JPH10160710A - Division-type flaw-detecting sensor and flaw detecting method for conductive tube - Google Patents

Division-type flaw-detecting sensor and flaw detecting method for conductive tube

Info

Publication number
JPH10160710A
JPH10160710A JP8331527A JP33152796A JPH10160710A JP H10160710 A JPH10160710 A JP H10160710A JP 8331527 A JP8331527 A JP 8331527A JP 33152796 A JP33152796 A JP 33152796A JP H10160710 A JPH10160710 A JP H10160710A
Authority
JP
Japan
Prior art keywords
tube
flaw detection
flaw
sensor
detection sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8331527A
Other languages
Japanese (ja)
Inventor
Shigeru Kitagawa
茂 北川
Michio Matsushita
道雄 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON HIHAKAI KEISOKU KENKYUS
NIPPON HIHAKAI KEISOKU KENKYUSHO KK
Eneos Corp
Original Assignee
NIPPON HIHAKAI KEISOKU KENKYUS
NIPPON HIHAKAI KEISOKU KENKYUSHO KK
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON HIHAKAI KEISOKU KENKYUS, NIPPON HIHAKAI KEISOKU KENKYUSHO KK, Japan Energy Corp filed Critical NIPPON HIHAKAI KEISOKU KENKYUS
Priority to JP8331527A priority Critical patent/JPH10160710A/en
Publication of JPH10160710A publication Critical patent/JPH10160710A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a division-type flaw-detecting sensor in which the influence of a tube sheet is eliminated and in which a flaw generated in the circumferential direction of a tube near the mounting part of the tube sheet can be detected with good accuracy by a method wherein gaps are formed between cross sections of a plurality of magnetic-substance cores arranged in a circular shape and a primary coil and a secondary coil are wound so as to be piled up on the respective cores. SOLUTION: A primary coil 4 and a secondary coil 5 are wound so as to be piled up on two semicircular magnetic-substance cores 3, sensor divided bodies 2 are formed, the sensor divided bodies 2 are arranged so as to form a nearly circular shape by keeping respective gaps at prescribed distances G (1mm or higher) between both opposite edges of the cores 3, and a division-type flaw-detecting sensor 1 is constituted. Then, a sensor assembly provided with the flaw detecting sensor 1 is inserted into a tube 200 to be inspected, a square-wave current, e.g. at a frequency of 100Hz to 10kHz and a current of 0.1 to 0.5A is supplied to the primary coil 4, the pulse width of pulse waveform voltage which is output from the secondary coil 5 is measured, and a flaw such as a crack, a thickness reduction or the like which is generated in the circumferential direction of the tube 200 is measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、導電性管、特に、
例えば銅系チューブやオーステナイトステンレス鋼管な
どの非磁性管の円周方向割れ或は減肉などの傷をも有効
に検出することのできる分割型探傷センサ及びこのセン
サを使用しての導電性管の探傷方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive tube,
For example, a split-type flaw detection sensor capable of effectively detecting circumferential cracks or thinning of non-magnetic tubes such as copper-based tubes and austenitic stainless steel tubes, and a conductive tube using this sensor. It relates to a flaw detection method.

【0002】[0002]

【従来の技術】従来、銅系チューブやオーステナイトス
テンレス鋼管などの非磁性管を使用した熱交換器では、
これら管を取付ける管板部付近の、特に周方向に発生す
る割れ及び減肉に対しては、管板(バッフル)の影響に
より、電磁誘導を用いて検査する簡便且つ検出精度の優
れた方法がないのが現状である。
2. Description of the Related Art Conventionally, in a heat exchanger using a non-magnetic tube such as a copper tube or an austenitic stainless steel tube,
Due to the effect of the tube plate (baffle), a simple and excellent method of inspecting using electromagnetic induction for cracks and thinning occurring near the tube plate portion where these tubes are attached, particularly in the circumferential direction. There is no present.

【0003】[0003]

【発明が解決しようとする課題】本発明者らは、比較的
浸透深さの大きいパルス渦流探傷法を用いて、上記非磁
性管の、特に周方向に発生する割れ及び減肉の検出が可
能ではないかとの着眼の下に種々の実験研究を行なっ
た。このパルス渦流探傷法の特徴の一つは、通常の渦流
探傷試験による交流法と異なり、浸透深さが大きいと言
う点にある。このパルス渦流探傷法を用いると、厚さ4
mm以上のステンレス鋼、銅合金又はアルミニウム合金
であっても裏側の情報を引き出すことが可能で、1kH
z程度以下の低周波の交流電流を流すことにより浸透深
さを深くして、従来の渦流法では不可能と考えられてい
た厚肉部材裏側の傷を検出することが可能である。
SUMMARY OF THE INVENTION The present inventors have made it possible to detect cracks and thinning of the above-mentioned non-magnetic tube, particularly in the circumferential direction, using a pulse eddy current flaw detection method having a relatively large penetration depth. Various experimental studies were carried out with an eye on the possibility. One of the features of the pulse eddy current flaw detection method is that the penetration depth is large unlike the alternating current method based on the usual eddy current flaw detection test. When this pulse eddy current flaw detection method is used, a thickness of 4
mm or more of stainless steel, copper alloy or aluminum alloy, it is possible to extract information on the back side
By passing a low-frequency alternating current of about z or less to increase the penetration depth, it is possible to detect a flaw on the back side of a thick member, which was considered impossible with the conventional eddy current method.

