JP2002055083A - Eddy current flaw detection probe - Google Patents

Eddy current flaw detection probe

Info

Publication number
JP2002055083A
JP2002055083A JP2000239384A JP2000239384A JP2002055083A JP 2002055083 A JP2002055083 A JP 2002055083A JP 2000239384 A JP2000239384 A JP 2000239384A JP 2000239384 A JP2000239384 A JP 2000239384A JP 2002055083 A JP2002055083 A JP 2002055083A
Authority
JP
Japan
Prior art keywords
eddy current
flaw detection
coil
detection probe
current flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000239384A
Other languages
Japanese (ja)
Inventor
Masaaki Kurokawa
政秋 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000239384A priority Critical patent/JP2002055083A/en
Publication of JP2002055083A publication Critical patent/JP2002055083A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an eddy current flaw detection probe, capable of reducing generation of noise based on lift-off and capable of contributing to enhancement of detection accuracy. SOLUTION: The exciting coil 21 is constituted, so that the diameter thereof becomes 5 mm or larger, and the initial lift-off quantity thereof becomes 1.3 mm or more, to reduce an eddy current change ratio.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は渦電流探傷プローブ
に関し、特に伝熱管等、管路の非破壊検査に適用して有
用なものである。 【0002】 【従来の技術】伝熱管等の磁性体である金属の管路の非
破壊検査には、渦電流探傷法が汎用されており、これに
適用するための種々の渦電流探傷プローブが提案されて
いる。この渦電流探傷プローブには、励磁コイルと検出
コイルとが同一の自己誘導方式、励磁コイルと検出コイ
ルとを独立した別のコイルで構成した相互誘導方式がそ
の例である。また、自己比較方式及び標準比較方式とい
う2種類の検出方式も提案されている。ここで、自己比
較方式とは、同特性の2個のコイルを同一平面上に一体
的に並設して構成した自己比較形のプローブを用いる探
傷法で、両コイルで同時に被測定部材に渦電流を発生さ
せるとともに、この渦電流に基づくそれぞれの出力信号
である検出信号を得、この両検出信号を比較することに
より所定の探傷を行うものである。一方、標準比較形渦
電流探傷法とは、同特性の2個のコイルを離間させて構
成した標準比較形のプローブを用いる探傷法で、一方の
コイルと、他方のコイルとでそれぞれ別の被測定部材を
測定する点が異なるだけで、コイルの出力信号の処理等
における探傷原理に関しては、上記自己比較法の場合と
全く同様である。ここで、被測定部材は、当該探傷の対
象となる部材であるが、被測定部材は、傷等がないこと
が保証された標準の被測定部材であり、コイルはこの被
測定部材上を移動することなく、固定したままで、コイ
ルのみを被測定部材上を移動させて、その各部の探傷を
行う。 【0003】したがって、渦電流探傷プローブには、大
きく分けて自己誘導方式又は相互誘導方式と自己比較方
式又は標準比較方式との組み合わせの数、すなわち4種
類の方式がある。 【0004】 【発明が解決しようとする課題】上述の如き渦電流探傷
プローブは、何れの方式の場合でも、当該渦電流探傷プ
ローブと被測定部材との距離であるリフトオフが変化す
ると検出信号が大きな雑音(ノイズ)を含むものとな
る。従来技術に係る渦電流探傷プローブでは、かかるリ
フトオフによるS/N比悪化に対しては、試行錯誤的な
アプローチにより対処しており、当該渦電流探傷プロー
ブの設計・製作の基本方針がなかった。 【0005】本願発明は、上記従来技術に鑑み、リフト
オフに基づくノイズの発生を低減でき、検出精度の向上
に寄与しうる渦電流探傷プローブを提供することを目的
とする。 【0006】 【課題を解決するための手段】上記目的を達成する本発
明の構成は、次の知見を基礎とするものである。 【0007】図1はリフトオフ変動による渦電流の変化
率を、励磁コイルの直径(外径)を種々変化させて演算
により求めたものである。すなわち、被測定部材1と励
磁コイル2との位置関係を図2に示すように想定して、
リフトオフ量が0.1mm変化した場合、0.2mm変
化した場合のそれぞれの渦電流変化率を励磁コイル2の
径を変えて解析したものである。このときの励磁電流の
周波数は400kHzとした。 【0008】図1を参照すれば、励磁コイル2の径が大
径になればなる程、渦電流変化率が小さい、換言すれば
リフトオフの影響を受けにくいことが分かる。 【0009】図3はリフトオフ変動による渦電流の変化
率を、初期リフトオフを種々変化させて演算により求め
たものである。すなわち、被測定部材1と励磁コイル2
との位置関係を図2に示すように想定して、各初期リフ
トオフに対して0.1mmづつ励磁コイル2を移動して
渦電流変化率を演算したものである。このときの励磁コ
イルの径は5mm及び6mmとした。 【0010】図2を参照すれば、初期リフトオフが大き
くなれはなる程、渦電流変化率が小さく、リフトオフの
影響を受けにくいことが分かる。 【0011】図1及び図3に示す渦電流変化率特性か
ら、励磁コイルの径及び初期リフトオフは可及的に大き
いほうが好ましいことが分かる。 【0012】かかる知見を基礎とする本発明の構成は、
次の点を特徴とする。 【0013】1) 励磁電流を供給するコイルにより被
測定部材に渦電流を発生させ、この渦電流に起因する磁
束が被測定部材に発生している傷により変化することを
利用してこの磁束の変化を検出するための渦電流探傷プ
ローブにおいて、コイルの直径が5mm以上で、且つ初
期リフトオフ量が1.3mm以上となるように構成した
こと。 【0014】2) 上記1)に記載する渦電流探傷プロ
ーブにおいて、この渦電流探傷プローブは、管の内部に
挿入して、この管の内部を探傷するものであるととも
に、コイルの直径及び初期リフトオフ量は何れも当該管
の管径未満としたこと。 【0015】3) 励磁電流を供給する励磁コイルによ
り被測定部材に渦電流を発生させ、この渦電流に起因す
る磁束を複数の検出コイルで検出するように構成し、渦
電流に起因する磁束が被測定部材に発生している傷によ
り変化することを利用してこの磁束の変化を検出するた
めの渦電流探傷プローブにおいて、コイルの直径が5m
m以上で、且つ初期リフトオフ量が1.3mm以上とな
るように構成したこと。 【0016】4) 上記3)に記載する渦電流探傷プロ
ーブにおいて、この渦電流探傷プローブは、管の内部に
挿入して、この管の内部を探傷するものであるととも
に、コイルの直径及び初期リフトオフ量は何れも当該管
の管径未満としたこと。 【0017】5) 上記3)又は4)に記載する渦電流
探傷プローブにおいて、検出コイルは4個の検出コイル
で構成し、この検出コイルをそれぞれの軸方向が何れも
励磁コイルの軸方向に対して直交するとともに励磁コイ
ルに対して対象となるように励磁コイルの周囲に配設し
たこと。 【0018】6) 上記3)又は4)に記載する渦電流
探傷プローブにおいて、検出コイルは2個の検出コイル
で構成し、この検出コイルをそれぞれの軸方向が何れも
励磁コイルの軸方向に対して直交するとともに励磁コイ
ルの内部を貫通するように配設したこと。 【0019】 【発明の実施の形態】以下本発明の実施の形態を図面に
基づき詳細に説明する。 【0020】図4は第1の実施の形態に係る渦電流探傷
プローブを概念的に示す説明図である。同図に示すよう
に、当該渦電流探傷プローブは、励磁電流を供給する励
磁コイル11により金属等の磁性体である被測定部材に
渦電流を発生させ、この渦電流に起因する磁束が被測定
部材に発生している傷により変化することを利用してこ
の磁束の変化を検出するものであり、検出側を2個の検
出コイル12、13で構成し、この検出コイル12、1
3をそれぞれの軸方向が何れも励磁コイル11の軸方向
に対して直交するとともに励磁コイル11の内部を貫通
するように配設したものである。かかる渦電流探傷プロ
ーブにおいては、検出コイル12、13の出力信号の差
をとるような信号処理をしており、このことにより被測
定部材の広い範囲での変形に起因する信号(ノイズ)を
除去するようにしたものである。 【0021】また、当該渦電流探傷プローブにおける、
励磁コイル11は、その直径φ1が5mm以上で、且つ
初期リフトオフ量が1.3mm以上となるように構成し
てある。 【0022】かかる渦電流探傷プローブで探傷する被測
定部材は、それが磁性体であれば、特別な制限はない
が、被測定部材を伝熱管等の管路とし、その内周面の探
傷を行う際には、当該伝熱管の管径に応じて励磁コイル
11の直径及び初期リフトオフが制限される。すなわ
ち、当該管径及び初期リフトオフは管径未満としなけれ
ばならない。 【0023】図5は第2の実施の形態に係る渦電流探傷
プローブを概念的に示す説明図である。同図に示すよう
に、当該渦電流探傷プローブは、図4に示す渦電流探傷
