JPS6128938B2 - - Google Patents

Info

Publication number
JPS6128938B2
JPS6128938B2 JP55147387A JP14738780A JPS6128938B2 JP S6128938 B2 JPS6128938 B2 JP S6128938B2 JP 55147387 A JP55147387 A JP 55147387A JP 14738780 A JP14738780 A JP 14738780A JP S6128938 B2 JPS6128938 B2 JP S6128938B2
Authority
JP
Japan
Prior art keywords
magnetic field
detection
inspected
defect
defects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55147387A
Other languages
Japanese (ja)
Other versions
JPS5770451A (en
Inventor
Shuji Naito
Makoto Murata
Shuichi Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP55147387A priority Critical patent/JPS5770451A/en
Publication of JPS5770451A publication Critical patent/JPS5770451A/en
Publication of JPS6128938B2 publication Critical patent/JPS6128938B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9006Details, e.g. in the structure or functioning of sensors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【発明の詳細な説明】 本発明は金属板のエツジ部欠陥を検出する装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for detecting edge defects in metal plates.

従来、金属板例えば薄鋼板の表面欠陥を検出す
る方法としては、光学式の表面疵検査装置があ
り、原理的には、フライングスポツト法、フライ
ングイメージ法およびフライングスポツトフライ
ングイメージ法としてよく知られている。しかし
ながら現在知られている検出器は、全て何らかの
エツジ部不感帯を有し、エツヂ部の欠陥は検出で
きないのが実状である。更に、薄鋼板の貫通欠陥
の検出器としてピンホール検出器なるものがある
が、これも光学的なもので、光学的に貫通してい
なければ検出できないのは当然のことである。
Conventionally, optical surface flaw inspection devices have been used as methods for detecting surface defects on metal plates, such as thin steel plates.In principle, these methods are well-known as the flying spot method, flying image method, and flying spot flying image method. There is. However, all of the currently known detectors have some kind of edge dead zone, and in reality, defects in the edges cannot be detected. Furthermore, there is a pinhole detector as a detector for penetrating defects in thin steel sheets, but this is also an optical device, and it goes without saying that it cannot be detected unless the defect is optically penetrated.

ピンホール検出器の中には、エツジ部の追跡を
行つてその急激な変化分より開口した耳割欠陥を
抽出する方式のものもあるが、本質的に光学式で
ある為に、全てのエツジ部欠陥を検出することは
困難であり、普及していないのが現状である。
Some pinhole detectors track edges and extract open crack defects from sudden changes in the edges, but since they are essentially optical, they cannot detect all edges. It is difficult to detect defects in parts, and the current situation is that it is not widely used.

しかしながら、エツジ部の欠陥は薄板製造ライ
ンでの板切れの起点となり、連続した処理ライン
の中で一旦板切れが起ると、その復旧に多大な時
間と費用を要し、生産阻害の最も重要な問題であ
る。更に、薄板製造及び表面処理ラインは1000〜
2000フイート/分の高速であり、これらの欠陥を
目視にて検出することは困難であつて品質保証上
重要な問題である。
However, edge defects are the starting point for sheet breakage on thin sheet production lines, and once a sheet breakage occurs in a continuous processing line, it takes a great deal of time and money to recover, and is the most important cause of production disruption. This is a serious problem. In addition, we have 1000~ thin plate manufacturing and surface treatment lines.
At a high speed of 2000 feet/min, it is difficult to visually detect these defects, which is an important problem in terms of quality assurance.

光学的に貫通していない欠陥の検出法として
は、渦流探傷法が知られている。これは被検査材
に近接してコイルを配置し、これに高周波電流を
流すと被検査材表面に渦電流が流れて、被検査材
表層に欠陥が存在するとこの渦電流が乱れひいて
はコイルのインピーダンスが変化することを利用
して欠陥を検出するものであるが、この従来方法
の欠点は、被検査材との間の距離の変動及びエツ
ジ部の形状の変動が、直接的にインピーダンスを
大きく変化させることである。従つて、薄板材の
ように高速で走行ししかも耳波等エツジ部の形状
不良及び振動が発生するような材料では、これを
完全に倣うことは不可能であり、従来型の渦流探
傷法のエツジ部欠陥検出への適用は不可能であ
る。
Eddy current flaw detection is known as a method for detecting defects that are not optically penetrating. This is because a coil is placed close to the material to be inspected, and when a high-frequency current is passed through it, an eddy current flows on the surface of the material to be inspected.If a defect exists on the surface layer of the material to be inspected, this eddy current is disrupted and the impedance of the coil increases. However, the drawback of this conventional method is that changes in the distance to the inspected material and changes in the shape of the edge directly cause large changes in impedance. It is to let Therefore, it is impossible to completely imitate materials such as thin plates that run at high speeds and generate edge shape defects and vibrations such as ear waves, and conventional eddy current flaw detection methods cannot be used. It cannot be applied to edge defect detection.