【0004】先ず、パルス渦流探傷法の測定原理につい
て簡単に説明すると、図3に示すように、フェライトコ
ア101に一次コイル102と二次コイル103を重ね
て巻き、探傷センサ100を構成する。このセンサ10
0は、このセンサ端部と導電性の被検査体104の表面
とを1mm程度の距離に近接して金属表面上を移動せし
め、同時に、センサ100の一次コイル102に図4
(A)に示すような矩形波のON−OFF電流を流し、
被検査体表面に渦電流を発生させる。この渦電流は遅れ
を伴いながら順次内部に浸透する。この渦電流により誘
起される誘導磁場を二次コイル103で検出すると、こ
の二次コイルには、図4(B)に示すようなパルス状の
二次電圧が発生する。この二次コイル103で検出され
たパルス波形電圧のパルス幅を測定して被検査体104
の割れ105などの傷を検出することができる。このパ
ルスは、通常、図4(C)に示すような発振現象を生じ
るが、これを防止するために、実際には一次及び二次コ
イルに抵抗が並列に挿入されている。
First, the principle of measurement of the pulse eddy current flaw detection method will be briefly described. As shown in FIG. 3, a primary coil 102 and a secondary coil 103 are wound around a ferrite core 101 so as to constitute a flaw detection sensor 100. This sensor 10
0 moves the end of the sensor and the surface of the conductive test object 104 close to a distance of about 1 mm on the metal surface, and at the same time, the primary coil 102 of the sensor 100
A square-wave ON-OFF current as shown in FIG.
An eddy current is generated on the surface of the test object. This eddy current sequentially permeates inside with a delay. When the induced magnetic field induced by the eddy current is detected by the secondary coil 103, a pulse-shaped secondary voltage as shown in FIG. 4B is generated in the secondary coil. The pulse width of the pulse waveform voltage detected by the secondary coil 103 is measured, and
Flaws such as cracks 105 can be detected. This pulse normally causes an oscillation phenomenon as shown in FIG. 4C, but in order to prevent this, a resistor is actually inserted in parallel with the primary and secondary coils.

【0005】このようなパルス渦流探傷法の検出原理
は、被検査体104の表面に誘起される渦電流の減衰時
間、即ち、パルス幅が被検査体104の割れ、減肉など
の傷や、材質で異なることを利用したものである。
[0005] The detection principle of such a pulse eddy current flaw detection method is that the decay time of the eddy current induced on the surface of the object to be inspected 104, that is, the pulse width is such that the object to be inspected 104 is damaged, such as cracks and thinning, This is based on the fact that different materials are used.

【0006】つまり、図5は、空気中にこのセンサ10
0をおいた場合の二次コイル103からの出力パルス
(二次電圧)の減衰曲線を示す。減衰曲線は、空気中の
場合をV0 、磁性体(鋼)とされる被検査体104に近
づけた場合をVFe、非磁性体(銅)とされる被検査体1
04に近づけた場合をVCuとすると、減衰曲線は図5に
示すように変化する。同一材料で見た場合、図6に示す
ように、減衰曲線C0 は、リフトオフにて減衰曲線C
1 、C2 へと変化するが、或る点Pだけリフトオフの影
響が少ない箇所が存在する。この例で用いた探傷センサ
100では、60μs付近である。
That is, FIG. 5 shows that this sensor 10
7 shows an attenuation curve of an output pulse (secondary voltage) from the secondary coil 103 when 0 is set. The decay curves are V 0 in the case of air, V Fe when approaching the test object 104 made of a magnetic material (steel), and the test object 1 made of a non-magnetic material (copper).
Assuming that V Cu approaches V 04, the attenuation curve changes as shown in FIG. When viewed in the same material, as shown in FIG. 6, the attenuation curve C 0, the attenuation curve by a lift-off C
1 and C 2 , but there is a point P where the influence of the lift-off is small. In the flaw detection sensor 100 used in this example, it is around 60 μs.

【0007】もし、割れ、減肉などの傷があるとこの減
衰曲線C0 、C1 、C2 などは移動量(Δt)だけ平行
移動し、例えば減衰曲線C3 へと変化する。従って、こ
の移動量(Δt)を検知し、出力することによって、傷
の有無を検出するすることができる。
If there is a flaw such as a crack or a thinning, the attenuation curves C 0 , C 1 , C 2, etc. move in parallel by the movement amount (Δt), and change to, for example, an attenuation curve C 3 . Therefore, by detecting and outputting the movement amount (Δt), the presence or absence of a flaw can be detected.

