JPH07167839A - Inspection coil for electromagnetic induction flaw detection and flaw detecting method - Google Patents

Inspection coil for electromagnetic induction flaw detection and flaw detecting method

Info

Publication number
JPH07167839A
JPH07167839A JP5343519A JP34351993A JPH07167839A JP H07167839 A JPH07167839 A JP H07167839A JP 5343519 A JP5343519 A JP 5343519A JP 34351993 A JP34351993 A JP 34351993A JP H07167839 A JPH07167839 A JP H07167839A
Authority
JP
Japan
Prior art keywords
coil
inspection coil
flaw detection
induced current
flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5343519A
Other languages
Japanese (ja)
Inventor
Tsugio Ishida
次雄 石田
Kenji Kubomura
健二 久保村
Yasuhiro Aikawa
康浩 相川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5343519A priority Critical patent/JPH07167839A/en
Publication of JPH07167839A publication Critical patent/JPH07167839A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To provide an electromagnetic induction flaw detecting method of an anisotropic conductive material (for example, carbon fiber reinforced plastics), etc., by using a rectangular inspection coil for selectively allowing an induction current to flow in a specific direction on a surface of a specimen. CONSTITUTION:A rectangular inspection coil 1 put on a surface of carbon fiber reinforced plastics 4 is connected to an induction current detector 5, the detector 5 allows an alternating current to flow to the inspection coil 1 and therewith converts an impedance change of the coil 1 into a voltage to output, and a recorder 6 records a voltage change. Therefore, where a longitudinal direction of the inspection coil 1 is superposed on the fiber direction (X direction) of 0 deg. of the carbon fiber reinforced plastics 4, the flaw detection of a fiber rupture can be very accurately made, by selectively allowing an induction current to flow in the fiber direction (high conductance direction).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電磁誘導試験用の検査
コイルおよび電磁誘導を利用した異方性導電材料(例え
ば炭素繊維強化プラスチックス、以下CFRPと記述す
る)や長尺等方性導電材料(例えば各種金属製パイプや
線材)の欠陥検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inspection coil for an electromagnetic induction test, an anisotropic conductive material (for example, carbon fiber reinforced plastics, hereinafter referred to as CFRP) and a long isotropic conductive material using electromagnetic induction. The present invention relates to a defect detection method for materials (for example, various metal pipes and wires).

【0002】[0002]

【従来の技術】電磁誘導探傷は非破壊且つ敏速に検査で
きるため、走行中の金属材料の探傷方法として広く実用
されており、また近年、炭素繊維強化プラスチックスの
探傷方法としても適用が試みられている。
2. Description of the Related Art Electromagnetically induced flaw detection is widely used as a flaw detection method for running metallic materials because it can be inspected nondestructively and quickly. In recent years, its application has also been tried as a flaw detection method for carbon fiber reinforced plastics. ing.

【0003】例えば、既刊行物である「第4回新素材及
びその製品の非破壊評価シンポジウム講演論文集(平成
5年1月)」のp47-52 には、人工の繊維破断傷を入れ
た一方向強化CFRP積層板および0゜と90゜の二方
向強化CFRP積層板について電磁誘導探傷法(渦電流
法とも称す)によって検査した例が報告されている。し
かし、一方向強化板では繊維破断の検出は困難であり、
その理由として繊維と垂直方向の電気抵抗が繊維方向の
それと比較して3〜4桁程度高いために誘導電流が流れ
難いせいであると記述している。また、二方向強化板で
は上記の導電率の異方性が緩和されるため検出できたと
しているが、繊維破断傷は0゜層と90゜層の両方に入
れてあり、どちらかの層のみに入れた場合は検出感度が
無いことが一方向強化板の結果から予想できる。この報
告の問題点は、プローブ形検査コイルを用い板面内に渦
状の誘導電流を流しているため、電気抵抗の異方性の影
響を強く受けることにあり、実用的な技術としては改善
すべきものである。
For example, p47-52 of the previously published "Proceedings of the 4th Symposium on Nondestructive Evaluation of New Materials and Their Products (January 1993)" contains artificial fiber breaking scratches. An example of inspecting a unidirectionally reinforced CFRP laminate and a 0 ° and 90 ° bidirectionally reinforced CFRP laminate by an electromagnetic induction flaw detection method (also referred to as an eddy current method) has been reported. However, it is difficult to detect fiber breakage with a unidirectional reinforcing plate,
It is described that the reason is that the electrical resistance in the direction perpendicular to the fiber is higher by about 3 to 4 orders of magnitude as compared with that in the fiber direction, and therefore it is difficult for an induced current to flow. In addition, it is said that the bidirectional reinforced plate could be detected because the above-mentioned anisotropy of conductivity was relaxed, but fiber break scratches were put in both 0 ° layer and 90 ° layer, and only one layer It can be predicted from the results of the unidirectional strengthening plate that there is no detection sensitivity. The problem with this report is that since a vortex-shaped induced current is passed through the plate surface using a probe-type inspection coil, it is strongly affected by the anisotropy of electrical resistance, which should be improved as a practical technique. Kimono.

【0004】なお、電磁誘導探傷用検査コイルの形につ
いては、既刊行物である「非破壊検査便覧(日本非破壊
検査協会編、昭和53年4月初版発行)」のp670-672
に記載されており、板状物体の表面の探傷には導線を円
形状に巻いたプローブ形コイルが、また長い棒や管など
の探傷には検査コイルの中を棒や管が通過できる貫通形
コイルが通常使用されている。
Regarding the shape of the electromagnetic induction flaw detection coil, p670-672 of the previously published "Non-destructive Inspection Handbook (edited by the Japan Non-Destructive Inspection Association, published in April 1978, first edition)".
The probe-type coil with a wire wound in a circular shape is used for flaw detection on the surface of a plate-like object, and the penetrating type that allows a rod or tube to pass through the inspection coil for flaw detection on long rods or tubes. Coils are commonly used.

【0005】プローブ形検査コイルを、等方性導電材料
の板状物体の探傷に用いた場合は板面内を円形状に誘導
電流が流れるため、欠陥の向きに関係無く同じ感度で探
傷できる利点がある。しかし、CFRP積層板のような
異方性導電材料に用いた場合、誘導電流の大きさは電流
が流れる経路について積分した抵抗値によって決まるた
め、上述したように誘導電流が流れ難くなり探傷感度が
低下する問題が生じる。一方、管や棒のような長尺等方
性導電材料に円筒状の貫通形コイルを用いた場合は、材
料の円周方向に誘導電流が流れるため以下のような問題
があった。つまり、長さ方向に延びた線状傷は誘導電流
に直交するのに対して、円周方向の線状傷は平行となる
ため、前者に比べて後者の欠陥による誘導電流の変化が
小さく検出感度がかなり低下するという問題である。
When the probe type inspection coil is used for flaw detection of a plate-like object made of an isotropic conductive material, a circular induction current flows in the plane of the plate, so that flaw detection can be performed with the same sensitivity regardless of the defect direction. There is. However, when it is used for an anisotropic conductive material such as a CFRP laminated plate, the magnitude of the induced current is determined by the resistance value integrated with respect to the path through which the current flows. The problem of diminishing occurs. On the other hand, when a cylindrical through-type coil is used for a long isotropic conductive material such as a tube or a rod, an induced current flows in the circumferential direction of the material, which causes the following problems. In other words, the linear scratch extending in the length direction is orthogonal to the induced current, while the linear scratch in the circumferential direction is parallel, so the change in the induced current due to the latter defect is small compared to the former and detected. The problem is that the sensitivity is considerably reduced.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記従来技術
の問題点に鑑みてなされたもので、異方性導電材料であ
るCFRPの繊維破断を積層構成に関係なく高感度で検
出できる欠陥検出方法、および長尺等方性導電材料の線
状傷をその向きに関係なく同一感度で検出できる方法の
提供を目的とする。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and it is possible to detect defects in a fiber break of CFRP, which is an anisotropic conductive material, with high sensitivity regardless of the laminated structure. It is an object of the present invention to provide a method and a method capable of detecting linear scratches of a long isotropic conductive material with the same sensitivity regardless of the orientation.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明の電磁誘導探傷用検査コイルおよび探傷方法
は、電磁誘導探傷において試験体表面の特定方向に選択
的に誘導電流を流すため矩形状に巻回したことを特徴と
する検査コイルと、該検査コイルを用いて、異方性導電
材料(例えばCFRP)の高導電率方向に選択的に誘導
電流を流して探傷(例えば繊維破断)すること、および
長尺等方性導電材料において線状傷と直交する方向に誘
導電流を選択的に流して探傷することを特徴とする電磁
誘導探傷方法から成る。
In order to solve the above-mentioned problems, the electromagnetic induction flaw inspection coil and flaw detection method of the present invention are designed to selectively flow an induction current in a specific direction on the surface of a test body during electromagnetic induction flaw detection. A test coil characterized by being wound in a rectangular shape, and using the test coil, an induced current is selectively passed in the direction of high conductivity of an anisotropic conductive material (for example, CFRP) for flaw detection (for example, fiber breakage). And an electromagnetic induction flaw detection method in which a flaw is detected by selectively flowing an induced current in a long isotropic conductive material in a direction orthogonal to the linear flaw.

【0008】[0008]

【作用】本発明を図面に基づき詳細に説明する。図1
は、本発明の検査コイルにより材料中に誘導電流が流れ
る状況を示した模式図で、矩形状に巻回した検査コイル
1に電源2から交流電流を流すと、試験体3にはコイル
が作る変動磁界Hを打ち消す方向に誘導電流Iが流れ
る。該誘導電流が流れる径路の形は検査コイル1の形と
ほぼ類似したものとなり、試験体にはコイル1の長手方
向と一致する方向に誘導電流を選択的に流すことが可能
となる。また、誘導電流は上記磁界Hと反抗する磁界H
rを作るので、検査コイル1のインピーダンスが変化
し、このインピーダンス変化から誘導電流の変化を検出
できる。
The present invention will be described in detail with reference to the drawings. Figure 1
Is a schematic diagram showing a situation in which an induced current flows in a material by the inspection coil of the present invention. When an alternating current is supplied from a power supply 2 to the inspection coil 1 wound in a rectangular shape, a coil is formed in the test body 3. The induced current I flows in the direction of canceling the fluctuating magnetic field H. The shape of the path through which the induced current flows is substantially similar to the shape of the inspection coil 1, and it becomes possible to selectively flow the induced current in the test body in the direction coinciding with the longitudinal direction of the coil 1. The induced current is a magnetic field H that opposes the magnetic field H.
Since r is generated, the impedance of the inspection coil 1 changes, and the change in induced current can be detected from this impedance change.

【0009】上記矩形状検査コイルを異方性導電材料に
適用する場合は、コイルの縦(長辺)方向を材料の高導
電率方向に一致させることによって、誘導電流を選択的
に同方向に流して探傷することができる。また、管や棒
のような長尺の等方性導電材料に矩形状検査コイルを適
用する場合は、コイルの縦方向を材料長手方向に一致さ
せることにより誘導電流を選択的に同方向に流して、誘
導電流と直交する方向の線状傷を探傷することができ
る。
When the rectangular inspection coil is applied to an anisotropic conductive material, the induced current is selectively directed in the same direction by matching the longitudinal (long side) direction of the coil with the high conductivity direction of the material. Can be flowed for flaw detection. When a rectangular inspection coil is applied to a long isotropic conductive material such as a tube or rod, the longitudinal direction of the coil is made to coincide with the longitudinal direction of the material so that the induced current can selectively flow in the same direction. Thus, it is possible to detect a linear flaw in a direction orthogonal to the induced current.

【0010】次に、矩形状検査コイルの要件について説
明する。一般に検査コイルの大きさは大きいほどリフト
オフ(検査コイルと試験体との距離)が大きくとれ、ま
たリフトオフの変化の影響を受けにくい利点があるが、
欠陥の検出感度や位置の分解能が低下する欠点がある。
矩形状検査コイルの形は縦長になるほどより選択的に誘
導電流を流すことができるが、コイルの横(短辺)方向
の寸法はリフトオフの大きさによって制限され、リフト
オフと同程度かそれ以上が要求される。一方、縦方向の
寸法は欠陥検出感度や位置分解能に影響するが、選択的
に誘導電流を流すという観点から横方向の2倍以上とる
ことが望ましい。
Next, the requirements for the rectangular inspection coil will be described. Generally, the larger the size of the inspection coil, the larger the lift-off (distance between the inspection coil and the test body), and the advantage that it is less susceptible to changes in lift-off.
There is a drawback that the detection sensitivity of defects and the position resolution are lowered.
The rectangular inspection coil can more selectively pass the induced current as it becomes longer, but the size of the coil in the lateral (short side) direction is limited by the size of the lift-off, and the size equal to or greater than the lift-off. Required. On the other hand, the dimension in the vertical direction affects the defect detection sensitivity and the position resolution, but it is desirable that the dimension is set to be twice or more the width in the horizontal direction from the viewpoint of selectively flowing the induced current.

【0011】[0011]

【実施例】図2は本発明の一実施態様図で、上記矩形状
検査コイルを用いてCFRP積層板の繊維破断を探傷す
る例を示している。CFRP積層板4の表面上に置かれ
た検査コイル1は誘導電流検出器5に接続されており、
該検出器5は検査コイル1に交流電流を流すとともに同
コイルのインピーダンス変化を電圧に変換して出力し、
レコーダー6は前記電圧変化を記録する。図は検査コイ
ル1の長手方向をCFRP積層板4の0゜の繊維方向
(X方向)に一致させた場合を示しており、繊維方向
(高導電率方向)に誘導電流Iを選択的に流すことによ
って繊維破断を感度良く探傷できる。具体的には検査コ
イル1かCFRP積層板4のどちらかを相対的にx方向
に走査し、この走査をy方向に任意の間隔で繰り返すこ
とによって全面探傷が行える。また、異なる方向の繊維
の破断を探傷する場合は検査コイル1かCFRP積層板
4のどちらかを回転させ、検査コイルの長手方向を繊維
方向に一致させた上で上記操作を行えばよい。
EXAMPLE FIG. 2 is an embodiment of the present invention and shows an example of detecting a fiber break of a CFRP laminated plate by using the above rectangular inspection coil. The inspection coil 1 placed on the surface of the CFRP laminated plate 4 is connected to the induced current detector 5,
The detector 5 applies an alternating current to the inspection coil 1 and converts the impedance change of the coil into a voltage and outputs the voltage.
The recorder 6 records the voltage change. The figure shows the case where the longitudinal direction of the inspection coil 1 is aligned with the fiber direction (X direction) of 0 ° of the CFRP laminated plate 4, and the induced current I is selectively flown in the fiber direction (high conductivity direction). As a result, fiber breakage can be detected with high sensitivity. Specifically, either the inspection coil 1 or the CFRP laminated plate 4 is relatively scanned in the x direction, and this scanning is repeated at arbitrary intervals in the y direction, whereby flaw detection on the entire surface can be performed. Further, in the case of detecting the breakage of the fiber in different directions, either the inspection coil 1 or the CFRP laminated plate 4 may be rotated so that the longitudinal direction of the inspection coil coincides with the fiber direction, and then the above operation is performed.

【0012】図2の装置構成により、積層構成が(0/
90/±45)s で板厚1.2mm、長さ300mm、
幅200mmのCFRP積層板を試験片として探傷し
た。試験片には表側の0゜層、90゜層、+45゜層の
プリプレグに繊維方向と直角に長さ3mmの繊維破断傷
をカッターで人工的に入れた。これらの傷は重ならない
ように平面上の位置をずらしてある。使用した検査コイ
ルは寸法が縦30mm、横10mmで、直径0.2mm
の導線を30回巻回したもので、同コイルに周波数10
0KHz、0.1Aの電流を流した。図3に探傷結果を
示す。同図(a),(b),(c)は本発明法による探
傷結果で、矩形状検査コイル1の長手方向を人工欠陥を
入れた上記各プリプレグの繊維方向に一致させて、試験
片の方を走査して得られたものである。一方、同図
(d),(e),(f)は直径10mmの従来のパンケ
ーキ型検査コイルに上記と同じ電流を流して探傷した結
果である。図3から従来法ではほとんど探傷困難であっ
たものが、本発明によって繊維方向に関係なくほぼ同一
感度で検出できることがわかる。
According to the apparatus configuration of FIG. 2, the laminated configuration is (0 /
90 / ± 45) s, plate thickness 1.2mm, length 300mm,
A CFRP laminate having a width of 200 mm was used as a test piece for flaw detection. The test piece was artificially inserted into the prepreg of 0 ° layer, 90 ° layer, and + 45 ° layer on the front side with a fiber breakage scratch having a length of 3 mm at right angles to the fiber direction. These scratches are staggered in position so that they do not overlap. The inspection coil used has a length of 30 mm, a width of 10 mm, and a diameter of 0.2 mm.
The conductor wire is wound 30 times and the same frequency is applied to the same coil.
A current of 0 KHz and 0.1 A was applied. The results of flaw detection are shown in FIG. (A), (b) and (c) of FIG. 3 are the results of flaw detection by the method of the present invention, in which the longitudinal direction of the rectangular inspection coil 1 is made to coincide with the fiber direction of each of the above prepregs having artificial defects, and It was obtained by scanning one direction. On the other hand, (d), (e), and (f) in the same figure show the results of flaw detection by applying the same current as above to a conventional pancake type inspection coil having a diameter of 10 mm. It can be seen from FIG. 3 that the conventional method, which had almost no flaw detection, can be detected with substantially the same sensitivity regardless of the fiber direction by the present invention.

【0013】図4は本発明の別の一実施態様を示す説明
図で、鋼管の探傷をする例を示している。鋼管7の外周
面上にコイルの長手方向が該鋼管7の軸方向と一致する
ように配置した矩形状検査コイル1と、貫通形検査コイ
ル8が2チャンネルの誘導電流検出器5に接続されてお
り、上記各コイルのインピーダンス変化に比例した電圧
出力がレコーダー6で記録されるように構成してある。
このような構成によって、図示したような鋼管の円周方
向の線状欠陥9と軸方向の線状欠陥10を探傷した場合
を例にとって説明する。鋼管7が走行し欠陥9が矩形状
検査コイル1の下に来ると、管の軸方向に流れている誘
導電流は、それと直交する円周方向の線状欠陥9により
遮られ誘導電流が減少するため、コイル1のインピーダ
ンスが変化し欠陥を検出できる。しかし、誘導電流の方
向と平行な線状欠陥10による誘導電流の減少はわずか
なため、欠陥の検出感度は大きく低下する。一方、従来
の貫通形検査コイル8の下に欠陥9および10が到来し
た場合は、誘導電流と欠陥の方向の関係が上述と逆にな
るので、欠陥10は検出できるが、欠陥9は検出困難と
なる。
FIG. 4 is an explanatory view showing another embodiment of the present invention, showing an example of flaw detection of a steel pipe. A rectangular inspection coil 1 arranged on the outer peripheral surface of the steel pipe 7 so that the longitudinal direction of the coil coincides with the axial direction of the steel pipe 7, and a penetrating inspection coil 8 are connected to a two-channel induced current detector 5. Therefore, a voltage output proportional to the impedance change of each coil is recorded by the recorder 6.
A case will be described as an example in which the linear defect 9 in the circumferential direction and the linear defect 10 in the axial direction of the steel pipe as shown in the figure are detected by such a configuration. When the steel pipe 7 travels and the defect 9 comes under the rectangular inspection coil 1, the induced current flowing in the axial direction of the pipe is interrupted by the linear defect 9 in the circumferential direction orthogonal thereto, and the induced current decreases. Therefore, the impedance of the coil 1 changes and a defect can be detected. However, since the reduction of the induced current due to the linear defect 10 parallel to the direction of the induced current is slight, the defect detection sensitivity is greatly reduced. On the other hand, when the defects 9 and 10 arrive below the conventional through-type inspection coil 8, the relationship between the induced current and the direction of the defect is opposite to that described above, so that the defect 10 can be detected, but the defect 9 is difficult to detect. Becomes

【0014】実際の探傷例として、直径30mm、肉厚
2mmの鋼管の表面に長さ5mm、開口幅0.1mm、
深さ0.3mmの線状傷を軸方向と円周方向に人工的に
入れたものを試験片として探傷した結果について説明す
る。図5(a)は矩形状コイルと貫通形コイルを組み合
わせて使用する本発明法の探傷結果で、同図(b)は従
来法の貫通形コイルのみを用いた場合の探傷結果であ
る。なお、矩形状検査コイルには前述と同じものを、貫
通形検査コイルには直径40mm、長さ10mmで0.
3mm太さの導線を30回巻回したものを使用した。図
で出力電圧のピーク11は円周方向の線状傷9に対応
し、ピーク12は軸方向の線状傷10に対応した出力で
ある。これらの結果から従来法では軸方向の欠陥のみし
か検出できないのに比べて、本発明法では軸方向および
円周方向の欠陥ともほぼ同一感度で検出できることがわ
かる。以上説明したように、本発明によれば矩形状検査
コイルと貫通コイルの両方を組み合わせて探傷すること
によって、鋼管の軸方向および円周方向に延びた線状欠
陥を高感度で検出できる。なお、矩形状検査コイルを鋼
管の外周面上に所定の角度で複数個配置することによっ
て管外面の全面探傷が可能である。
As an actual flaw detection example, a steel pipe having a diameter of 30 mm and a wall thickness of 2 mm has a length of 5 mm and an opening width of 0.1 mm.
The results of flaw detection as a test piece in which a linear flaw having a depth of 0.3 mm is artificially inserted in the axial direction and the circumferential direction will be described. FIG. 5A shows the flaw detection result of the method of the present invention in which the rectangular coil and the feedthrough coil are used in combination, and FIG. 5B shows the flaw detection result when only the feedthrough coil of the conventional method is used. The rectangular inspection coil has the same structure as described above, and the through-type inspection coil has a diameter of 40 mm and a length of 10 mm.
A conductor wire having a thickness of 3 mm wound 30 times was used. In the figure, the peak 11 of the output voltage corresponds to the linear scratch 9 in the circumferential direction, and the peak 12 is the output corresponding to the linear scratch 10 in the axial direction. These results show that the conventional method can detect only defects in the axial direction, whereas the method of the present invention can detect defects in the axial direction and the circumferential direction with substantially the same sensitivity. As described above, according to the present invention, the linear defect extending in the axial direction and the circumferential direction of the steel pipe can be detected with high sensitivity by combining both the rectangular inspection coil and the through coil for flaw detection. By arranging a plurality of rectangular inspection coils on the outer peripheral surface of the steel pipe at a predetermined angle, it is possible to perform flaw detection on the entire outer surface of the pipe.

【0015】以上の実施例では、励磁用のコイルと誘導
電流の変化を検出するためのコイルを同じにした、いわ
ゆる自己誘導型の検査コイルを用いた場合を示したが、
両コイルを別にした相互誘導型の検査コイルを用いても
よく、また検査コイルを走査方向に分割した差動型の検
査コイルとすることも可能である。
In the above embodiments, the case where a so-called self-induction type inspection coil in which the exciting coil and the coil for detecting the change in the induced current are the same is used.
A mutual induction type inspection coil in which both coils are separated may be used, or the inspection coil may be a differential type inspection coil divided in the scanning direction.

【0016】[0016]

【発明の効果】以上のように、この発明によれば矩形状
検査コイルを用い、異方性導電材料では高導電率方向に
選択的に誘導電流を流して探傷するように構成したので
炭素繊維強化プラスチックス製品の繊維破断が高感度で
検出可能となり、また長尺等方性導電材料では線状傷と
直交する方向に誘導電流を流して探傷するように構成し
たので傷の方向に関係無く線状傷が検出できる効果があ
る。
As described above, according to the present invention, the rectangular inspection coil is used, and in the anisotropic conductive material, the induced current is selectively passed in the direction of high conductivity to detect flaws. Fiber breakage of reinforced plastics products can be detected with high sensitivity, and in long isotropic conductive materials, an induced current is sent in the direction orthogonal to the linear flaw to detect flaws, so regardless of the flaw direction. It has the effect of detecting linear scratches.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の矩形状検査コイルの働きを示す模式図
である。
FIG. 1 is a schematic view showing the function of a rectangular inspection coil of the present invention.

【図2】本発明の一実施態様図で、CFRP積層板の繊
維破断を探傷する場合の説明図である。
FIG. 2 is an embodiment diagram of the present invention, and is an explanatory diagram for detecting a fiber breakage of a CFRP laminated plate.

【図3】本発明によるCFRP積層板の繊維破断の探傷
結果の一例を従来法によるものと比較して示した図であ
る。
FIG. 3 is a diagram showing an example of a flaw detection result of fiber breakage of a CFRP laminated plate according to the present invention in comparison with that by a conventional method.

【図4】本発明の別の一実施態様を示し、鋼管の線状傷
を探傷する場合の説明図である。
FIG. 4 shows another embodiment of the present invention and is an explanatory diagram for detecting a linear flaw in a steel pipe.

【図5】本発明による鋼管の線状傷の探傷結果の一例を
従来法によるものと比較して示した図である。
FIG. 5 is a diagram showing an example of a flaw detection result of a linear flaw of a steel pipe according to the present invention in comparison with that of a conventional method.

【符号の説明】[Explanation of symbols]

1 矩形状検査コイル 2 電源 3 試験体 4 CFRP積層板 5 誘導電流検出器 6 レコーダー 7 鋼管 8 貫通形検査コイル 9 円周方向の線状傷 10 軸方向の線状傷 11 円周方向の線状傷に対応する出力ピーク 12 軸方向の線状傷に対応する出力ピーク 1 rectangular inspection coil 2 power supply 3 test body 4 CFRP laminated plate 5 induced current detector 6 recorder 7 steel pipe 8 through-type inspection coil 9 circumferential linear scratches 10 axial linear scratches 11 circumferential linear scratches Output peak corresponding to scratches 12 Output peak corresponding to linear scratches in the axial direction

───────────────────────────────────────────────────── フロントページの続き (72)発明者 相川 康浩 神奈川県相模原市淵野辺5丁目10番1号 新日本製鐵株式会社エレクトロニクス研究 所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiro Aikawa 5-10-1 Fuchinobe, Sagamihara-shi, Kanagawa Electronics Research Laboratory, Nippon Steel Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電磁誘導探傷用検査コイルにおいて、試
験体表面の特定方向に選択的に誘導電流を流すため矩形
状に巻回したことを特徴とする、電磁誘導探傷用検査コ
イル。
1. An electromagnetic induction flaw detector inspection coil, which is wound in a rectangular shape in order to selectively flow an induced current in a specific direction on the surface of a test body.
【請求項2】 異方性導電材料の電磁誘導探傷におい
て、請求項1記載の矩形に巻回した検査コイルを用い、
高導電率方向に誘導電流を選択的に流して探傷すること
を特徴とする、異方性導電材料の探傷方法。
2. In the electromagnetic induction flaw detection of anisotropic conductive material, the rectangular inspection coil according to claim 1 is used,
A flaw detection method for an anisotropic conductive material, which comprises selectively inducing an induced current in a high conductivity direction to perform flaw detection.
【請求項3】 長尺等方性導電材料の電磁誘導探傷にお
いて、請求項1記載の矩形に巻回した検査コイルを用
い、材料の長手方向に誘導電流を選択的に流して、長手
方向と直角方向の線状傷を探傷することを特徴とする、
長尺等方性導電材料の探傷方法。
3. In the electromagnetic induction flaw detection of a long isotropic conductive material, the rectangular inspection coil according to claim 1 is used, and an induced current is selectively passed in the longitudinal direction of the material to make it longitudinal. Characterized by detecting linear scratches in a right angle direction,
Testing method for long isotropic conductive materials.
JP5343519A 1993-12-14 1993-12-14 Inspection coil for electromagnetic induction flaw detection and flaw detecting method Withdrawn JPH07167839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5343519A JPH07167839A (en) 1993-12-14 1993-12-14 Inspection coil for electromagnetic induction flaw detection and flaw detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5343519A JPH07167839A (en) 1993-12-14 1993-12-14 Inspection coil for electromagnetic induction flaw detection and flaw detecting method

Publications (1)

Publication Number Publication Date
JPH07167839A true JPH07167839A (en) 1995-07-04

Family

ID=18362147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5343519A Withdrawn JPH07167839A (en) 1993-12-14 1993-12-14 Inspection coil for electromagnetic induction flaw detection and flaw detecting method

Country Status (1)

Country Link
JP (1) JPH07167839A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001116727A (en) * 1999-09-22 2001-04-27 General Electric Co <Ge> Eddy current calibration standard
JP2008139115A (en) * 2006-11-30 2008-06-19 Nippon Petroleum Refining Co Ltd Nondestructive inspection method on multilayer body
WO2015052956A1 (en) * 2013-10-11 2015-04-16 株式会社Ihi Fiber undulation detection method for conductive composite material and fiber undulation detection device
WO2017061156A1 (en) * 2015-10-09 2017-04-13 株式会社Ihi Method for detecting arrangement disorder of fibers in conductive composite material, and device for detecting arrangement disorder of fibers in conductive composite material
JP6373472B1 (en) * 2017-12-22 2018-08-15 非破壊検査株式会社 Defect inspection method and defect inspection apparatus
JP6373471B1 (en) * 2017-12-22 2018-08-15 非破壊検査株式会社 Inspection method and inspection apparatus for fiber reinforced composite cable

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001116727A (en) * 1999-09-22 2001-04-27 General Electric Co <Ge> Eddy current calibration standard
JP4659194B2 (en) * 1999-09-22 2011-03-30 ゼネラル・エレクトリック・カンパニイ Eddy current calibration standard
JP2008139115A (en) * 2006-11-30 2008-06-19 Nippon Petroleum Refining Co Ltd Nondestructive inspection method on multilayer body
WO2015052956A1 (en) * 2013-10-11 2015-04-16 株式会社Ihi Fiber undulation detection method for conductive composite material and fiber undulation detection device
JP2015075447A (en) * 2013-10-11 2015-04-20 株式会社Ihi Conductive-composite-material fiber meander detection method and conductive-composite-material fiber meander detection apparatus
CN105612423A (en) * 2013-10-11 2016-05-25 株式会社Ihi Fiber undulation detection method for conductive composite material and fiber undulation detection device
US10132778B2 (en) 2013-10-11 2018-11-20 Ihi Corporation Fiber waviness detection method and apparatus for conductive composite materials
WO2017061156A1 (en) * 2015-10-09 2017-04-13 株式会社Ihi Method for detecting arrangement disorder of fibers in conductive composite material, and device for detecting arrangement disorder of fibers in conductive composite material
US10656121B2 (en) 2015-10-09 2020-05-19 Ihi Corporation Method for detecting arrangement disorder of fibers in conductive composite material, and device for detecting arrangement disorder of fibers in conductive composite material
JP6373472B1 (en) * 2017-12-22 2018-08-15 非破壊検査株式会社 Defect inspection method and defect inspection apparatus
JP6373471B1 (en) * 2017-12-22 2018-08-15 非破壊検査株式会社 Inspection method and inspection apparatus for fiber reinforced composite cable

Similar Documents

Publication Publication Date Title
US6294912B1 (en) Method and apparatus for nondestructive inspection of plate type ferromagnetic structures using magnetostrictive techniques
US6373245B1 (en) Method for inspecting electric resistance welds using magnetostrictive sensors
Mizukami et al. Enhancement of sensitivity to delamination in eddy current testing of carbon fiber composites by varying probe geometry
US6014024A (en) Apparatus and method for detecting and/or measuring flaws in conductive material
Xu et al. Detection of delamination in laminated CFRP composites using eddy current testing: simulation and experimental study
Wang et al. A novel AC-MFL probe based on the parallel cables magnetizing technique
Hughes High-sensitivity eddy-current testing technology for defect detection in aerospace superalloys
Lebrun et al. Pulsed eddy current application to the detection of deep cracks
JPH07167839A (en) Inspection coil for electromagnetic induction flaw detection and flaw detecting method
Wincheski et al. Development of Giant Magnetoresistive inspection system for detection of deep fatigue cracks under airframe fasteners
US2877406A (en) Non-destructive method and means for flaw detection
US5986452A (en) Apparatus and method for detecting flaws in conductive material
Simpson Eddy-current inspection
Hatsukade et al. Eddy-current-based SQUID-NDE for detection of surface flaws on copper tubes
JPH0552816A (en) Internally inserted probe for pulse-type eddy current examination
JPH05142204A (en) Electromagnetic-induction type inspecting apparatus
Tajima et al. Low frequency eddy current testing to measure thickness of double layer plates made of nonmagnetic steel
Kishore et al. Characterization of pulsed eddy current signals to discriminate cladding change over wall thinning of ferromagnetic pipes
Yuan et al. Magnetic compression effect for the enhancement of crack response signals in non-ferromagnetic conductive tubes
JPH0972884A (en) Inspection of peel defect of carbon fiber reinforced plastic
Vigness et al. Eddy Current Type Flaw Detectors for Non‐Magnetic Metals
Blitz More advanced eddy current testing methods
Fan et al. Research on The Detection Effects of Crack Direction in CFRP Laminates Based on Rectangular Pulsed Eddy Current Probe
Vértesy et al. Investigation of the role of a nonmagnetic spacer in local wall thinning inspection
WO1999028739A1 (en) Magnetic induced eddy current inspection method and apparatus

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306