JPH06294775A - Detector and detecting apparatus for nonoriented defect - Google Patents

Detector and detecting apparatus for nonoriented defect

Info

Publication number
JPH06294775A
JPH06294775A JP5084913A JP8491393A JPH06294775A JP H06294775 A JPH06294775 A JP H06294775A JP 5084913 A JP5084913 A JP 5084913A JP 8491393 A JP8491393 A JP 8491393A JP H06294775 A JPH06294775 A JP H06294775A
Authority
JP
Japan
Prior art keywords
defect
detector
detection
coil
wound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5084913A
Other languages
Japanese (ja)
Inventor
Manabu Kuninaga
永 学 國
Keisuke Kawaguchi
口 圭 介 川
Yoshiaki Matsuoka
岡 良 明 松
Mitsuo Harada
田 充 雄 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5084913A priority Critical patent/JPH06294775A/en
Publication of JPH06294775A publication Critical patent/JPH06294775A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To detect a defect highly precisely irrespective of the orientation thereof. CONSTITUTION:In regard to a detector being formed of a material of high permeability shaped in a cube of which the opposite faces are square and having a construction wherein an exciting coil is wound on one terminal of the cube and two sets of detecting coils intersecting the wound exciting coil perpendicularly are provided, the two sets of the detecting coils passing the central part of the material of high permeability are wound crosswise so that they intersect each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】鋼材の表面に交流磁気を与え、鋼
材の表面欠陥を非接触で非破壊検査する欠陥検出器に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a defect detector for applying non-destructive non-destructive inspection of surface defects of steel by applying AC magnetism to the surface of the steel.

【0002】[0002]

【従来の技術】従来、鋼材の欠陥を検出する方法として
は、渦流探傷法が知られている。これは被検査材に近接
してコイルを配置し、これに高周波電流を流すと非検査
材表面に渦電流が流れ、被検査材表面に欠陥が存在する
とこの渦電流が乱れひいてはコイルのインピーダンスが
変化することを利用して欠陥を検出するものである。こ
の渦流探傷法には、被検査材との間の距離の変動や材料
の透磁率の変動が直接的にインピーダンスを大きく変化
させる欠点があり、この欠点を回避するためには、二つ
の検出コイルを差動に結合することで距離の変動や広範
囲の被検査材の透磁率の変動の影響をキャンセルする方
法や、特公昭61−028938号公報に示す被検査材
面に平行に励磁コイルを巻き、2次磁束の検出コイルを
励磁コイルに互いに直交して巻き回すことで欠陥に起因
する磁束の変化のみを検出するコイルが提案されて実用
化されている。
2. Description of the Related Art Conventionally, an eddy current flaw detection method has been known as a method for detecting defects in a steel material. This is because the coil is placed close to the material to be inspected, and when a high-frequency current is passed through it, an eddy current flows on the surface of the non-inspection material. The change is used to detect the defect. This eddy current flaw detection method has a drawback that a change in the distance from the material to be inspected or a change in the magnetic permeability of the material directly changes the impedance greatly. To avoid this drawback, two detection coils are used. Method for canceling the influence of the variation of the distance and the variation of the magnetic permeability of the material to be inspected by differentially coupling, and the exciting coil is wound in parallel with the surface of the material to be inspected disclosed in Japanese Patent Publication No. 61-028938. A coil has been proposed and put into practical use, in which a coil for detecting a secondary magnetic flux is wound around an exciting coil at right angles to each other to detect only a change in magnetic flux due to a defect.

【0003】[0003]