【0008】しかしながら、本発明者らは、多くの研究
実験を行なった結果、図3に示すようなセンサ及び検出
方法では、例えば、熱交換器の管の傷を検査する場合、
管を取付ける管板の肉厚効果の影響により、特に周方向
に発生する割れ及び減肉を精度良く検出することができ
ないことが分かった。
However, as a result of conducting many research experiments, the present inventors have found that the sensor and the detection method shown in FIG.
It has been found that, due to the effect of the wall thickness of the tube sheet to which the tube is attached, cracks and wall thinning particularly occurring in the circumferential direction cannot be accurately detected.

【0009】従って、本発明の目的は、上記パルス渦流
探傷法を実施する際に好適に使用することができ、熱交
換器における被磁性管の探傷などにおいては、管を取付
ける管板の肉厚効果の影響をなくして管板取付け部付近
にて管の周方向に発生する割れ及び減肉などを精度良く
検出することのできる分割型探傷センサを提供すること
である。
Therefore, the object of the present invention can be suitably used in carrying out the above-mentioned pulse eddy current flaw detection method, and in the flaw detection of a magnetic tube in a heat exchanger, the thickness of a tube plate to which the tube is attached is considered. An object of the present invention is to provide a split-type flaw detection sensor capable of accurately detecting cracks, wall thinning, and the like that occur in the circumferential direction of a pipe in the vicinity of a pipe sheet mounting portion without affecting the effect.

【0010】本発明の他の目的は、上記分割型探傷セン
サを使用して導電性管の傷を検査する場合に、管の割れ
及び減肉などを精度良く検出することのできるパルス渦
流探傷法による導電性管の探傷方法を提供することであ
る。
Another object of the present invention is to provide a pulse eddy current flaw detection method capable of accurately detecting cracks, thinning, and the like of a tube when inspecting a conductive tube for damage using the split type flaw detection sensor. To provide a method for detecting flaws in a conductive tube using the method described above.

【0011】本発明の更に他の目的は、上記分割型探傷
センサを使用して、特に非磁性管を使用した熱交換器に
おける管探傷においても、管を取付ける管板の肉厚効果
の影響をなくして管板取付け部付近にて管の周方向に発
生する割れ及び減肉などを精度良く検出することのでき
るパルス渦流探傷法による非磁性管の探傷方法を提供す
ることである。
Still another object of the present invention is to use the above-mentioned split-type flaw detection sensor, particularly in the case of flaw detection in a heat exchanger using a non-magnetic tube, to reduce the influence of the wall thickness effect of the tube sheet on which the pipe is mounted. It is an object of the present invention to provide a non-magnetic tube flaw detection method using a pulse eddy current flaw detection method that can accurately detect cracks, wall thinning, and the like that occur in the circumferential direction of a tube near a tube plate mounting portion.

【0012】[0012]

【課題を解決するための手段】上記目的は本発明に係る
分割型探傷センサ及び導電性管の探傷方法にて達成され
る。要約すれば、本発明は、複数の磁性体コアを大略円
形状をなすように配列し、各磁性体コアの互に対面する
端面間部分には空隙を設けるようにし、更に、各磁性体
コアには一次コイルと二次コイルを重ね巻きするように
したことを特徴とする分割型探傷センサである。好まし
くは、前記各磁性体コアはフェライト、珪素鋼、パーマ
ロイ、磁性アモルファス金属などにて作製され、又、略
同形状とされる。
The above object is achieved by the split type flaw detection sensor and the flaw detection method for a conductive tube according to the present invention. In summary, the present invention provides a method in which a plurality of magnetic cores are arranged in a substantially circular shape, and a gap is provided between end faces of the magnetic cores facing each other. Is a split-type flaw detection sensor characterized in that a primary coil and a secondary coil are overlapped and wound. Preferably, each of the magnetic cores is made of ferrite, silicon steel, permalloy, magnetic amorphous metal, or the like, and has substantially the same shape.

【0013】本発明の他の態様によれば、上記構成の分
割型探傷センサを使用し、該探傷センサを導電性管内に
挿入し、前記一次コイルにパルス状の電流を加え、二次
コイルで検出された電圧の変化で導電性管の傷を検出す
る導電性管の探傷方法が提供される。本発明の方法によ
れば、非磁性管の円周方向傷をも有効に検査し得る。
According to another aspect of the present invention, a split-type flaw detection sensor having the above-described configuration is used, the flaw detection sensor is inserted into a conductive tube, a pulse-like current is applied to the primary coil, and a secondary coil is used. A method for detecting a flaw in a conductive tube based on a detected change in voltage is provided. According to the method of the present invention, circumferential flaws of the non-magnetic tube can be effectively inspected.