プローブにおける、検出コイル12、13を、4個の検
出コイル22乃至25で構成したものである。この場
合、検出コイル22乃至25は、それぞれの軸方向が何
れも励磁コイル21の軸方向に対して直交するとともに
励磁コイル21に対して対象となるように励磁コイル2
1の周囲に配設してある。 【0024】本形態に係る渦電流探傷プローブにおいて
は、検出コイル22、24の検出信号の和と、検出コイ
ル23、25の検出信号の和との差をとるように信号処
理を行う。このことにより図4に示す渦電流探傷プロー
ブと同様に、被測定部材の広い範囲での変形に起因する
信号(ノイズ)を除去することができる。 【0025】また、当該渦電流探傷プローブにおける、
励磁コイル21も、その直径φ2が5mm以上で、且つ
初期リフトオフ量が1.3mm以上となるように構成し
てある。 【0026】かかる渦電流探傷プローブで探傷する被測
定部材も、それが磁性体であれば、特別な制限はない
が、被測定部材を伝熱管等の管路とし、その内周面の探
傷を行う際には、当該伝熱管の管径に応じて励磁コイル
11の直径及び初期リフトオフが制限される。すなわ
ち、当該管径及び初期リフトオフは管径未満としなけれ
ばならない。 【0027】なお、本願発明に係る渦電流探傷プローブ
は、勿論、図4及び図5に示す渦電流探傷プローブに限
定する必要はない。一般に、励磁コイルの直径が5mm
以上で、且つ初期リフトオフ量が1.3mm以上となる
ように構成したものであれば、十分渦電流変化率が小さ
くなり、リフトオフの影響を可及的に低減することがで
きる。この場合、被測定部材が管路の場合には、コイル
の直径及び初期リフトオフ量は何れも当該管路の管径未
満としなければならない。 【0028】 【発明の効果】以上実施の形態とともに詳細に説明した
通り、〔請求項1〕に記載する発明は、励磁電流を供給
するコイルにより被測定部材に渦電流を発生させ、この
渦電流に起因する磁束が被測定部材に発生している傷に
より変化することを利用してこの磁束の変化を検出する
ための渦電流探傷プローブにおいて、 コイルの直径が
5mm以上で、且つ初期リフトオフ量が1.3mm以上
となるように構成したので、渦電流変化率が十分小さく
なる。この結果、本願発明によれば、リフトオフの影響
を可及的に小さくすることができ、その分S/N比を向
上させることができる。 【0029】〔請求項2〕に記載する発明は、〔請求項
1〕に記載する渦電流探傷プローブにおいて、この渦電
流探傷プローブは、管の内部に挿入して、この管の内部
を探傷するものであるとともに、コイルの直径及び初期
リフトオフ量は何れも当該管の管径未満としたので、管
路に挿入して〔請求項1〕に記載する発明と同様の探傷
を行うことができる。この結果、本願発明によれば、管
路の探傷においてもリフトオフの影響を可及的に小さく
することができ、その分S/N比を向上させることがで
きる。 【0030】〔請求項3〕に記載する発明は、励磁電流
を供給する励磁コイルにより被測定部材に渦電流を発生
させ、この渦電流に起因する磁束を複数の検出コイルで
検出するように構成し、渦電流に起因する磁束が被測定
部材に発生している傷により変化することを利用してこ
の磁束の変化を検出するための渦電流探傷プローブにお
いて、コイルの直径が5mm以上で、且つ初期リフトオ
フ量が1.3mm以上となるように構成したので、複数
の検出コイルを有して被測定部材の変動によるノイズを
低減した渦電流探傷プローブにおいて、渦電流変化率を
十分小さくすることができる。この結果、本願発明によ
れば、複数の検出コイルを有して被測定部材の変動によ
るノイズを低減した上で、リフトオフの影響を可及的に
小さくすることができ、その分S/N比を向上させるこ
とができる。 【0031】〔請求項4〕に記載する発明は、〔請求項
3〕に記載する渦電流探傷プローブにおいて、この渦電
流探傷プローブは、管の内部に挿入して、この管の内部
を探傷するものであるとともに、コイルの直径及び初期
リフトオフ量は何れも当該管の管径未満としたので、管
路に挿入して〔請求項3〕に記載する発明と同様の探傷
を行うことができる。この結果、本願発明によれば、管
路の探傷においても〔請求項3〕に記載する発明と同様
に、探傷の際のS/N比を向上させることができる。 【0032】〔請求項5〕に記載する発明は、〔請求項
3〕又は〔請求項4〕に記載する渦電流探傷プローブに
おいて、検出コイルは4個の検出コイルで構成し、この
検出コイルをそれぞれの軸方向が何れも励磁コイルの軸
方向に対して直交するとともに励磁コイルに対して対象
となるように励磁コイルの周囲に配設したので、4個の
検出コイルを有して被測定部材の変動によるノイズを低
減した渦電流探傷プローブにおいて、渦電流変化率を十
分小さくすることができる。この結果、本願発明によれ
ば、4個の検出コイルを有して被測定部材の変動による
ノイズを低減した上で、リフトオフの影響を可及的に小
さくすることができ、その分S/N比を向上させること
ができる。 【0033】〔請求項6〕に記載する発明は、〔請求項
3〕又は〔請求項4〕に記載する渦電流探傷プローブに
おいて、検出コイルは2個の検出コイルで構成し、この
検出コイルをそれぞれの軸方向が何れも励磁コイルの軸
方向に対して直交するとともに励磁コイルの内部を貫通
するように配設したので、2個の検出コイルを有して被
測定部材の変動によるノイズを低減した渦電流探傷プロ
ーブにおいて、渦電流変化率を十分小さくすることがで
きる。この結果、本願発明によれば、2個の検出コイル
を有して被測定部材の変動によるノイズを低減した上
で、リフトオフの影響を可及的に小さくすることがで
き、その分S/N比を向上させることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eddy current inspection probe, and is particularly useful when applied to a nondestructive inspection of a conduit such as a heat transfer tube. 2. Description of the Related Art An eddy current flaw detection method is widely used for nondestructive inspection of a metal pipe made of a magnetic material such as a heat transfer tube, and various eddy current flaw detection probes for applying the method are used. Proposed. An example of the eddy current flaw detection probe is a self-induction system in which the excitation coil and the detection coil are the same, and a mutual induction system in which the excitation coil and the detection coil are configured by separate independent coils. Also, two types of detection methods, a self-comparison method and a standard comparison method, have been proposed. Here, the self-comparison method is a flaw detection method using a self-comparison type probe in which two coils having the same characteristics are integrally arranged side by side on the same plane. A current is generated, a detection signal, which is an output signal based on the eddy current, is obtained, and a predetermined flaw detection is performed by comparing the two detection signals. On the other hand, the standard comparison type eddy current flaw detection method is a flaw detection method using a standard comparison type probe in which two coils having the same characteristics are separated from each other. One coil and the other coil have different coatings. The only difference is that the measuring member is measured, and the flaw detection principle in the processing of the output signal of the coil and the like is exactly the same as that of the self-comparison method. Here, the member to be measured is a member to be subjected to the flaw detection, but the member to be measured is a standard member to be measured which is guaranteed not to have a flaw or the like, and the coil moves on the member to be measured. Without fixing, only the coil is moved on the member to