【発明が解決しようとする課題】しかし、鋼材の割れの
ような方向性のある欠陥を検出する為には、従来の技術
には以下に示す問題がある。先ず第一の二つのコイルを
差動に結合する方法においては、欠陥の方向が図6の
(a)に示すように二つのコイルの配置方向と直角に交
わる方向であれば、コイルが欠陥上を移動する場合に欠
陥上をコイルが順次通過することで欠陥を検出すること
が可能である。しかし、図6の(b)に示すように欠陥
とコイルが同一方向の場合、欠陥にコイルがかかり始め
る部分及び欠陥からコイルが抜ける部分では、一方のコ
イルのみに欠陥がかかる為欠陥検出信号は現れるが、途
中の部分においては二つのコイルに同時に欠陥が検出さ
れる為差動で打ち消し合い欠陥はほとんど検出できな
い。更に大部分の欠陥は端部が浅くなだらかで中央部が
深いものがほとんどであるため、端部の検出信号は小さ
く欠陥との判断が困難となっている。第2の、被検査材
面に平行に励磁コイルを巻き、検出コイルを励磁コイル
に互いに直交して巻く方法では、検出コイルに平行な欠
陥は非常に精度良く検出可能であるが、検出コイルに直
交する欠陥は検出できないと言う欠点がある。
However, in order to detect a directional defect such as a crack of a steel material, the prior art has the following problems. First, in the method of differentially coupling the first two coils, if the direction of the defect is a direction intersecting the arrangement direction of the two coils at a right angle as shown in FIG. It is possible to detect defects by sequentially passing the coils over the defects when moving the. However, as shown in FIG. 6B, when the defect and the coil are in the same direction, only one of the coils has a defect at the part where the coil starts to be applied to the defect and the part where the coil is removed from the defect. Although it appears, in the middle part, defects are detected at the same time in the two coils, so they cancel each other by differential and almost no defect can be detected. Further, most of the defects have shallow edges and gentle slopes and deep central portions, so that the detection signals at the edges are small and it is difficult to judge that they are defects. In the second method, in which the exciting coil is wound parallel to the surface of the material to be inspected and the detecting coil is wound orthogonally to the exciting coil, defects parallel to the detecting coil can be detected very accurately. There is a drawback that orthogonal defects cannot be detected.

【0004】このため、従来の方式では、全方向の欠陥
を検出するには複数の検出器が必要であり、コストが高
くなることや設置スペースが大きくなり制約が生じる等
の問題があった。
Therefore, in the conventional method, a plurality of detectors are required to detect defects in all directions, and there are problems that the cost is high and the installation space is large and there are restrictions.

【0005】本発明はこのような事情に鑑みてなされた
ものであり、いかなる方向の欠陥をも高感度に検出可能
な欠陥検出器を提供することを目的とするものである。
The present invention has been made in view of such circumstances, and an object thereof is to provide a defect detector capable of detecting a defect in any direction with high sensitivity.

【0006】[0006]

【問題を解決するための手段】この発明は、相対する面
が正方形である立方体の高透磁率材料に、立方体の一方
の端末に励磁コイルを巻き、巻いた励磁コイルと直交す
る2組の検出コイルを有する検出器で、高透磁率材料の
中央部を通る2組の検出コイルが互いに交差するように
十字に巻くことで、全方向の鋼材の欠陥を同時に検出可
能にし、更に、該検出器の2組の検出コイルで検出され
る検出信号の振幅比を比較し、比較した信号の比率から
欠陥の方向を判別し、判別した欠陥の方向をもとに欠陥
信号の振幅を補正する。
According to the present invention, an exciting coil is wound around one end of the cube on a cubic high magnetic permeability material whose opposing surfaces are square, and two sets of detections orthogonal to the wound exciting coil are provided. In a detector having a coil, two sets of detection coils passing through a central portion of a high-permeability material are wound in a cross shape so as to intersect with each other, thereby making it possible to simultaneously detect defects in the steel material in all directions. The amplitude ratios of the detection signals detected by the two sets of detection coils are compared, the direction of the defect is determined from the ratio of the compared signals, and the amplitude of the defect signal is corrected based on the determined direction of the defect.

【0007】[0007]

【作用】このように構成された欠陥検出装置であれば、
一台の検出器で欠陥の方向によらない高精度な検出が可
能となる。よって、種々の方向の欠陥を検出する必要か
ら複数の検出器を準備する必要が無く、低コストで高精
度の欠陥検出が可能となる。
With the defect detecting device configured as described above,
A single detector enables highly accurate detection regardless of the defect direction. Therefore, it is not necessary to prepare a plurality of detectors because it is necessary to detect defects in various directions, and it is possible to detect defects with high accuracy at low cost.