【0014】[0014]

【発明の実施の形態】以下、本発明に係る分割型探傷セ
ンサ及びこの探傷センサを使用した非磁性管の探傷方法
を図面に則して更に詳しく説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A split type flaw detection sensor according to the present invention and a flaw detection method for a non-magnetic tube using the flaw detection sensor will be described in more detail with reference to the drawings.

【0015】実施例1 図1及び図2に本発明の一実施例に係る分割型探傷セン
サ1を示す。一般に、本発明の分割型探傷センサ1は、
複数の磁性体コア3を互に対面する部分に空隙(G)を
設けるようにして大略円形状に配列し、各磁性体コア3
には一次コイル4と二次コイル5を重ね巻きにして構成
される。本実施例では、探傷センサ1は、半円形状の磁
性体コア3に一次コイル4と二次コイル5を重ね巻きに
してセンサ分割体2を形成し、このセンサ分割体2を、
磁性体コア3が略円形状をなすように配列して構成され
る。このとき、各センサ分割体2は、各磁性体コア3の
対向する両端面間には1mm以上とされる所定の距離
(G)の空隙が生じるように配置される。各センサ分割
体2の磁性体コア3は略同形状とされるのが好ましい
が、必要に応じては異なる形状に形成することも可能で
ある。又、本実施例で、各磁性体コア3としてはフェラ
イトを使用したが、その他に珪素鋼板、パーマロイ、磁
性アモルファス金属なども好適に使用し得る。
Embodiment 1 FIGS. 1 and 2 show a split-type flaw detection sensor 1 according to an embodiment of the present invention. Generally, the split type flaw detection sensor 1 of the present invention
A plurality of magnetic cores 3 are arranged in a substantially circular shape so that a gap (G) is provided at a portion facing each other.
Is configured by winding a primary coil 4 and a secondary coil 5 in an overlapping manner. In this embodiment, the flaw detection sensor 1 forms a sensor divided body 2 by winding a primary coil 4 and a secondary coil 5 on a semicircular magnetic core 3 and forming the sensor divided body 2.
The magnetic cores 3 are arranged so as to form a substantially circular shape. At this time, each of the sensor divided bodies 2 is arranged so that a gap of a predetermined distance (G) of 1 mm or more is formed between the opposite end faces of each of the magnetic cores 3. It is preferable that the magnetic cores 3 of the respective sensor divided bodies 2 have substantially the same shape, but they may be formed in different shapes if necessary. In this embodiment, ferrite is used as each magnetic core 3, but a silicon steel plate, permalloy, magnetic amorphous metal, or the like can also be suitably used.

【0016】本実施例では、被検査管200の内径が1
5.7mmとされたので、本実施例で使用した両磁性体
(フェライト)コア3にて画成される内径(DIN)は8
mm、外径(DOUT )は12mm、幅(W0 )は4mm
とし、両フェライトコア3の両端面間に形成された空隙
(G)は約2mmとした。
In this embodiment, the inner diameter of the inspected pipe 200 is 1
The inner diameter (D IN ) defined by the two magnetic material (ferrite) cores 3 used in the present embodiment is 5.7 mm.
mm, outer diameter (D OUT ) is 12 mm, and width (W 0 ) is 4 mm
The gap (G) formed between both end faces of both ferrite cores 3 was about 2 mm.

【0017】又、本実施例では、分割型探傷センサ1の
一次コイル4は、線径0.12の銅線を60回巻回して
形成し、二次コイル5としては線径0.07mmの銅線
を120回巻回して形成した。これにより、探傷センサ
1の外径(D)は大略14mm、幅(W)は大略6mm
となった。これら分割型探傷センサのそれぞれの端部は
互に同極となるように配置した。
In this embodiment, the primary coil 4 of the split-type flaw detection sensor 1 is formed by winding a copper wire having a wire diameter of 0.12 60 times, and the secondary coil 5 has a wire diameter of 0.07 mm. It was formed by winding a copper wire 120 times. Thus, the outer diameter (D) of the flaw detection sensor 1 is approximately 14 mm, and the width (W) is approximately 6 mm.
It became. The ends of these split-type flaw detection sensors were arranged so as to have the same polarity.

【0018】尚、本実施例では、図2に示すように、分
割型探傷センサ1を構成するセンサ分割体2は、ロッド
状の支持体10の外周部に適当な接着剤などにて接合し
て一体とし、更に、この支持体10の軸線方向両側に
は、センサ1を被検査管200内にて案内するためのプ
ラスチック、例えばテフロン(デュポン社のポリテトラ
フルオロエチレンの商品名)などにて形成されたガイド
バー11、12を一体的に配置し、センサ組立体20が
構成された。
In this embodiment, as shown in FIG. 2, the sensor divided body 2 constituting the split-type flaw detection sensor 1 is bonded to the outer periphery of the rod-shaped support 10 with an appropriate adhesive or the like. Further, plastics such as Teflon (trade name of polytetrafluoroethylene manufactured by DuPont) or the like is used on both sides of the support 10 in the axial direction to guide the sensor 1 in the tube 200 to be inspected. The formed guide bars 11 and 12 were integrally arranged to form the sensor assembly 20.