be measured, and flaw detection of each part is performed. Accordingly, eddy current flaw detection probes are roughly classified into four types, that is, the number of combinations of the self-induction method or the mutual induction method and the self-comparison method or the standard comparison method. In any of the eddy current flaw detection probes described above, the detection signal is large when the lift-off, which is the distance between the eddy current flaw detection probe and the member to be measured, changes. Noise (noise) is included. In the eddy current inspection probe according to the related art, the deterioration of the S / N ratio due to the lift-off is dealt with by a trial and error approach, and there is no basic policy of designing and manufacturing the eddy current inspection probe. In view of the above prior art, an object of the present invention is to provide an eddy current flaw detection probe that can reduce the occurrence of noise due to lift-off and contribute to improvement in detection accuracy. [0006] The structure of the present invention to achieve the above object is based on the following findings. FIG. 1 shows the rate of change of the eddy current due to the lift-off variation obtained by calculation with various changes in the diameter (outer diameter) of the exciting coil. That is, assuming the positional relationship between the measured member 1 and the exciting coil 2 as shown in FIG.
The eddy current change rates when the lift-off amount changes by 0.1 mm and when the lift-off amount changes by 0.2 mm are analyzed by changing the diameter of the exciting coil 2. The frequency of the exciting current at this time was 400 kHz. Referring to FIG. 1, it can be seen that the larger the diameter of the exciting coil 2, the smaller the eddy current change rate, in other words, the less the effect of lift-off. FIG. 3 shows the change rate of the eddy current due to the lift-off variation obtained by calculation with various changes in the initial lift-off. That is, the measured member 1 and the exciting coil 2
2, the excitation coil 2 is moved by 0.1 mm for each initial lift-off to calculate the eddy current change rate. The diameter of the exciting coil at this time was 5 mm and 6 mm. Referring to FIG. 2, it can be seen that as the initial lift-off becomes larger, the eddy current change rate becomes smaller and the influence of the lift-off becomes less. From the eddy current change rate characteristics shown in FIGS. 1 and 3, it is understood that the diameter of the exciting coil and the initial lift-off are preferably as large as possible. The structure of the present invention based on such knowledge is as follows:
The features are as follows. 1) An eddy current is generated in a member to be measured by a coil supplying an exciting current, and the magnetic flux caused by the eddy current is changed by a flaw generated in the member to be measured. In the eddy current flaw detection probe for detecting a change, the coil diameter is 5 mm or more, and the initial lift-off amount is 1.3 mm or more. 2) In the eddy current flaw detection probe described in 1) above, the eddy current flaw detection probe is inserted into the inside of a tube to detect the inside of the tube, and has a coil diameter and an initial lift-off. The amount should be less than the diameter of the pipe. 3) An eddy current is generated in a member to be measured by an exciting coil for supplying an exciting current, and a magnetic flux caused by the eddy current is detected by a plurality of detection coils. In the eddy current flaw detection probe for detecting the change of the magnetic flux by utilizing the change due to the flaw generated in the member to be measured, the diameter of the coil is 5 m.
m or more and the initial lift-off amount is 1.3 mm or more. 4) In the eddy current flaw detection probe described in the above 3), the eddy current flaw detection probe is inserted into the inside of a tube to detect the inside of the tube, and has a coil diameter and an initial lift-off. The amount should be less than the diameter of the pipe. 5) In the eddy current inspection probe described in the above 3) or 4), the detection coil is constituted by four detection coils, and each of the detection coils has an axial direction with respect to the axial direction of the exciting coil. And are arranged around the excitation coil so as to be orthogonal to the excitation coil. 6) In the eddy current flaw detection probe described in 3) or 4) above, the detection coil is composed of two detection coils, and each of the detection coils has an axial direction with respect to the axial direction of the exciting coil. To be orthogonal to each other and penetrate the inside of the excitation coil. Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 4 is an explanatory view conceptually showing the eddy current flaw detection probe according to the first embodiment. As shown in the figure, the eddy current flaw detection probe generates an eddy current in a member to be measured which is a magnetic material such as a metal by an excitation coil 11 for supplying an excitation current, and a magnetic flux caused by the eddy current is measured. The change of the magnetic flux is detected by utilizing the change due to the scratch generated on the member. The detection side is constituted by two detection coils 12, 13, and the detection coils 12, 1
3 is disposed such that each axis direction is orthogonal to the axial direction of the exciting coil 11 and penetrates through the inside of the exciting coil 11. In such an eddy current flaw detection probe, signal processing for obtaining a difference between output signals of the detection coils 12 and 13 is performed, thereby removing a signal (noise) caused by deformation of the measured member in a wide range. It is something to do. In the eddy current testing probe,
The exciting coil 11 has a diameter φ1 of 5 mm or more and an initial lift-off amount of 1.3 mm or more. The member to be inspected by such an eddy current inspection probe is not particularly limited as long as it is a magnetic substance. However, the member to be inspected is a conduit such as a heat transfer tube and the inner peripheral surface thereof is inspected for flaws. When performing, the diameter of the exciting coil 11 and the initial lift-off are restricted according to the diameter of the heat transfer tube. That is, the pipe diameter and the initial lift-off must be less than the pipe diameter. FIG. 5 is an explanatory view conceptually showing an eddy current flaw detection probe according to the second embodiment. As shown in the figure, the eddy current flaw detection probe has the detection coils 12 and 13 of the eddy current flaw detection probe shown in FIG. In this case, the detection coils 22 to 25 are arranged such that the respective axial directions are orthogonal to the axial direction of the exciting coil 21 and the exciting coils 2 to 25 are symmetrical with respect to the exciting coil 21.
It is arranged around 1. In the eddy current inspection probe according to the present embodiment, signal processing is performed so as to obtain a difference between the sum of the detection signals of the detection coils 22 and 24 and the sum of the detection signals of the detection coils 23 and 25. Thus, similarly to the eddy current flaw detection probe shown in FIG. 4, it is possible to remove a signal (noise) caused by deformation of the member to be measured in a wide range. In the eddy current testing probe,
The exciting coil 21 is also configured such that its diameter φ2 is 5 mm or more and the initial lift-off amount is 1.3 mm or more. The member to be inspected by the eddy current inspection probe is not particularly limited as long as it is a magnetic material. However, the member to be inspected is a conduit such as a heat transfer tube, and the inner surface of the member is inspected for flaws. When performing, the diameter of the exciting coil 11 and the initial lift-off are restricted according to the diameter of the heat transfer tube. That is, the pipe diameter and the initial lift-off must be less than the pipe diameter. The eddy current flaw detection probe according to the present invention need not be limited to the eddy current flaw detection probe shown in FIGS. Generally, the diameter of the exciting coil is 5 mm
As described above, if the initial lift-off amount is configured to be 1.3 mm or more, the eddy current change rate becomes sufficiently small, and the influence of the lift-off can be reduced as much as possible. In this case, when the member to be measured is a pipe, both the diameter of the coil and the initial lift-off amount must be smaller than the pipe diameter of the pipe. As described in detail with the above embodiments, the invention according to claim 1 generates an eddy current in a member to be measured by a coil for supplying an exciting current, and the eddy current In the eddy current flaw detection probe for detecting the change of the magnetic flux by utilizing the fact that the