【0008】[0008]

【実施例】以下本発明の実施例を図面を用いて説明す
る。図1は本発明の検出器の構造を示したものであっ
て、1は主コアを示し、2は被検査材表面に渦流を流す
為の高周波励磁コイルであって前記コア1の外周水平ま
わりに巻かれている。3−1、3−2は欠陥が被検査材
表面の渦流を乱すことによって発生する水平方向の磁界
成分を検出する為の検出コイルである。これは前記主コ
ア1の水平面の対向する二辺の組み合わせのそれぞれの
中心部に、それぞれが直交する形で且つ前記高周波励磁
コイル2と直交して巻かれている。検出器は、前記主コ
ア1、高周波励磁コイル2、検出コイル3−1、3−2
で構成される。図2は検出原理を示しており、4−1お
よび4−2が渦電流の経路を示している。5は渦電流4
−1が発生させる2次磁束を示している。検出コイル3
−1は点線6で示す位置に垂直な面上に、検出コイル3
−2は実線7で示す位置に垂直な面上にあり、点線6及
び実線7の左右において渦流4−1の分布は全く同一で
あるから、検出コイル3−1及び3−2には2次磁束5
が鎖交せず、検出出力はでない。この関係は被検査材と
検出器のギャップが変わっても同じである。次に8は点
線6と同方向に長さを持ち直交する方向に微小な幅しか
持たない割れ状の欠陥を示している。この場合には点線
6の左右の渦電流4−2の分布に不平衡が生じて水平磁
界成分が生じ検出コイル3−1に電圧を誘起するが、実
線7の左右の渦電流分布にはほとんど不平衡を生じない
ため水平磁界成分を生じず検出コイル3−2には電圧が
ほとんど誘起しない。ところが、割れ状の欠陥が実線7
と同方向を向いている場合には、誘起電圧を生じる検出
コイルは3−2となり、検出コイル3−1には電圧をほ
とんど誘起しない。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows the structure of the detector of the present invention, in which 1 is a main core, 2 is a high-frequency exciting coil for flowing an eddy current on the surface of the material to be inspected, which is a horizontal outer circumference of the core 1. Is wrapped around. 3-1 and 3-2 are detection coils for detecting a horizontal magnetic field component generated by the defect disturbing the eddy current on the surface of the material to be inspected. This is wound around the respective central portions of the combination of the two opposing sides of the horizontal plane of the main core 1 so as to be orthogonal to each other and orthogonal to the high frequency exciting coil 2. The detector includes the main core 1, the high frequency excitation coil 2, the detection coils 3-1, 3-2.
Composed of. FIG. 2 shows the detection principle, and 4-1 and 4-2 indicate the path of the eddy current. 5 is eddy current 4
2 shows the secondary magnetic flux generated by -1. Detection coil 3
-1 indicates the detection coil 3 on the plane perpendicular to the position indicated by the dotted line 6.
-2 is on a plane perpendicular to the position shown by the solid line 7, and the distributions of the vortex flow 4-1 are exactly the same on the left and right sides of the dotted line 6 and the solid line 7, and therefore the detection coils 3-1 and 3-2 have secondary shapes. Magnetic flux 5
However, there is no detection output. This relationship remains the same even if the gap between the inspected material and the detector changes. Next, reference numeral 8 indicates a crack-like defect having a length in the same direction as the dotted line 6 and a minute width in the orthogonal direction. In this case, an imbalance occurs in the distribution of the eddy currents 4-2 on the left and right of the dotted line 6 and a horizontal magnetic field component is generated to induce a voltage in the detection coil 3-1. Since no imbalance occurs, no horizontal magnetic field component is generated, and almost no voltage is induced in the detection coil 3-2. However, the crack-like defects are shown by the solid line 7.
When facing in the same direction as, the detection coil that generates the induced voltage is 3-2, and almost no voltage is induced in the detection coil 3-1.

【0009】図3は欠陥が存在すると出力がいかにして
検出器に発生するかを模式的に示したものであって、9
が欠陥のない場合の渦流ループ、10が点線6と同方向
に長方形の欠陥がある場合の渦流ループを示している。
後者の渦流ループ10は、小電流ループ12と欠陥のな
い場合の渦流ループ11に置き換えることができる。即
ち欠陥の無い場合の渦流ループ11との差異は、小電流
ループ12のみとなる。従って、この小電流ループ12
の発生が検出コイル3−1、3−2に及ぼす影響を検出
すれば良いこととなる。ところが点線6と同方向の長方
形の欠陥においては、点線6と同方向には小電流ループ
12は長いループをつくるため大きな変化を検出3−1
に及ぼすが、実線7の方向には極短いループしかつくら
ないため微小な変化しか検出コイル3−2には及ぼさな
い。つまり、点線6方向の欠陥は点線6上にある検出コ
イル3−1に及ぼす影響により検出できる。実線7と同
方向の長方形の欠陥においては、同様に実線7と同方向
には小電流ループ14は長いループをつくるため大きな
変化を検出コイル3−2に及ぼすが、点線6の方向には
極短いループしか作らないため微小な変化しか検出コイ
ル3−1には及ぼさない。つまり実線7方向の欠陥は実
線7上にある検出コイル3−2に及ぼす影響により検出
できる。図には示していないが、欠陥が点線6と角度α
を持つ方向の場合は、角度αに応じて検出コイル3−
1、3−2に及ぼす影響が変化し、角度αが大きくなる
につれ検出コイル3−1に及ぼす影響は小さくなり検出
コイル3−2に及ぼす影響が大きくなる。角度αが45
度の場合検出コイル3−1、3−2への影響は等しくな
る。
FIG. 3 is a schematic representation of how an output is generated at the detector in the presence of defects.
Indicates the eddy current loop when there is no defect, and 10 indicates the eddy current loop when there is a rectangular defect in the same direction as the dotted line 6.
The latter swirl loop 10 can be replaced by a small current loop 12 and a swirl loop 11 in the absence of defects. That is, the difference from the eddy current loop 11 when there is no defect is only the small current loop 12. Therefore, this small current loop 12
It suffices to detect the influence of the occurrence of the above on the detection coils 3-1 and 3-2. However, in the rectangular defect in the same direction as the dotted line 6, the small current loop 12 forms a long loop in the same direction as the dotted line 6 and a large change is detected 3-1.
However, since only a very short loop is formed in the direction of the solid line 7, only a slight change affects the detection coil 3-2. That is, the defect in the dotted line 6 direction can be detected by the influence on the detection coil 3-1 on the dotted line 6. In the case of a rectangular defect in the same direction as the solid line 7, the small current loop 14 makes a long loop in the same direction as the solid line 7 and therefore a large change is exerted on the detection coil 3-2. Since only a short loop is created, only a minute change affects the detection coil 3-1. That is, the defect in the solid line 7 direction can be detected by the influence on the detection coil 3-2 on the solid line 7. Although not shown in the figure, the defect is the dotted line 6 and the angle α.
In the case of the direction with, the detection coil 3-depending on the angle α
The influences on 1 and 3-2 change, and as the angle α increases, the influence on the detection coil 3-1 decreases and the influence on the detection coil 3-2 increases. Angle α is 45
In the case of degrees, the influence on the detection coils 3-1 and 3-2 becomes equal.

【0010】図4に検出器の出力と欠陥の関係を示す。
点線15の位置に、例えば検出コイル3−1があって、
被検査材の欠陥8が矢印16の方向に移動する場合に
は、検出器の出力の検波値は17の如くなる。即ち欠陥
8が検出コイル3−1の直下に来た時には検出コイル3
−1の左右のバランスがとれて出力は零になり、その前
後で最大、最小を示すこととなる。即ち、検波値が最大
から最小に変わることにより欠陥が検出される。
FIG. 4 shows the relationship between the detector output and the defect.
At the position of the dotted line 15, for example, there is the detection coil 3-1
When the defect 8 of the material to be inspected moves in the direction of the arrow 16, the detection value of the output of the detector becomes as shown by 17. That is, when the defect 8 comes directly under the detection coil 3-1, the detection coil 3 is detected.
The left and right of -1 are balanced and the output becomes zero, and the maximum and minimum are shown before and after that. That is, the defect is detected by changing the detection value from the maximum value to the minimum value.

【0011】上述の如く、本発明の検出器は、直交した
検出コイル3−1、3−2で検出することで欠陥の方向
により欠陥が検出できないと言う欠点が無く、従来法と
比較して圧倒的に優れた特徴を有している。
As described above, the detector of the present invention does not have the defect that the defect cannot be detected depending on the direction of the defect by detecting with the detection coils 3-1 and 3-2 which are orthogonal to each other. It has overwhelmingly superior characteristics.

【0012】図5に、上述の検出器を組込んだ検出信号
処理装置の一例を示す。図5においては、2は主コアに
巻かれた高周波励磁コイル、3−1、3−2は検出コイ
ルである。22は高周波コイル2に高周波電流を流す為
の発振器、23−1、23−2は検出された電圧の増幅
器であり、24−1、24−2は同期検波器である。2
1は移相器であり、発振器22の電圧位相より任意の位
相だけ遅れた信号を送り、同期検波器24−1、24−
2の同期検波信号を生成する。同期検波器24−1、2
4−2でそれぞれ同期検波された信号は、更にバンドパ
スフィルタ25−1、25−2へ送られて、欠陥の信号
成分がそれぞれ抽出される。二つの信号の振幅比を比率
器26で取り、この比率から欠陥方向判別器27で欠陥
方向を判別する。欠陥信号補正器28においてそれぞれ
の欠陥信号成分と欠陥方向から欠陥信号振幅を補正す
る。29は比較器であり、欠陥信号の振幅判定を行って
警報機30を作動させる。31は記録計であり、アナロ
グ信号と欠陥有無を記録する。
FIG. 5 shows an example of a detection signal processing device incorporating the above-mentioned detector. In FIG. 5, 2 is a high frequency excitation coil wound around the main core, and 3-1, 3-2 are detection coils. Reference numeral 22 is an oscillator for supplying a high frequency current to the high frequency coil 2, 23-1 and 23-2 are amplifiers of the detected voltage, and 24-1 and 24-2 are synchronous detectors. Two
Reference numeral 1 is a phase shifter, which sends a signal delayed by an arbitrary phase from the voltage phase of the oscillator 22, and outputs the signals by the synchronous detectors 24-1, 24-.
2 synchronous detection signals are generated. Synchronous detector 24-1, 2
The signals synchronously detected in 4-2 are further sent to the bandpass filters 25-1 and 25-2, and the defective signal components are extracted. The ratio ratio of the two signals is taken by the ratio device 26, and the defect direction judging device 27 judges the defect direction from this ratio. The defect signal corrector 28 corrects the defect signal amplitude from each defect signal component and defect direction. Reference numeral 29 is a comparator, which operates the alarm 30 by determining the amplitude of the defect signal. A recorder 31 records an analog signal and the presence / absence of a defect.

【0013】[0013]

【発明の効果】以上説明した如く、本発明は欠陥の方向
によらない高精度な欠陥検出が一台の検出器において可
能となる。
As described above, according to the present invention, it is possible to detect a defect with high accuracy irrespective of the defect direction with a single detector.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例主要部を示す斜視図であ
る。
FIG. 1 is a perspective view showing a main part of an embodiment of the present invention.

【図2】 被検査材の渦電流を示す斜視図である。FIG. 2 is a perspective view showing an eddy current of a material to be inspected.

【図3】 渦電流分布を示す平面図である。FIG. 3 is a plan view showing an eddy current distribution.

【図4】 欠陥と検出コイルの相対移動により検出コイ
ルに誘起される電圧を示すグラフである。
FIG. 4 is a graph showing a voltage induced in a detection coil by a defect and relative movement of the detection coil.

【図5】 図1に示す欠陥検出器を用いて、欠陥信号を
処理する処理装置の構成を示すブロック図である。
5 is a block diagram showing a configuration of a processing device that processes a defect signal using the defect detector shown in FIG.

【図6】 従来の差分法の、欠陥と検出コイルの相対移
動により検出コイルに誘起される電圧を示すグラフであ
る。
FIG. 6 is a graph showing a voltage induced in a detection coil by a relative movement of a defect and the detection coil in a conventional difference method.