【0019】つまり、本実施例にて、前記ガイドバー1
1、12の直径は15mmとした。又、手元側のガイド
バー、本実施例では、図2にて左側のガイドバー11に
はプラスチック製のやや硬質のチューブ(図示せず)が
接続され、内部には一次コイル4及び二次コイル5のた
めの電気的導線が収納された。このように一体として構
成された探傷センサ組立体20は、被検査管200内に
対し挿入・引き出しを行なうことによって、管200の
欠陥検出が行なわれる。このとき、図2にて右側の、即
ち、先端側のガイドバー12をより長くすることにより
先端部のリフトオフ変動に対する影響を小さくすること
ができる。本実施例では、手元側のガイドバー11の長
さを75mm、先端側のガイドバー12の長さを200
mmとすることにより好結果を得ることができた。
That is, in this embodiment, the guide bar 1
The diameter of 1 and 12 was 15 mm. Also, a plastic hard tube (not shown) is connected to the guide bar on the hand side, in this embodiment, the guide bar 11 on the left side in FIG. 2, and the primary coil 4 and the secondary coil are internally provided. The electrical leads for 5 were housed. The defect detection of the tube 200 is performed by inserting and withdrawing the flaw detection sensor assembly 20 configured as above into the tube 200 to be inspected. At this time, by making the guide bar 12 on the right side, that is, the distal end side longer in FIG. 2, the influence on the lift-off fluctuation of the distal end portion can be reduced. In the present embodiment, the length of the guide bar 11 on the hand side is 75 mm, and the length of the guide bar 12 on the distal end side is 200 mm.
mm, a good result could be obtained.

【0020】上記構成の分割型探傷センサ1を使用し、
上述したパルス渦流探傷法に従って導電性管の傷を検出
したが、好結果を得ることができた。
Using the split type flaw detection sensor 1 having the above configuration,
According to the above-described pulse eddy current flaw detection method, a flaw in the conductive tube was detected, and good results were obtained.

【0021】更に説明すると、本実施例では、被検査管
200としては、図7(B)に示すように、アルミ青銅
にて作製された管板(バッフル)201に拡管により取
付けられた内径(din)15.7mm、外径(dout
20mmの非磁性黄銅管を使用した。又、図7(B)に
示すように、管板201の片側(管端部)及び内側(管
中央部)に幅0.2mmで、肉厚の60%又は30%の
疑似亀裂(管端部減肉、管中央部減肉)を外面円周方向
に形成し、上記構成の分割型探傷センサ1を備えたセン
サ組立体20を、この被検査管200内に挿入して管の
円周方向の傷(割れ及び減肉)を測定した。
More specifically, in this embodiment, as shown in FIG. 7B, the inner diameter of the tube 200 to be inspected is a tube plate (baffle) 201 made of aluminum bronze which is attached by expansion. d in ) 15.7 mm, outer diameter (d out )
A 20 mm non-magnetic brass tube was used. As shown in FIG. 7B, a pseudo crack (tube end) having a width of 0.2 mm and a thickness of 60% or 30% on one side (tube end) and inside (tube center) of the tube sheet 201 is formed. (Thickness reduction at the center of the tube) is formed in the circumferential direction on the outer surface, and the sensor assembly 20 including the split type flaw detection sensor 1 having the above-described configuration is inserted into the tube 200 to be inspected. Directional flaws (cracking and thinning) were measured.

【0022】尚、図7(C)、(D)には、60%及び
30%円周方向減肉の形状を示すが、60%減肉は、深
さ1.2mmで三日月状に傷を形成したものであり、3
0%減肉は、深さ0.6mmで円周方向に60%減肉と
同じ幅にて形成したものであった。又、本実施例では、
図2に示すように、探傷センサ組立体20を被検査管2
00内に対し挿入・引き出しを行なうに際しては、被検
査管200の手元側にアダプタ13を配置し、センサ1
のリフトオフの変動を少なくするようにした。
FIGS. 7 (C) and 7 (D) show the shapes of 60% and 30% circumferential thickness reduction. The 60% thickness reduction has a crescent shape with a depth of 1.2 mm. Formed, 3
The 0% thickness reduction was formed at the same width as the 60% thickness reduction in the circumferential direction at a depth of 0.6 mm. Also, in this embodiment,
As shown in FIG. 2, the flaw detection sensor assembly 20 is
When inserting and withdrawing from the inside of the tube 200, the adapter 13 is arranged at the hand side of the tube 200 to be inspected, and the sensor 1
To reduce fluctuations in lift-off.

【0023】本発明のパルス渦流探傷法によれば、セン
サ1の一次コイル4には、例えば、周波数100Hz〜
10kHz、電流0.1〜0.5Aの矩形波電流が供給
されるが、本実施例では、周波数200Hz、電圧10
V、電流200mAの矩形波電流を供給し、二次コイル
5から出力するパルス波形電圧のパルス幅を測定した。
そのときの、管板直近の減肉波形を図7(A)に示す。
According to the pulse eddy current flaw detection method of the present invention, the primary coil 4 of the sensor 1 has a frequency of 100 Hz to 100 Hz, for example.
A rectangular wave current having a frequency of 10 kHz and a current of 0.1 to 0.5 A is supplied.
V, a rectangular current of 200 mA was supplied, and the pulse width of the pulse waveform voltage output from the secondary coil 5 was measured.
FIG. 7 (A) shows the waveform of the thinning near the tube sheet at that time.

【0024】パルス渦流探傷法によれば、管板201は
板厚の変化として二次コイルの出力に影響を与えるが、
本発明の分割型探傷センサ1を使用すれば、上述のよう
に、二つのセンサ分割体2が同様に影響を受けるので互
に打ち消し合うように調整することによりこの問題を解
決することが可能である。即ち、本発明の分割型探傷セ
ンサ1を使用することにより、管板201の影響をなく
して管板部からのノイズ信号をキャンセルでき、本実施
例では、30%減肉の検査が識別可能であった。
According to the pulse eddy current flaw detection method, the tube sheet 201 affects the output of the secondary coil as a change in the sheet thickness.
If the split-type flaw detection sensor 1 of the present invention is used, as described above, this problem can be solved by adjusting the two sensor split bodies 2 so as to cancel each other because they are similarly affected. is there. That is, by using the split type flaw detection sensor 1 of the present invention, it is possible to cancel the noise signal from the tube sheet portion without the influence of the tube sheet 201, and in the present embodiment, it is possible to identify the inspection of 30% thinning. there were.

【0025】検査に際しては、上述のように、管板20
1の内及び外でノイズが小さくなるようにバランスを取
った後に、傷を中心に±20mm程度の走査と回転を組
合せながら走査した。図5から本発明の分割型探傷セン
サ1が有効に管板の前後に発生した円周方向傷を検知し
得ることが分かる。更に実験を行なった結果、本発明の
分割型探傷センサ1を使用すれば、管板201の肉厚効
果の影響をなくして、管板内部における管の円周方向傷
をも良好に感知し得ることが分かった。
At the time of inspection, as described above, the tube sheet 20
After the balance was made so that the noise was small inside and outside of No. 1, the scanning was performed by combining scanning and rotation of about ± 20 mm around the flaws. FIG. 5 shows that the split flaw detection sensor 1 of the present invention can effectively detect circumferential flaws generated before and after the tube sheet. As a result of further experiments, the use of the split-type flaw detection sensor 1 of the present invention eliminates the effect of the wall thickness effect of the tube sheet 201 and can also detect the circumferential flaw of the tube inside the tube sheet satisfactorily. I understood that.

【0026】又、本発明の分割型探傷センサ1を使用し
ての検査には、探傷センサを回転させながら行なうため
僅かにバランス調整が必要であるが、それでも1箇所の
検査に要する時間は1分以内で済み、UT(超音波斜角
探傷)に比較すると格段に優れていることが分かる。
Inspection using the split type flaw detection sensor 1 of the present invention requires a slight balance adjustment because the inspection is performed while rotating the flaw detection sensor. It takes less than a minute, and it can be seen that it is significantly superior to UT (ultrasonic angle flaw detection).

【0027】実施例2 実施例1で説明した分割型探傷センサ1は、二つのセン
サ分割体2にて構成されたが、本発明の分割型探傷セン
サ1は、これに限定されるものではなく、例えば図8に
示すように、4つのセンサ分割体2にて構成することも
可能である。この場合も隣接極は同極となるように配置
する。
Embodiment 2 The split-type flaw detection sensor 1 described in Embodiment 1 is composed of two sensor divided bodies 2, but the split-type flaw detection sensor 1 of the present invention is not limited to this. For example, as shown in FIG. 8, it is also possible to configure with four sensor divided bodies 2. Also in this case, the adjacent poles are arranged so as to be the same.

【0028】本実施例の分割型探傷センサ1のその他の
構成は、実施例1と同様であり、同じ構成及び機能をな
す部材には同じ参照番号を付し、詳しい説明は省略す
る。
The other configuration of the split-type flaw detection sensor 1 of this embodiment is the same as that of the first embodiment. Members having the same configuration and function are denoted by the same reference numerals, and detailed description is omitted.

【0029】[0029]

【発明の効果】以上説明したように、本発明の分割型探
傷センサは、複数の磁性体コアを大略円形状をなすよう
に配列し、各磁性体コアの互に対面する端面間部分には
空隙を設けるようにし、各磁性体コアには一次コイルと
二次コイルを重ね巻きするように構成されるので、パル
ス渦流探傷法を実施する際に好適に使用して、特に、熱
交換器の非磁性管の傷を検査する場合などにも、管を取
付ける管板の肉厚効果の影響をなくして、管板取付け部
付近にて管の周方向に発生する割れ及び減肉などの傷を
精度良く検出することができる。
As described above, in the split-type flaw detection sensor according to the present invention, a plurality of magnetic cores are arranged so as to form a substantially circular shape, and the magnetic cores are provided at the portions between the end faces facing each other. Since a gap is provided and a primary coil and a secondary coil are wound on each magnetic core in an overlapping manner, the magnetic core is preferably used when performing the pulse eddy current flaw detection method. Even when inspecting for scratches on non-magnetic tubes, eliminate the effects of the wall thickness effect of the tube sheet to which the tube is attached, and avoid cracks and wall thinning that occur in the circumferential direction of the tube near the tube plate attachment part. It can be detected with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例に係る分割型探傷センサ
の概略構成を示す断面図である。
FIG. 1 is a sectional view showing a schematic configuration of a split-type flaw detection sensor according to a first embodiment of the present invention.

【図2】図2は、図1の本発明の分割探傷センサの斜視
図であり、このセンサを一体に組込んだセンサ組立体の
全体構成を示す図である。
FIG. 2 is a perspective view of the split flaw detection sensor of the present invention shown in FIG. 1, and is a view showing an entire configuration of a sensor assembly in which this sensor is integrated.

【図3】従来のパルス渦流探傷法を説明する図である。FIG. 3 is a diagram illustrating a conventional pulse eddy current flaw detection method.

【図4】図4(A)は、パルス渦流探傷法における一次
コイルに供給される矩形波電流を示し、図4(B)、
(C)は二次コイルに発生するパルス電圧波形を示す。
FIG. 4A shows a rectangular wave current supplied to a primary coil in the pulse eddy current flaw detection method.
(C) shows a pulse voltage waveform generated in the secondary coil.

【図5】被検査体の材料の違いによる二次コイルに発生
するパルス電圧波形を示す。
FIG. 5 shows a pulse voltage waveform generated in a secondary coil due to a difference in a material of a test object.

【図6】パルス渦流探傷法の原理を説明する二次コイル
に発生する出力パルス電圧の減衰曲線の違いを説明する
図である。
FIG. 6 is a diagram illustrating a difference in an attenuation curve of an output pulse voltage generated in a secondary coil for explaining the principle of the pulse eddy current flaw detection method.

【図7】図7(A)は、本発明のパルス渦流探傷法にて
得られる二次コイルに発生する出力パルス電圧波形を示
し、図(B)、(C)、(D)は、使用した被検査管及
び傷の形状を説明する図である。
FIG. 7A shows an output pulse voltage waveform generated in a secondary coil obtained by the pulse eddy current flaw detection method of the present invention, and FIGS. 7B, 7C, and 7D show usage waveforms; It is a figure explaining the shape of a to-be-inspected pipe | tube and a wound.

【図8】本発明の第2の実施例に係る分割型探傷センサ
の断面図である。
FIG. 8 is a sectional view of a split-type flaw detection sensor according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 分割型探傷センサ 2 センサ分割体 3 磁性体コア 4 一次コイル 5 二次コイル 200 被検査管 201 管板 DESCRIPTION OF SYMBOLS 1 Split-type flaw detection sensor 2 Sensor divided body 3 Magnetic core 4 Primary coil 5 Secondary coil 200 Tube to be inspected 201 Tube sheet

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 複数の磁性体コアを大略円形状をなすよ
うに配列し、各磁性体コアの互に対面する端面間部分に
は空隙を設けるようにし、更に、各磁性体コアには一次
コイルと二次コイルを重ね巻きするようにしたことを特
徴とする分割型探傷センサ。
A plurality of magnetic cores are arranged so as to form a substantially circular shape, a gap is provided in a portion between end faces of each magnetic core facing each other, and a primary is provided in each magnetic core. A split-type flaw detection sensor characterized in that a coil and a secondary coil are wound in an overlapping manner.
【請求項2】 前記各磁性体コアはフェライト、珪素
鋼、パーマロイ又は磁性アモルファス金属にて作製され
る請求項1の分割型探傷センサ。
2. The split-type flaw detection sensor according to claim 1, wherein each magnetic core is made of ferrite, silicon steel, permalloy, or magnetic amorphous metal.
【請求項3】 前記各磁性体コアは同形状とされる請求
項1又は2の分割型探傷センサ。
3. The split-type flaw detection sensor according to claim 1, wherein the respective magnetic cores have the same shape.
【請求項4】 請求項1、2又は3に記載の分割型探傷
センサを使用し、該探傷センサを導電性管内に挿入し、
前記一次コイルにパルス状の電流を加え、二次コイルで
検出された電圧の変化で導電性管の傷を検出する導電性
管の探傷方法。
4. A flaw detection sensor according to claim 1, 2 or 3, wherein said flaw detection sensor is inserted into a conductive tube.
A method for detecting flaws in a conductive tube, wherein a pulsed current is applied to the primary coil and a flaw in the conductive tube is detected based on a change in voltage detected by the secondary coil.
【請求項5】 前記導電性管は、非磁性管である請求項
4の導電性管の探傷方法。
5. The method according to claim 4, wherein the conductive tube is a non-magnetic tube.
JP8331527A 1996-11-27 1996-11-27 Division-type flaw-detecting sensor and flaw detecting method for conductive tube Pending JPH10160710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8331527A JPH10160710A (en) 1996-11-27 1996-11-27 Division-type flaw-detecting sensor and flaw detecting method for conductive tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8331527A JPH10160710A (en) 1996-11-27 1996-11-27 Division-type flaw-detecting sensor and flaw detecting method for conductive tube