magnetic flux caused by the flaw changes due to the flaw generated on the member to be measured, the diameter of the coil is 5 mm or more, and the initial lift-off amount is Since it is configured to be 1.3 mm or more, the eddy current change rate becomes sufficiently small. As a result, according to the present invention, the effect of lift-off can be reduced as much as possible, and the S / N ratio can be improved accordingly. According to a second aspect of the present invention, in the eddy current flaw detection probe according to the first aspect, the eddy current flaw detection probe is inserted into the inside of the pipe to detect the inside of the pipe. In addition, since both the diameter of the coil and the initial lift-off amount are smaller than the diameter of the tube, the same flaw detection as in the invention described in [Claim 1] can be performed by inserting the coil into the tube. As a result, according to the present invention, the influence of lift-off can be reduced as much as possible in flaw detection of a pipeline, and the S / N ratio can be improved accordingly. According to a third aspect of the present invention, an eddy current is generated in a member to be measured by an exciting coil for supplying an exciting current, and a magnetic flux caused by the eddy current is detected by a plurality of detecting coils. In the eddy current flaw detection probe for detecting a change in magnetic flux caused by an eddy current due to a change in the magnetic flux caused by a flaw generated in the member to be measured, the diameter of the coil is 5 mm or more, and Since the initial lift-off amount is configured to be equal to or more than 1.3 mm, it is possible to sufficiently reduce the eddy current change rate in the eddy current flaw detection probe having a plurality of detection coils and reducing noise due to fluctuation of a member to be measured. it can. As a result, according to the present invention, the influence of the lift-off can be reduced as much as possible while having the plurality of detection coils to reduce the noise due to the fluctuation of the member to be measured. Can be improved. According to a fourth aspect of the present invention, in the eddy current flaw detection probe according to the third aspect, the eddy current flaw detection probe is inserted into the inside of the pipe to detect the inside of the pipe. In addition, since both the diameter of the coil and the initial lift-off amount are smaller than the diameter of the pipe, the same flaw detection as the invention described in claim 3 can be performed by inserting the coil into the pipe. As a result, according to the invention of the present application, the S / N ratio at the time of flaw detection can be improved also in the flaw detection of a pipeline, similarly to the invention described in [Claim 3]. According to a fifth aspect of the present invention, in the eddy current flaw detection probe according to the third or fourth aspect, the detection coil comprises four detection coils. Since each of the axial directions is orthogonal to the axial direction of the exciting coil and is disposed around the exciting coil so as to be symmetric with respect to the exciting coil, the member to be measured having four detection coils In the eddy current flaw detection probe in which the noise due to the fluctuation of the eddy current is reduced, the eddy current change rate can be made sufficiently small. As a result, according to the present invention, the influence of the lift-off can be reduced as much as possible while having the four detection coils to reduce the noise due to the fluctuation of the member to be measured. The ratio can be improved. According to a sixth aspect of the present invention, in the eddy current flaw detection probe according to the third or fourth aspect, the detection coil comprises two detection coils. Since each axis direction is arranged so as to be orthogonal to the axis direction of the excitation coil and penetrate the inside of the excitation coil, it has two detection coils to reduce noise due to fluctuation of the member to be measured. In the eddy current flaw detection probe described above, the eddy current change rate can be made sufficiently small. As a result, according to the present invention, the influence of the lift-off can be reduced as much as possible after having the two detection coils to reduce the noise due to the fluctuation of the member to be measured, and the S / N is accordingly reduced. The ratio can be improved.

【図面の簡単な説明】 【図1】リフトオフ変動による渦電流の変化率を、励磁
コイルの直径(外径)を種々変化させて演算により求め
た特性図である。 【図2】図1及び図3に示す特性図を得るにあたり想定
した被測定部材と励磁コイルとの位置関係を概念的に示
す説明図である。 【図3】リフトオフ変動による渦電流の変化率を、初期
リフトオフを種々変化させて演算により求めた特性図で
ある。 【図4】本発明の第1の実施の形態に係る渦電流探傷プ
ローブを概念的に示す説明図である。 【図5】本発明の第2の実施の形態に係る渦電流探傷プ
ローブを概念的に示す説明図である。 【符号の説明】 11 励磁コイル 12、13 検出コイル 21 励磁コイル 22、23、24、25 検出コイル
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a characteristic diagram in which a change rate of an eddy current due to a lift-off variation is calculated by variously changing the diameter (outer diameter) of an exciting coil. FIG. 2 is an explanatory diagram conceptually showing a positional relationship between a member to be measured and an exciting coil assumed for obtaining the characteristic diagrams shown in FIGS. 1 and 3. FIG. 3 is a characteristic diagram in which a change rate of an eddy current due to a lift-off variation is calculated by variously changing an initial lift-off. FIG. 4 is an explanatory view conceptually showing an eddy current inspection probe according to the first embodiment of the present invention. FIG. 5 is an explanatory view conceptually showing an eddy current flaw detection probe according to a second embodiment of the present invention. [Explanation of Signs] 11 Excitation coils 12, 13 Detection coil 21 Excitation coils 22, 23, 24, 25 Detection coil

Claims (1)

【特許請求の範囲】 【請求項1】 励磁電流を供給するコイルにより被測定
部材に渦電流を発生させ、この渦電流に起因する磁束が
被測定部材に発生している傷により変化することを利用
してこの磁束の変化を検出するための渦電流探傷プロー
ブにおいて、 コイルの直径が5mm以上で、且つ初期リフトオフ量が
1.3mm以上となるように構成したことを特徴とする
渦電流探傷プローブ。 【請求項2】 〔請求項1〕に記載する渦電流探傷プロ
ーブにおいて、 この渦電流探傷プローブは、管の内部に挿入して、この
管の内部を探傷するものであるとともに、コイルの直径
及び初期リフトオフ量は何れも当該管の管径未満とした
ことを特徴とする渦電流探傷プローブ。 【請求項3】 励磁電流を供給する励磁コイルにより被
測定部材に渦電流を発生させ、この渦電流に起因する磁
束を複数の検出コイルで検出するように構成し、渦電流
に起因する磁束が被測定部材に発生している傷により変
化することを利用してこの磁束の変化を検出するための
渦電流探傷プローブにおいて、 コイルの直径が5mm以上で、且つ初期リフトオフ量が
1.3mm以上となるように構成したことを特徴とする
渦電流探傷プローブ。 【請求項4】 〔請求項3〕に記載する渦電流探傷プロ
ーブにおいて、 この渦電流探傷プローブは、管の内部に挿入して、この
管の内部を探傷するものであるとともに、コイルの直径
及び初期リフトオフ量は何れも当該管の管径未満とした
ことを特徴とする渦電流探傷プローブ。 【請求項5】 〔請求項3〕又は〔請求項4〕に記載す
る渦電流探傷プローブにおいて、 検出コイルは4個の検出コイルで構成し、この検出コイ
ルをそれぞれの軸方向が何れも励磁コイルの軸方向に対
して直交するとともに励磁コイルに対して対象となるよ
うに励磁コイルの周囲に配設したことを特徴とする渦電
流探傷プローブ。 【請求項6】 〔請求項3〕又は〔請求項4〕に記載す
る渦電流探傷プローブにおいて、 検出コイルは2個の検出コイルで構成し、この検出コイ
ルをそれぞれの軸方向が何れも励磁コイルの軸方向に対
して直交するとともに励磁コイルの内部を貫通するよう
に配設したことを特徴とする渦電流探傷プローブ。
Claims 1. An eddy current is generated in a member to be measured by a coil supplying an exciting current, and a magnetic flux caused by the eddy current is changed by a flaw generated in the member to be measured. An eddy current flaw detection probe for detecting a change in magnetic flux by utilizing the eddy current flaw detection probe, wherein a coil diameter is 5 mm or more and an initial lift-off amount is 1.3 mm or more. . 2. The eddy current flaw detection probe according to claim 1, wherein the eddy current flaw detection probe is inserted into the inside of a tube to detect the inside of the tube, and has a coil diameter and a diameter. An eddy current flaw detection probe, wherein the initial lift-off amount is less than the diameter of the tube. 3. An eddy current is generated in a member to be measured by an exciting coil for supplying an exciting current, and a magnetic flux caused by the eddy current is detected by a plurality of detection coils. In an eddy current flaw detection probe for detecting a change in magnetic flux by utilizing a change caused by a flaw generated in a member to be measured, a coil diameter is 5 mm or more, and an initial lift-off amount is 1.3 mm or more. An eddy current flaw detection probe characterized in that it is configured so as to be formed as follows. 4. The eddy current flaw detection probe according to claim 3, wherein the eddy current flaw detection probe is inserted into the inside of a tube to detect the inside of the tube, and has a coil diameter and An eddy current flaw detection probe, wherein the initial lift-off amount is less than the diameter of the tube. 5. The eddy current inspection probe according to claim 3 or 4, wherein the detection coil comprises four detection coils, and each of the detection coils has an excitation coil in each of the axial directions. An eddy current flaw detection probe characterized by being disposed around an exciting coil so as to be orthogonal to the axial direction of the exciting coil and to be symmetric with respect to the exciting coil. 6. The eddy current flaw detection probe according to claim 3 or 4, wherein the detection coil comprises two detection coils, and each of the detection coils has an excitation coil in each axial direction. An eddy current flaw detection probe, which is disposed so as to be orthogonal to the axial direction of the probe and penetrate the inside of the exciting coil.
JP2000239384A 2000-08-08 2000-08-08 Eddy current flaw detection probe Withdrawn JP2002055083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000239384A JP2002055083A (en) 2000-08-08 2000-08-08 Eddy current flaw detection probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000239384A JP2002055083A (en) 2000-08-08 2000-08-08 Eddy current flaw detection probe

Publications (1)

Publication Number Publication Date
JP2002055083A true JP2002055083A (en) 2002-02-20

Family

ID=18730936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000239384A Withdrawn JP2002055083A (en) 2000-08-08 2000-08-08 Eddy current flaw detection probe

Country Status (1)

Country Link
JP (1) JP2002055083A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132923A (en) * 2005-10-11 2007-05-31 Osaka Univ Nondestructive inspection device, and design method for coil of nondestructive inspection device
CN100392391C (en) * 2005-01-17 2008-06-04 林俊明 Inside-through type low frequency electromagnetic detection sensor
JP2009050536A (en) * 2007-08-28 2009-03-12 Samii Kk Game machine
JP2017053635A (en) * 2015-09-07 2017-03-16 株式会社Ihi Flaw detection probe and flaw detection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100392391C (en) * 2005-01-17 2008-06-04 林俊明 Inside-through type low frequency electromagnetic detection sensor
JP2007132923A (en) * 2005-10-11 2007-05-31 Osaka Univ Nondestructive inspection device, and design method for coil of nondestructive inspection device
JP2009050536A (en) * 2007-08-28 2009-03-12 Samii Kk Game machine
JP2017053635A (en) * 2015-09-07 2017-03-16 株式会社Ihi Flaw detection probe and flaw detection method

Similar Documents

Publication Publication Date Title
EP2406623B1 (en) Eddy current flaw detection probe
EP2524210B1 (en) Eddy current measuring sensor and inspection method using this eddy current measuring sensor
JPH06331602A (en) Method and equipment for checking structural defect of long magnetic material nondestructively
JP6514592B2 (en) Defect measurement method, defect measurement apparatus and inspection probe
JP4003975B2 (en) Metal inspection method and metal inspection apparatus
JP2006177952A (en) Eddy current probe, inspecting system and inspecting method
US20120153944A1 (en) Method for inspecting an austenitic stainless steel weld
JP2009036682A (en) Eddy current sensor, and device and method for inspecting depth of hardened layer
JP6175091B2 (en) Eddy current inspection device and eddy current inspection method
JP2002055083A (en) Eddy current flaw detection probe
JP2009092388A (en) Eddy current test probe
JP3572452B2 (en) Eddy current probe
JP2002257789A (en) Leakage flux detecting device
KR102283396B1 (en) Sensor Probe tesing System for Eddy Current Nondestructive Testing
WO2019107575A1 (en) Defect measurement device, defect measurement method, and inspection probe
JPS6011493Y2 (en) Electromagnetic induction detection device
JP7295523B2 (en) Eddy current flaw detection probe and eddy current flaw detection device
JP3530472B2 (en) Bar detection system
JP3426748B2 (en) Eddy current detection test method
JP2014062762A (en) Eddy current flaw detection inspection apparatus, eddy current flaw detection inspection method, probe, and signal processor
JP2002005897A (en) Method and apparatus for eddy current flaw detection
JP2023111411A (en) Pipe defect determination device
JPH075408Y2 (en) Metal flaw detection probe
JP2006010665A (en) Eddy current flaw detecting method and eddy current flaw detecting probe for realizing deep penetration of eddy current
JP2006322844A (en) Flaw detecting probe

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071106