【符号の説明】[Explanation of symbols]

1:主コア 2:高周波励磁
コイル 3−1,3−2:検出コイル 4−1,4−
2:渦電流経路 5:2次磁束 6,7:位置 8:割れ状の欠陥 9:欠陥の無い
場合の渦流ルート 10,13:長方形の欠陥がある場合の渦流ルート 12,14:小電流ループ 15:欠陥位置 16:移動方向 17:検出器出
力の検波値 21:移相器 22:発振器 23−1,23−2:増幅器 24−1,2
4−2:同期検波器 25−1,25−2:バンドパスフィルタ 26:比率器 27:欠陥方向
判別器 28:欠陥信号補正器 29:比較器 30:警報器 31:記録計 41:差分コイル 42:欠陥 43:差分コイル移動方向 44,45:検
出器出力の検波値
1: Main core 2: High frequency excitation coil 3-1 and 3-2: Detection coil 4-1 and 4-
2: Eddy current path 5: Secondary magnetic flux 6, 7: Position 8: Crack-like defect 9: Eddy current route without defect 10, 13: Eddy current route with rectangular defect 12, 14: Small current loop 15: Defect position 16: Moving direction 17: Detection value of detector output 21: Phase shifter 22: Oscillator 23-1, 23-2: Amplifier 24-1, 2
4-2: Synchronous detector 25-1, 25-2: Bandpass filter 26: Ratio device 27: Defect direction discriminator 28: Defect signal corrector 29: Comparator 30: Alarm device 31: Recorder 41: Difference coil 42: Defect 43: Differential coil moving direction 44, 45: Detection value of detector output

フロントページの続き (72)発明者 原 田 充 雄 富津市新富20−1 新日本製鐵株式会社技 術開発本部内Front Page Continuation (72) Inventor Mitsuo Harada 20-1 Shintomi, Futtsu City Nippon Steel Corporation Technology Development Division

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鋼材の表面に交流磁気を与え、鋼材の表
面欠陥を非接触で非破壊検査する欠陥検出器において、
相対する面が正方形である立方体の高透磁率材料に、立
方体の一方の端末に励磁コイルを巻き、巻いた励磁コイ
ルと直交する2組の検出コイルを有する構成の検出器
で、高透磁率材料の中央部を通る2組の検出コイルが互
いに交叉するように十字状に巻いた事を特徴とする無方
向性欠陥検出器。
1. A defect detector for applying non-contact non-destructive inspection of surface defects of a steel product by applying AC magnetism to the surface of the steel product,
A detector having a structure in which an exciting coil is wound around one end of the cube on a cubic high magnetic permeability material whose opposing surfaces are square, and two sets of detection coils orthogonal to the wound exciting coil are provided. An omnidirectional defect detector characterized in that two sets of detection coils passing through the central part of the are wound in a cross shape so as to cross each other.
【請求項2】 請求項1の検出器と、該検出器の2組の
検出コイルで検出される検出信号の振幅比を比較する装
置と、比較した信号の比率から欠陥の方向を判別する装
置と、判別した欠陥の方向をもとに欠陥信号の振幅を補
正する装置を備える無方向性欠陥検出装置。
2. A detector according to claim 1, a device for comparing amplitude ratios of detection signals detected by two sets of detector coils of the detector, and a device for determining a defect direction from the ratio of the compared signals. And a device for correcting the amplitude of a defect signal based on the determined defect direction, the non-directional defect detection device.
JP5084913A 1993-04-12 1993-04-12 Detector and detecting apparatus for nonoriented defect Withdrawn JPH06294775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5084913A JPH06294775A (en) 1993-04-12 1993-04-12 Detector and detecting apparatus for nonoriented defect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5084913A JPH06294775A (en) 1993-04-12 1993-04-12 Detector and detecting apparatus for nonoriented defect

Publications (1)

Publication Number Publication Date
JPH06294775A true JPH06294775A (en) 1994-10-21

Family

ID=13843969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5084913A Withdrawn JPH06294775A (en) 1993-04-12 1993-04-12 Detector and detecting apparatus for nonoriented defect

Country Status (1)

Country Link
JP (1) JPH06294775A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002097425A1 (en) * 2001-05-29 2002-12-05 Nihon University Mutual-induction insertion probe
JP2011517338A (en) * 2007-12-28 2011-06-02 ゼネラル・エレクトリック・カンパニイ Component inspection method and apparatus using omnidirectional eddy current probe
JP2012032249A (en) * 2010-07-30 2012-02-16 Hitachi-Ge Nuclear Energy Ltd Eddy current detection method and eddy current detection system
JP2013072667A (en) * 2011-09-27 2013-04-22 Mitsubishi Heavy Ind Ltd Probe for eddy current flaw detection
JP2014025704A (en) * 2012-07-24 2014-02-06 Toshiba Corp Eddy current flaw detection device
KR20150052865A (en) * 2012-09-06 2015-05-14 인스티튜트 닥터 포에르스테르 게엠베하 운트 코. 카게 Differential sensor, inspection system and method for the detection of anomalies in electrically conductive materials
CN109946372A (en) * 2019-04-09 2019-06-28 鞍钢股份有限公司 Eddy current probe is used in a kind of flaw detection of steel surface
CN109959704A (en) * 2019-04-09 2019-07-02 鞍钢股份有限公司 A kind of multidirectional sensitization array eddy current detection method of rail rail bottom
CN114402197A (en) * 2019-05-21 2022-04-26 P & L管道测量有限责任公司 Apparatus and method for pipe inspection using shear waves generated by EMAT

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002097425A1 (en) * 2001-05-29 2002-12-05 Nihon University Mutual-induction insertion probe
JP2011517338A (en) * 2007-12-28 2011-06-02 ゼネラル・エレクトリック・カンパニイ Component inspection method and apparatus using omnidirectional eddy current probe
JP2012032249A (en) * 2010-07-30 2012-02-16 Hitachi-Ge Nuclear Energy Ltd Eddy current detection method and eddy current detection system
JP2013072667A (en) * 2011-09-27 2013-04-22 Mitsubishi Heavy Ind Ltd Probe for eddy current flaw detection
JP2014025704A (en) * 2012-07-24 2014-02-06 Toshiba Corp Eddy current flaw detection device
KR20150052865A (en) * 2012-09-06 2015-05-14 인스티튜트 닥터 포에르스테르 게엠베하 운트 코. 카게 Differential sensor, inspection system and method for the detection of anomalies in electrically conductive materials
JP2015531477A (en) * 2012-09-06 2015-11-02 インスティトゥート ドクトル フェルスター ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Differential sensor, inspection system, and method for detecting abnormality of conductive material
EP2893336B1 (en) * 2012-09-06 2020-11-04 Institut Dr. Foerster Gmbh & Co. Kg Differentail sensor, investigation apparatus and method of detecting defects in electrically conducting materials
CN109946372A (en) * 2019-04-09 2019-06-28 鞍钢股份有限公司 Eddy current probe is used in a kind of flaw detection of steel surface
CN109959704A (en) * 2019-04-09 2019-07-02 鞍钢股份有限公司 A kind of multidirectional sensitization array eddy current detection method of rail rail bottom
CN114402197A (en) * 2019-05-21 2022-04-26 P & L管道测量有限责任公司 Apparatus and method for pipe inspection using shear waves generated by EMAT

Similar Documents

Publication Publication Date Title
US4107605A (en) Eddy current flaw detector utilizing plural sets of four planar coils, with the plural sets disposed in a common bridge
US6791319B2 (en) Eddy current probe with transverse polygonal detecting coil
WO2000008458A1 (en) Eddy-current flaw detector probe
JPS62500683A (en) Method and device for detecting surface defects using eddy currents
JPH06294775A (en) Detector and detecting apparatus for nonoriented defect
JPH0989843A (en) Method and apparatus for eddy current flaw detection
JPS599552A (en) Electromagnetic induction tester
JPH0335624B2 (en)
JPH06242076A (en) Electromagnetic flaw detecting equipment
JPH09274018A (en) Method and apparatus for detecting flaw of magnetic metal element
JPS6128938B2 (en)
JPS586458A (en) Hot eddy current flaw detecting method of steel material
JPS612065A (en) Flaw detector using eddy current
JPS6011493Y2 (en) Electromagnetic induction detection device
JPH09166582A (en) Electromagnetic flaw detection method
JPH07113788A (en) Probe coil for eddy current flaw detection
JPH05203629A (en) Electromagnetic flaw detection and device
JPH0210151A (en) Magnetic flaw detector
JP2855186B2 (en) Non-destructive measurement method of surface flaw by multi-frequency magnetization
JPH03276050A (en) Magneto-optical flaw detecting device
JP2002055083A (en) Eddy current flaw detection probe
JP4142870B2 (en) Magnetic body detection device
JPS60262052A (en) Heterogeneous material discrimination
RU2163014C2 (en) Unit of eddy-current converters
JPS61223550A (en) Electromagnetic induction flaw detection

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000704