本発明は以上のような背景に鑑みてなされたも
のであり、薄板材のエツジ部の欠陥を高速かつ非
接触で、板の上下振動の影響を受けずかつ板のエ
ツジ部の形状不良及び若干の幅変化、更には板の
幅方向の若干の移動の影響を受けずに、エツジ部
の欠陥を、その開口、閉塞にかかわらず検出する
とともに、その有害度の判定を可能ならしめんと
するものである。
The present invention has been made in view of the above-mentioned background, and it is possible to remove defects in the edge portion of a thin plate at high speed and without contact, without being affected by vertical vibration of the plate, and to remove defective shapes and slight defects in the edge portion of the plate. To detect edge defects regardless of whether they are open or closed, without being affected by changes in the width of the board or even slight movement in the width direction of the board, and to make it possible to determine the degree of harmfulness of the defects. It is something.

以下本発明を図面で示す一実施例を参照して詳
細に説明する。第1図は検出端の構造を示したも
のであつて、1は主コアを示し、2は被検査材表
面に渦流を流すための高周波励磁コイルであつて
前記主コア1の外周水平まわりに巻かれている。
3は欠陥が被検査材表面の渦流を乱すことによつ
て発生する水平方向の磁界成分を検出する為の検
出コイルである。これは前記主コア1の幅方向中
心部に、前記高周波励磁コイル2と直交して巻か
れている。4―1及び4―2は、磁界形状制御コ
アで前記主コア1の前、後方に主コア1と間隔が
調整自在に設けられ、磁界の形状を制御して、被
検査材の横方向への位置変動や上下動、あるいは
被検査材6の形状不良による、該被検査材6と検
出端間の角度変動によるノイズを小さく抑えるた
めのものである。
The present invention will be described in detail below with reference to an embodiment shown in the drawings. Figure 1 shows the structure of the detection end, where 1 indicates the main core, and 2 is a high frequency excitation coil for causing a vortex to flow on the surface of the material to be inspected. It's wrapped.
3 is a detection coil for detecting a horizontal magnetic field component generated when a defect disturbs the eddy current on the surface of the material to be inspected. This is wound around the center of the main core 1 in the width direction, perpendicular to the high frequency excitation coil 2. 4-1 and 4-2 are magnetic field shape control cores, which are provided in front and behind the main core 1 so that the distance from the main core 1 can be freely adjusted, and controls the shape of the magnetic field to move it in the lateral direction of the material to be inspected. This is to suppress noise due to positional fluctuation or vertical movement of the inspection object 6, or angular fluctuation between the inspection object 6 and the detection end due to a defect in the shape of the inspection object 6.

しかして、前記主コア1、高周波励磁コイル
2、検出コイル3および磁界形状制御コア4―
1,4―2により検出端5が構成される。
Therefore, the main core 1, the high frequency excitation coil 2, the detection coil 3 and the magnetic field shape control core 4-
1 and 4-2 constitute a detection end 5.

図面で6は検査される被検査材のエツジ部を示
しており、検出端5を被検査材のエツジ部6と検
出コイル3が直交するように近接して配置する。
検出端5と被検査材のエツジ部6との重なりの大
きさを検出すべき欠陥より大きい限り任意にとる
ことが出来るのが本方式の特徴である。
In the drawing, reference numeral 6 indicates an edge portion of the material to be inspected, and the detection end 5 is placed close to the edge portion 6 of the material to be inspected so that the detection coil 3 is perpendicular to the edge portion 6 of the material to be inspected.
A feature of this method is that the overlap between the detection end 5 and the edge portion 6 of the material to be inspected can be arbitrarily set as long as it is larger than the defect to be detected.

第2図は検出の原理を示しており、7―1およ
び7―2が渦電流の径路を示している。8は渦電
流7―1が発生する2次磁束を示している。検出
コイル3は、点線9で示す位置に垂直な面上にあ
り、点線9の左右において渦流7―1の分布は全
く同一であるから、検出コイル3には2次磁束8
が鎖交せず検出出力は出ない。この関係は被検査
材と検出側5間のギヤツプが変わつても同じであ
り、更に、検出端5と被検査材の重なり量が変わ
つても、同じく電圧を誘起しない。これが本発明
の重要な特徴となつている。
FIG. 2 shows the principle of detection, with 7-1 and 7-2 showing the paths of eddy currents. 8 indicates the secondary magnetic flux generated by the eddy current 7-1. The detection coil 3 is on a plane perpendicular to the position indicated by the dotted line 9, and the distribution of the eddy current 7-1 on the left and right sides of the dotted line 9 is exactly the same, so the detection coil 3 has a secondary magnetic flux 8.
are not linked and no detection output is output. This relationship remains the same even if the gap between the material to be inspected and the detection side 5 changes, and furthermore, even if the amount of overlap between the detection end 5 and the material to be inspected changes, no voltage is induced. This is an important feature of the present invention.

