type TR probe and method for eddy current testing of tubular structure

Also Published As

Publication number Publication date
JPWO2002097425A1 (en) 2004-09-16

Similar Documents

Publication Publication Date Title
JP5438592B2 (en) Rotating eddy current flaw detection probe
JP4917899B2 (en) Eddy current flaw detection sensor and eddy current flaw detection method
US6310476B1 (en) Eddy current flaw detector
JP4998821B2 (en) Eddy current inspection method and eddy current inspection apparatus for implementing the eddy current inspection method
JP2008032575A (en) Eddy current measuring probe and flaw detection device using it
WO2002097425A1 (en) Mutual-induction insertion probe
WO2017126341A1 (en) Proximity sensor
JP3152101B2 (en) Magnetizer for magnetic flux leakage inspection of circular cross section material
JP5140214B2 (en) Rotating eddy current flaw detection probe
CN110333284B (en) Series type plane eddy current sensor
JP4484723B2 (en) Eddy current testing probe
JP3979606B2 (en) Eddy current flaw detection probe and eddy current flaw detection device using the probe
JPH07294490A (en) Magnetic flaw detection method excellent in oblique flaw detecting performance
JP2004028897A (en) Eddy-current flaw detection apparatus
JP3981965B2 (en) Eddy current flaw detection probe and eddy current flaw detection device using the probe
JPH10160710A (en) Division-type flaw-detecting sensor and flaw detecting method for conductive tube
JP5134997B2 (en) Eddy current flaw detection probe, eddy current flaw detection apparatus, and eddy current flaw detection method
JP2012026806A (en) Remote field eddy current flow detector, and method
JP2006284506A (en) Probe for detecting eddy current flaw
JP2000275223A (en) Inspecting tool and its using method
JPH06347448A (en) Eddy current flaw detection probe
JP2001108659A (en) Eddy current prove for detecting metal surface flaw
JPH08211025A (en) Eddy current flaw detector
JP5204938B2 (en) Eddy current testing probe
JPH08327602A (en) Leakage magnetism sensor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003500555

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase