JPH0552816A - Internally inserted probe for pulse-type eddy current examination - Google Patents

Internally inserted probe for pulse-type eddy current examination

Info

Publication number
JPH0552816A
JPH0552816A JP24246691A JP24246691A JPH0552816A JP H0552816 A JPH0552816 A JP H0552816A JP 24246691 A JP24246691 A JP 24246691A JP 24246691 A JP24246691 A JP 24246691A JP H0552816 A JPH0552816 A JP H0552816A
Authority
JP
Japan
Prior art keywords
pulse
eddy current
coil
detection
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24246691A
Other languages
Japanese (ja)
Inventor
Tamao Nakajima
玉雄 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP24246691A priority Critical patent/JPH0552816A/en
Publication of JPH0552816A publication Critical patent/JPH0552816A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an internally inserted probe for pulse-type eddy current examination which detects a defect such as a crack or thinning of an inner or outer surface of a small diameter tube or the like. CONSTITUTION:Two detecting coils 1,2 are assembled side by side in a case 4. A single excitation coil 3 is placed a small distance away from the detecting coils 1,2. The two detecting coils 1,2 are differentially connected to apply pulse current to the single excitation coil 3. When pulse current is applied to the excitation coil 3, eddy current occurring on an object to be inspected largely changes at a defect. Outputs of the detecting coils 1,2 also increase at the defect. Since the detecting coils 1,2 are differentially connected, a single output is provided, resulting in easy data processing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は小口径配管や熱交換器用
伝熱管等の内外面の割れ、減肉等の欠陥を製造時や使用
期間中に検出する非破壊検査において用いるパルス式渦
流探傷用内挿型プローブに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pulse type eddy current flaw detection used in nondestructive inspection for detecting defects such as cracks and thinning of inner and outer surfaces of small-diameter pipes and heat transfer tubes for heat exchangers during manufacturing and during use. The present invention relates to an interpolating probe.

【0002】[0002]

【従来の技術】材料の表面に存在する割れや減肉等の欠
陥を検出する方法としては、フェライトコアに巻線しこ
れに交流電流を流した検出コイルを、金属等の導体表面
に近づけるとき、導体中に生じる渦電流が導体表面の割
れ等の欠陥により変化し、検出コイルのインピーダン
ス、電圧が変化することを利用して欠陥の検出を行う渦
流探傷法が広く知られている。
2. Description of the Related Art As a method for detecting defects such as cracks and thinning existing on the surface of a material, when a detection coil wound around a ferrite core and an alternating current is passed through it is brought close to the surface of a conductor such as metal. The eddy current flaw detection method is widely known in which the eddy current generated in a conductor changes due to a defect such as a crack on the surface of the conductor, and the impedance and voltage of a detection coil change to detect the defect.

【0003】上記渦流探傷法に基づき、たとえば、ステ
ンレス鋼製等の小口径配管や熱交換器用伝熱管等の内外
面の割れ、減肉の如き欠陥を検出することができるよう
にしてある内挿型プローブも、既に採用されている。
Based on the above-mentioned eddy current flaw detection method, it is possible to detect defects such as cracks and thinning of inner and outer surfaces of small-diameter pipes made of stainless steel or heat transfer tubes for heat exchangers. Mold probes have also been adopted.

【0004】従来の内挿型プローブは、図4に一例を示
す如く、同一軸上に巻線して交流電流を流すようにした
小径の2つの検出コイルaとbを差動接続(即ち、1つ
の検出コイルaがプラスの波形の時、他の1つの検出コ
イルbはマイナスの波形となるように)し、接続ケーブ
ルcの先端に配置し、小口径の被検査体の内側に検出コ
イルa,bを挿通させて、被検査体の内面又は外面に欠
陥があるときに検出コイルa,bのインピーダンス、電
圧変化をコンピュータで処理して欠陥の大きさ等を判別
するようにしてある。
In the conventional insertion type probe, as shown in FIG. 4, two detection coils a and b each having a small diameter and wound on the same axis to allow an alternating current to flow are differentially connected (that is, (When one detection coil a has a positive waveform, the other detection coil b has a negative waveform), and it is arranged at the tip of the connection cable c, and the detection coil is placed inside the inspected object having a small diameter. When the inner surface or the outer surface of the object to be inspected has a defect by inserting a and b, impedance and voltage change of the detection coils a and b are processed by a computer to determine the size of the defect and the like.

【0005】しかしながら、かかる検出コイルaとbか
らなる従来の内挿型プローブの場合は、交流電流を流す
ものであるため、渦電流の金属内浸透深さは交流周波数
が大きくなるに従い小さくなり、深いところにある欠陥
の検出ができなくなる。すなわち、渦電流の金属内浸透
深さδは、交流電流の場合、
However, in the case of the conventional insertion type probe consisting of such detection coils a and b, since an alternating current is passed, the metal penetration depth of the eddy current becomes smaller as the alternating frequency increases, Defects in deep areas cannot be detected. That is, the metal penetration depth δ of the eddy current is

【0006】[0006]

【数1】 で与えられる。但し、fは周波数、σは電気伝導率、μ
は透磁率である。したがって、交流周波数fが大きくな
るに従い浸透深さδが急激に小さくなるので、深い亀裂
の場合に亀裂の深さを測ることが難しく、又、プローブ
を浮上(リフトオフ)させると、その影響が大きくて、
深い亀裂の検出ができなくなり、更に、従来のプローブ
の場合の波形は、連続正弦波である。
[Equation 1] Given in. Where f is frequency, σ is electrical conductivity, μ
Is the magnetic permeability. Therefore, as the AC frequency f increases, the penetration depth δ rapidly decreases, so it is difficult to measure the crack depth in the case of a deep crack, and when the probe is lifted up (lift-off), its effect is large. hand,
Deep cracks cannot be detected, and the waveform in the case of the conventional probe is a continuous sine wave.

【0007】このように従来の渦流探傷法に基づく内挿
型プローブの場合は、検出コイルa,bの励磁電流の周
波数が高いと、渦電流が金属の表面に集中して金属材料
の内部まで浸透しないので、小口径配管等の表面に存在
する欠陥しか検出できない、という問題がある。
As described above, in the case of the conventional insertion type probe based on the eddy current flaw detection method, when the frequency of the exciting current of the detection coils a and b is high, the eddy current concentrates on the surface of the metal and reaches the inside of the metal material. Since it does not penetrate, there is a problem that only defects existing on the surface of a small-diameter pipe or the like can be detected.

【0008】一方、近年では、材料の内部に存在する欠
陥を検出する能力があるといわれるパルス式渦流探傷法
が採用されて来ている。
On the other hand, in recent years, a pulse type eddy current flaw detection method, which is said to be capable of detecting defects existing inside the material, has been adopted.

【0009】このパルス式渦流探傷法は、図5に原理を
示す如く、フェライトコアdの表面に二次コイルeを巻
き、その外側に一次コイルfを巻いた励磁コイルgを用
い、一次コイルfに、図6の(A)に示す一次電流(パ
ルス電流)を流すと、二次コイルeには、一次コイルf
の電流変動による直接的起電力と渦電流により生じる起
電力との重畳したパルス電圧が図6の(B)の如く電流
の流れ始めと遮断直後に生じるようにしてあり、励磁コ
イルgを金属に近づけると、上記二次パルスの幅が変化
し、金属表面に亀裂が生じていると、表面の渦電流の流
れが大きく変り、その誘導二次起電力も大幅に変るの
で、上記二次パルス(パルス電圧)の幅も大きく変る
が、その変化率は通常の交流渦電流法によるものより大
きく、高感度のセンサーとして用いることができる。
This pulse type eddy current flaw detection method uses an exciting coil g in which a secondary coil e is wound on the surface of a ferrite core d and a primary coil f is wound on the outer side thereof as shown in the principle of FIG. When a primary current (pulse current) shown in FIG. 6A is applied to the secondary coil e, the primary coil f is applied to the secondary coil e.
The pulse voltage in which the direct electromotive force due to the current fluctuation of 1 and the electromotive force generated by the eddy current are superposed is generated as shown in FIG. When approached, the width of the secondary pulse changes, and if a crack is generated on the metal surface, the flow of the eddy current on the surface changes significantly, and the induced secondary electromotive force also changes significantly, so the secondary pulse ( The width of the pulse voltage) also greatly changes, but the rate of change is larger than that by the usual AC eddy current method, and it can be used as a highly sensitive sensor.

【0010】上記パルス式渦流探傷法では、励磁コイル
gを矩形状のパルス電流で励磁するので、従来の交流を
流す場合の如き連続正弦波で励磁する方法に比べてコイ
ルの発熱量が大幅に減少し、瞬間的に大電流が流せるこ
と、特にアルミニウム材に対しては高感度であるのみな
らず、リフトオフの影響が小さいこと、パルス電流を用
いるため交流より渦電流の浸透深さが大きく、かなり深
い亀裂の深さを定量的に測ることができ、周波数が大き
くても1桁低い周波数の交流の場合と同程度の深さの情
報が得られること、非磁性材料において高感度であるこ
と、等の利点がある(配管技術 1988年11月号第 111頁
〜第 114頁)。
In the above pulse type eddy current flaw detection method, since the exciting coil g is excited by a rectangular pulse current, the amount of heat generated by the coil is significantly larger than that in the conventional method of exciting with a continuous sine wave as in the case of passing an alternating current. It can decrease and instantaneously pass a large current, not only it has high sensitivity especially to aluminum material, but also has a small effect of lift-off, and since pulse current is used, the penetration depth of eddy current is larger than that of alternating current, It is possible to quantitatively measure the depth of a fairly deep crack and obtain the same depth information as in the case of alternating current with a frequency that is one digit lower even if the frequency is large, and that it has high sensitivity in non-magnetic materials. , Etc. (Piping technology November 1988 issue, pages 111 to 114).

【0011】上記のように交流を流すものに比して多く
の利点を有するパルス式渦流探傷法の原理を利用した内
挿型プローブは、現在まで提案されていない。
An interpolating probe utilizing the principle of the pulsed eddy current flaw detection method, which has many advantages over the one in which an alternating current is flown as described above, has not been proposed so far.

【0012】現在までに提案されているパルス式渦流探
傷器は、平板状の材料の探傷に適用されるもので、図7
に示す如く2つの検出コイルa,bと1つの励磁コイル
gとを、励磁コイルgを挟んで両側に検出コイルa,b
を置くことにより送信−受信方式に構成し、且つ励磁コ
イルgからの励磁パルスが直接空中を伝わるのを防ぐた
めに、励磁コイルgを厳重にシールドするよう励磁コイ
ルgと両検出コイルa,b間にシールドhを設けてい
る。
The pulse type eddy current flaw detectors that have been proposed so far are applied to flaw detection of flat plate-shaped materials.
As shown in FIG. 2, two detection coils a and b and one exciting coil g are provided on both sides with the exciting coil g interposed therebetween.
Is placed between the exciting coil g and the detection coils a and b so as to strictly shield the exciting coil g in order to prevent the exciting pulse from the exciting coil g from being directly transmitted in the air. Is provided with a shield h.

【0013】上記平板材料の表面や内部に存在する割れ
等の欠陥を検出するときは、励磁コイルgにパルス電流
を流すと、欠陥があるところで材料表面の渦電流が大き
く変化する。両側の検出コイルa,bの出力も欠陥のと
ころで渦電流の変化で個々に大きく変化するので、この
検出コイルの出力によって欠陥の大きさや深さ等を測る
ようにしたものがある(British Journal ofNDT July 1
988の第 249頁〜第 256頁)。
When detecting defects such as cracks existing on the surface or inside of the flat plate material, when a pulse current is passed through the exciting coil g, the eddy current on the surface of the material largely changes at the defect. Since the outputs of the detection coils a and b on both sides also largely change due to the change of the eddy current at the defect, there is a device that measures the size and depth of the defect by the output of this detection coil (British Journal of NDT). July 1
988, pages 249-256).

【0014】[0014]

【発明が解決しようとする課題】ところが、上記パルス
式渦流探傷器は、平板状の材料の表面に沿い移動させな
がら材料表面や内部に存在する欠陥の探傷に適用するも
のであり、これをパイプ等の内部へ挿入して探傷させる
内挿型として適用する場合には、上記従来のパルス式渦
流探傷器をパイプの内部で円周方向に回転させる必要が
あるが、図7の状態でパイプの内面に沿い回転させるこ
とになるので、小口径配管への内挿型としては適用が困
難であり、又、検出コイルaとbが離れているので、検
出コイルaとbが欠陥位置を通過することにより個々に
波形が出て、1つの欠陥で2つの出力となり、データ処
理では、検出コイルa,bの2つの出力と励磁コイルg
の電圧との間で別々に処理されるので、欠陥の判定が難
しくなる。
However, the above-mentioned pulse type eddy current flaw detector is applied to flaw detection on a material surface or inside while moving along the surface of a flat plate-like material. In the case of being applied as an interpolating type in which the above-mentioned conventional pulse type eddy current flaw detector is inserted into the inside of a pipe or the like, it is necessary to rotate the above-mentioned conventional pulse type eddy current flaw detector in the circumferential direction. Since it is rotated along the inner surface, it is difficult to apply it as an insertion type for small-diameter pipes. Moreover, since the detection coils a and b are separated, the detection coils a and b pass through the defect position. As a result, waveforms are individually generated, and one defect results in two outputs. In data processing, two outputs of the detection coils a and b and an excitation coil g are used.
However, it is difficult to determine the defect because the voltages are separately processed.

【0015】そこで、本発明は、現在まで実現していな
いパルス式渦流探傷法に基づく内挿型プローブで且つ小
口径配管等に適したものを提供しようとするものであ
る。
Therefore, the present invention is intended to provide an interpolating probe based on the pulse type eddy current flaw detection method which has not been realized up to now and which is suitable for a small diameter pipe or the like.

【0016】[0016]

【課題を解決するための手段】本発明は、上記課題を解
決するために、同一軸上に巻線した2つの検出コイルを
並べて差動接続し、パルス電流を流すようにした1つの
励磁コイルを、上記2つの検出コイルより所要間隔を置
いて配置し、且つ上記励磁コイルから離れた方の検出コ
イル側にケーブルを接続した構成とする。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides one exciting coil in which two detection coils wound on the same axis are arranged side by side and differentially connected to each other so that a pulse current flows. Is arranged at a required distance from the two detection coils, and a cable is connected to the side of the detection coil farther from the exciting coil.

【0017】[0017]

【作用】励磁コイルにパルス電流を流し、該励磁コイル
を先端側として小口径の配管等の内部に挿入すると、励
磁コイルが近づくところの配管等の内面に渦電流が生じ
る。配管等の内面に割れ等の欠陥があると、上記渦電流
は大きく変化する。励磁コイルに続いて挿入されて来る
検出コイルの出力も欠陥部では大きく変化する。更に、
2つの検出コイルを差動接続すれば、検出コイル出力は
単一出力となるので、データの処理を容易にすることも
可能である。
When a pulse current is passed through the exciting coil and the exciting coil is inserted into the inside of a small diameter pipe or the like with the leading end side, an eddy current is generated on the inner surface of the pipe or the like near the exciting coil. If there is a defect such as a crack on the inner surface of the pipe or the like, the eddy current changes greatly. The output of the detection coil, which is inserted following the exciting coil, also changes significantly at the defective portion. Furthermore,
If the two detection coils are differentially connected, the output of the detection coil will be a single output, so that the data processing can be facilitated.

【0018】[0018]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0019】図1及び図2は本発明のパルス式渦流探傷
用内挿型プローブの実施例を示すもので、同一軸上に巻
線した2つの検出コイル1と2を並べて配置し、又、パ
ルス電流を流すようにした1つの励磁コイル3を、上記
2つの検出コイル1,2のうち、いずれか一方の検出コ
イル(図では1)側に所要の間隔を置いて配置して、こ
れら2つの検出コイル1,2と1つの励磁コイル3を、
細長いケース4に組み付けて一体化し、且つ上記励磁コ
イル3から遠い方の検出コイル2側にケーブル5を接続
し、励磁コイル3にパルス電流を流すことができるよう
にすると共に、検出コイル1,2で生じた出力をケーブ
ル5によりデータ処理部へ送れるようにし、ケース4ご
と励磁コイル3と検出コイル1,2を、ステンレス鋼製
等の小口径管や熱交換器用伝熱管の如き小口径の配管6
内に挿入できるようにする。又、上記構成の内挿型プロ
ーブIの検出コイル1,2のうち、励磁コイル3に近い
方の検出コイル1は、コイルの巻数を隣りの検出コイル
2の半分にするとか、検出コイル1の回路に抵抗を入れ
る、等の手段を施こすことにより、該検出コイル1の出
力を調整して、欠陥のない場合に出来るだけ検出コイル
1と2の出力に差が出ないようにする。
FIGS. 1 and 2 show an embodiment of an intercalating probe for pulsed eddy current flaw detection of the present invention, in which two detection coils 1 and 2 wound on the same axis are arranged side by side, and One exciting coil 3 for passing a pulse current is arranged on the side of either one of the two detection coils 1 and 2 described above (1 in the figure) with a required space between them. One detection coil 1, 2 and one excitation coil 3,
It is assembled to the elongated case 4 and integrated, and a cable 5 is connected to the side of the detection coil 2 farther from the exciting coil 3 so that a pulse current can be passed through the exciting coil 3 and the detecting coils 1 and 2 are connected. The output generated in 1. is sent to the data processing unit by the cable 5, and the exciting coil 3 and the detection coils 1 and 2 together with the case 4 have a small diameter pipe such as a small diameter pipe made of stainless steel or a heat transfer pipe for a heat exchanger. 6
To be able to insert inside. In addition, of the detection coils 1 and 2 of the insertion type probe I having the above-described configuration, the detection coil 1 closer to the exciting coil 3 has a winding number of half that of the adjacent detection coil 2 or the detection coil 1 of the detection coil 1. The output of the detection coil 1 is adjusted by providing a circuit with a resistor or the like so that the outputs of the detection coils 1 and 2 are as different as possible when there is no defect.

【0020】又、本発明の内挿型プローブIを実施する
場合には、図2に示す如く、上記2つの検出コイル1と
2には差動増幅器7を接続して、2つの検出コイル1,
2の出力の差を求めるようにすると共に、励磁コイル3
にはパルス電流発生器8を接続して、パルス電流を供給
するようにし、上記差動増幅器7とパルス電流発生器8
は波形データ処理システム9に接続して、差動増幅器7
で求めた2つの検出コイル1,2の出力の差とパルス電
流発生器8からのパルス電圧との間でデータ処理を行わ
せるようにし、更に、該波形データ処理システム9で処
理されたデータをコンピュータ(パソコン)10で分析
し、プロッタ11に表示させるようにする。
In the case of implementing the interpolating probe I of the present invention, as shown in FIG. 2, a differential amplifier 7 is connected to the two detection coils 1 and 2 to connect the two detection coils 1 to each other. ,
2 and the exciting coil 3
A pulse current generator 8 is connected to this to supply a pulse current, and the differential amplifier 7 and the pulse current generator 8 are connected.
Is connected to the waveform data processing system 9 and the differential amplifier 7
Data processing is performed between the difference between the outputs of the two detection coils 1 and 2 and the pulse voltage from the pulse current generator 8, and the data processed by the waveform data processing system 9 is The data is analyzed by the computer (personal computer) 10 and displayed on the plotter 11.

【0021】本発明の内挿型プローブの励磁コイル3に
パルス電流として図3(A)に示す如き半波正弦波を与
えてやり、図1の如く被検査体としての配管6の内部に
挿入して行くと、始めに励磁コイル3が近づくところの
配管6の内面には渦電流が生じる。配管6の内面に欠陥
として割れがあるときは、上記励磁コイル3が近づくと
ころで生じる渦電流が割れにより大きく変る。上記励磁
コイル3よりも進行方向の後方に位置している2つの検
出コイル1,2が順次上記割れのところに来ると、上記
大きく変化した渦電流を検出し、割れのところでは図3
(B)の如き大きな受信波形となる出力ロを生じる。2
つの検出コイル1と2からの出力は差動増幅器7へ送ら
れ、ここで検出コイル1の出力と検出コイル2の出力の
差が求められて波形データ処理システム9へ送られる。
2つの検出コイルの出力は差動増幅器の出力端において
単一出力となることから、波形データ処理システム9で
は、パルス電流発生器8から送られるパルス電圧との間
でのデータ処理が容易となる。
A half-wave sine wave as shown in FIG. 3A is applied as a pulse current to the exciting coil 3 of the insertion type probe of the present invention, and is inserted into the pipe 6 as an object to be inspected as shown in FIG. Then, an eddy current is generated on the inner surface of the pipe 6 where the exciting coil 3 first approaches. When the inner surface of the pipe 6 is cracked as a defect, the eddy current generated near the exciting coil 3 changes greatly due to the crack. When the two detection coils 1 and 2 positioned behind the exciting coil 3 in the traveling direction sequentially come to the crack, the greatly changed eddy current is detected, and at the crack, FIG.
An output B having a large reception waveform as shown in (B) is generated. Two
The outputs from the two detection coils 1 and 2 are sent to the differential amplifier 7, where the difference between the output of the detection coil 1 and the output of the detection coil 2 is obtained and sent to the waveform data processing system 9.
Since the outputs of the two detection coils become a single output at the output terminals of the differential amplifier, the waveform data processing system 9 facilitates data processing with the pulse voltage sent from the pulse current generator 8. ..

【0022】[0022]

【発明の効果】以上述べた如く、本発明のパルス式渦流
探傷用内挿型プローブによれば、細長いケース内に、2
つの検出コイルを並べて配置すると共に、1つの励磁コ
イルを上記2つの検出コイルから少し間隔を置いて配置
し、励磁コイルにパルス電流を与えるようにしてあるの
で、パルス式渦流探傷器としての利点をすべて生かすと
同時に、2つの検出コイルを差動接続したことにより単
一出力となって、データ処理を容易に行うことが可能と
なる、という優れた効果を奏し得る。
As described above, according to the insertion type probe for pulse type eddy current flaw detection of the present invention, it is possible to use two probes in an elongated case.
The two detection coils are arranged side by side, and one exciting coil is arranged with a slight distance from the above two detecting coils to give a pulse current to the exciting coils. Therefore, the advantage of the pulse type eddy current flaw detector is obtained. At the same time, it is possible to obtain the excellent effect that the two detection coils are differentially connected to provide a single output and data processing can be easily performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のパルス式渦流探傷用プローブの概要を
示す側面図である。
FIG. 1 is a side view showing an outline of a pulse type eddy current flaw detection probe of the present invention.

【図2】本発明のパルス式渦流探傷用プローブと測定シ
ステムを示すブロック図である。
FIG. 2 is a block diagram showing a pulse type eddy current flaw detection probe and a measurement system of the present invention.

【図3】欠陥があるときの出力の変化を示すもので、
(A)は励磁コイルのパルス電圧を示し、(B)は検出
コイルの出力を示す線図である。
FIG. 3 shows changes in output when there is a defect,
(A) is a pulse voltage of the exciting coil, (B) is a diagram showing the output of the detection coil.

【図4】従来の内挿型プローブの概略図である。FIG. 4 is a schematic view of a conventional insertion type probe.

【図5】パルス式渦流探傷法の原理を示す図である。FIG. 5 is a diagram showing a principle of a pulse type eddy current flaw detection method.

【図6】図5のコイルに与えるパルス電流とコイルに生
じたパルス電圧を示すもので、(A)はパルス電流を示
し、(B)はパルス電圧を示す図である。
6A and 6B show a pulse current applied to the coil of FIG. 5 and a pulse voltage generated in the coil, where FIG. 6A is a pulse current and FIG. 6B is a pulse voltage.

【図7】従来のパルス式渦流探傷器の概要図である。FIG. 7 is a schematic view of a conventional pulse type eddy current flaw detector.

【符号の説明】[Explanation of symbols]

1,2 検出コイル 3 励磁コイル 4 ケース 5 ケーブル 6 配管 1, 2 Detection coil 3 Excitation coil 4 Case 5 Cable 6 Piping

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 細長いケース内に、2つの検出コイルを
ケースの長手方向に並べて差動接続し、且つパルス電流
を流す1つの励磁コイルを、上記2つの検出コイルより
所要の間隔を置いて上記ケース内に配置し、上記励磁コ
イルから離れた方の検出コイル側にケーブルを接続した
ことを特徴とするパルス式渦流探傷用内挿型プローブ。
1. An elongated case, in which two detection coils are arranged in the longitudinal direction of the case and differentially connected to each other, and one exciting coil for passing a pulse current is provided at a required distance from the two detection coils. An intercalating probe for pulse type eddy current flaw detection, characterized in that the cable is connected to the side of the detection coil that is located inside the case and that is far from the excitation coil.
JP24246691A 1991-08-29 1991-08-29 Internally inserted probe for pulse-type eddy current examination Pending JPH0552816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24246691A JPH0552816A (en) 1991-08-29 1991-08-29 Internally inserted probe for pulse-type eddy current examination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24246691A JPH0552816A (en) 1991-08-29 1991-08-29 Internally inserted probe for pulse-type eddy current examination

Publications (1)

Publication Number Publication Date
JPH0552816A true JPH0552816A (en) 1993-03-02

Family

ID=17089505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24246691A Pending JPH0552816A (en) 1991-08-29 1991-08-29 Internally inserted probe for pulse-type eddy current examination

Country Status (1)

Country Link
JP (1) JPH0552816A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009025105A1 (en) 2007-08-21 2009-02-26 Keiichi Nonogaki Eddy current flaw detection method and device
US8289016B2 (en) 2006-11-21 2012-10-16 Keiichi Nonogaki Eddy-current flaw detection method and apparatus
JP2013512713A (en) * 2009-12-04 2013-04-18 エンドマグネティクス リミテッド Magnetic probe device
KR102099140B1 (en) * 2018-10-05 2020-04-09 조선대학교산학협력단 Probe for eddy current testing and apparatus for nondestructive testing using the same
CN112229904A (en) * 2020-11-23 2021-01-15 南昌航空大学 Pulse far-field eddy current detection probe and use method thereof
CN113311064A (en) * 2021-05-25 2021-08-27 国网湖南省电力有限公司 Pulse eddy current detection method and system for lead sealing part of cable joint

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8289016B2 (en) 2006-11-21 2012-10-16 Keiichi Nonogaki Eddy-current flaw detection method and apparatus
WO2009025105A1 (en) 2007-08-21 2009-02-26 Keiichi Nonogaki Eddy current flaw detection method and device
JP2013512713A (en) * 2009-12-04 2013-04-18 エンドマグネティクス リミテッド Magnetic probe device
KR102099140B1 (en) * 2018-10-05 2020-04-09 조선대학교산학협력단 Probe for eddy current testing and apparatus for nondestructive testing using the same
CN112229904A (en) * 2020-11-23 2021-01-15 南昌航空大学 Pulse far-field eddy current detection probe and use method thereof
CN113311064A (en) * 2021-05-25 2021-08-27 国网湖南省电力有限公司 Pulse eddy current detection method and system for lead sealing part of cable joint

Similar Documents

Publication Publication Date Title
US6400146B1 (en) Sensor head for ACFM based crack detection
JP4756409B1 (en) Nondestructive inspection apparatus and nondestructive inspection method using alternating magnetic field
US6014024A (en) Apparatus and method for detecting and/or measuring flaws in conductive material
JP2001522046A (en) Eddy current inspection head, method of manufacturing eddy current inspection head, and eddy current inspection method
WO2008072508A1 (en) Nondestructive test instrument and nondestructive test method
CN112415088B (en) Internal penetrating type transverse pulse eddy current detection probe and application method thereof
JP6452880B1 (en) Method and apparatus for inspecting flaws or defects in tubular body
JPH0552816A (en) Internally inserted probe for pulse-type eddy current examination
Piao et al. High-speed inspection method fusing pulsed eddy current and magnetic flux leakage
EP1348952B1 (en) Mutual inductance bridge for detection of degradation in metallic components
JPH0989843A (en) Method and apparatus for eddy current flaw detection
JPH08136509A (en) Eddy current flaw detection method and apparatus for inner surface layer of pipe
US5986452A (en) Apparatus and method for detecting flaws in conductive material
KR100626228B1 (en) Apparatus and Method for detecting defect with magnetic flux inducted by AC magnetic field
JP2007163263A (en) Eddy current flaw detection sensor
KR20190018284A (en) A nondestructive testing apparatus including spiral direction current induction means
JP3955823B2 (en) Eddy current flaw detection probe and eddy current flaw inspection method using the same
JP2001272379A (en) Method and device for non destructive test for tube
JPH07167839A (en) Inspection coil for electromagnetic induction flaw detection and flaw detecting method
WO2012021034A2 (en) Conductor thickness detecting device using a double core
JPH10160710A (en) Division-type flaw-detecting sensor and flaw detecting method for conductive tube
Qiu et al. Normal Magnetizing-based Eddy Current Testing Method for Surface Crack and Internal Delamination of Steel Plate
Majidnia et al. Investigation of an encircling Pulsed Eddy Current probe for corrosion detection
JP2005274381A (en) Nondestructive inspection method and nondestructive inspection apparatus of back defect and material characteristics by electromagnetic method
JP2743109B2 (en) Non-destructive inspection method of heating tube