Publications (1)

Publication Number Publication Date
JPH10160710A true JPH10160710A (en) 1998-06-19

Family

ID=18244660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8331527A Pending JPH10160710A (en) 1996-11-27 1996-11-27 Division-type flaw-detecting sensor and flaw detecting method for conductive tube

Country Status (1)

Country Link
JP (1) JPH10160710A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308728A (en) * 2004-03-23 2005-11-04 Sumitomo Light Metal Ind Ltd Method and device for detecting surface defect of nonmagnetic metal tube
JP2009517694A (en) * 2005-11-30 2009-04-30 ゼネラル・エレクトリック・カンパニイ Pulsed eddy current pipeline inspection system and method
JP2010537220A (en) * 2008-10-07 2010-12-02 レイナル カンパニー,リミテッド Defect measuring apparatus using PEC (pulsed dycurrent) and measuring method using the same
JP2013076700A (en) * 2011-09-29 2013-04-25 Abb Technology Ag Method and arrangement for crack detection in metallic material
CN107190789A (en) * 2017-07-10 2017-09-22 荣垂强 A kind of load pulsewidth system of selection of Low Strain Dynamic Testing of Piles

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308728A (en) * 2004-03-23 2005-11-04 Sumitomo Light Metal Ind Ltd Method and device for detecting surface defect of nonmagnetic metal tube
JP2009517694A (en) * 2005-11-30 2009-04-30 ゼネラル・エレクトリック・カンパニイ Pulsed eddy current pipeline inspection system and method
JP2010537220A (en) * 2008-10-07 2010-12-02 レイナル カンパニー,リミテッド Defect measuring apparatus using PEC (pulsed dycurrent) and measuring method using the same
JP2013076700A (en) * 2011-09-29 2013-04-25 Abb Technology Ag Method and arrangement for crack detection in metallic material
US9103802B2 (en) 2011-09-29 2015-08-11 Abb Technology Ag Method and arrangement for crack detection in a metallic material
CN107190789A (en) * 2017-07-10 2017-09-22 荣垂强 A kind of load pulsewidth system of selection of Low Strain Dynamic Testing of Piles
CN107190789B (en) * 2017-07-10 2018-07-13 荣垂强 A kind of load pulsewidth selection method of Low Strain Dynamic Testing of Piles

Similar Documents

Publication Publication Date Title
US6920792B2 (en) Transducer guided wave electromagnetic acoustic
EP0910784B1 (en) Eddy current inspection technique
Dutton et al. A new magnetic configuration for a small in-plane electromagnetic acoustic transducer applied to laser-ultrasound measurements: Modelling and validation
JP2639264B2 (en) Steel body inspection equipment
JP2011047736A (en) Method of inspecting austenite-based stainless steel welding section
JPS5870157A (en) Nondestructive testing method for ferromagnetic substance material and its device
JP6452880B1 (en) Method and apparatus for inspecting flaws or defects in tubular body
JPH10160710A (en) Division-type flaw-detecting sensor and flaw detecting method for conductive tube
JP3673392B2 (en) Electromagnetic ultrasonic flaw detector
WO2004106913A1 (en) Guided wave electromagnetic acoustic transducer
JP3942165B2 (en) Eddy current testing probe
JPH0552816A (en) Internally inserted probe for pulse-type eddy current examination
JP2003294711A (en) Eddy-current test probe and eddy-current test method using the probe
JPS6011493Y2 (en) Electromagnetic induction detection device
JP2008096290A (en) Method for inspecting defect of ferromagnetic heat exchanger tube
JP2001108659A (en) Eddy current prove for detecting metal surface flaw
JPH08278289A (en) Flaw detection device and method for ferromagnetic tube
JP2899595B2 (en) Flaw detection probe
JP3426748B2 (en) Eddy current detection test method
JPH0439031B2 (en)
JPH03118465A (en) Detecting apparatus for defect inside tube
EP3798567A1 (en) Method and system for determining pipe thickness
JPS6319023B2 (en)
JP2002055083A (en) Eddy current flaw detection probe
JPH10123097A (en) Sensor for detecting wall thinning