次に、10はエツジ部6に存在する耳割れ欠陥
を示しているが、この場合には点線9の左右の渦
流7―2の分布に不平衡が生じて水平磁界成分が
生じ、検出コイル3に電圧を誘起する。
Next, 10 indicates an edge cracking defect existing in the edge portion 6. In this case, an unbalance occurs in the distribution of the vortex flows 7-2 on the left and right sides of the dotted line 9, a horizontal magnetic field component is generated, and the detection coil 3 induces a voltage in

第3図は耳割が存在すると出力がいかにして検
出端5に発生するかを模式的に示したものであつ
て、11が欠陥の無い場合の渦流ルート、12が
長方形の耳割が有る場合の渦流ルートを示してい
る。後者の渦流ルート12は、13の如く小電流
ルート14と欠陥の無い場合の渦流ルート11に
置き変えることが出来る。すなわち欠陥の無い場
合の渦流ルート11との差異は、小電流ループ1
4のみとなる。従つてこの小電流ループ14の発
生する磁界が検出コイル3に及ぼす影響を検出す
ればよいことになる。
Figure 3 schematically shows how an output is generated at the detection end 5 when there is an ear split, where 11 is the eddy flow route when there is no defect, and 12 is a rectangular ear split. It shows the eddy current route in case. The latter eddy current route 12 can be replaced with a small current route 14 like 13 and a eddy current route 11 in the case where there is no defect. In other words, the difference from the eddy current route 11 when there is no defect is that the small current loop 1
Only 4 will be available. Therefore, it is sufficient to detect the influence of the magnetic field generated by this small current loop 14 on the detection coil 3.

第4図は検出端5の出力と欠陥の関係を示す。
点線15の位置に検出コイル3があつて、被検査
材のエツジ部6が矢印16の方向に移動する場合
には、検出端5の出力の検波値は17のごとくな
る。すなわち、欠陥10が検出コイル3の直下に
来た時には検出コイル3の左右のバランスがとれ
て出力は零になり、その前、後で最大、最小を示
すことになる。すなわち、検波値が最小から最大
に変わることにより欠陥が検出される。
FIG. 4 shows the relationship between the output of the detection end 5 and defects.
When the detection coil 3 is placed at the position indicated by the dotted line 15 and the edge portion 6 of the inspected material moves in the direction of the arrow 16, the detected value of the output of the detection end 5 becomes 17. That is, when the defect 10 comes directly under the detection coil 3, the left and right sides of the detection coil 3 are balanced and the output becomes zero, and the output shows a maximum and a minimum before and after that. That is, a defect is detected when the detected value changes from the minimum to the maximum.

第5図は磁界形状制御コア4―1,4―2の働
きを説明するためのものである。18は磁界形状
制御コアの無い場合を、19は磁界形状制御コア
4―1,4―2を設けた本発明の場合を示してい
る。18―1及び19―1は被検査材表面におけ
る、それぞれの磁界の強さを示したものである。
主コア1の下磁界の強さはあまり変わらないが、
磁界形状制御コア4―1,4―2が有る場合に
は、磁界形状制御コア4―1,4―2の下にも鋭
いピークが見られるのに対して、18―1の磁界
形状制御コアの無い場合にはなだらかな曲線とな
る。このため、被検査材の表面を流れる渦流の密
度も、18―2及び19―2に見られる様な差異
を生じ、磁界形状制御コア4―1,4―2を設け
ると渦流の密度の変化がシヤープとなり、欠陥を
高精度で検出できることが認められる。主コア1
と磁界形状制御コア4―1,4―2の間隔を狭め
れば狭めるほどこの傾向は強くなるが、徐々にコ
ア間を直接リークする磁束量が増加し、板表面の
磁界は弱くなる。従つて、被検査材の材質及び被
検査材と検出端5のギヤツプによつて最適な主コ
ア1と磁界形状制御コア4―1,4―2との間隔
が定まる。この値は実験的に定めるのが好まし
い。
FIG. 5 is for explaining the function of the magnetic field shape control cores 4-1 and 4-2. Reference numeral 18 shows the case without the magnetic field shape control core, and 19 shows the case of the present invention in which the magnetic field shape control cores 4-1 and 4-2 are provided. 18-1 and 19-1 indicate the strength of the respective magnetic fields on the surface of the material to be inspected.
Although the strength of the lower magnetic field of main core 1 does not change much,
When there are magnetic field shape control cores 4-1 and 4-2, a sharp peak is also seen below the magnetic field shape control cores 4-1 and 4-2, whereas the magnetic field shape control core 18-1 If there is no curve, it will be a gentle curve. For this reason, the density of the eddy current flowing on the surface of the material to be inspected also causes a difference as seen in 18-2 and 19-2, and when the magnetic field shape control cores 4-1 and 4-2 are provided, the density of the eddy current changes. is sharp, and it is confirmed that defects can be detected with high accuracy. Main core 1
This tendency becomes stronger as the distance between the magnetic field shape control cores 4-1 and 4-2 is narrowed, but the amount of magnetic flux directly leaking between the cores gradually increases, and the magnetic field on the plate surface becomes weaker. Therefore, the optimum distance between the main core 1 and the magnetic field shape control cores 4-1, 4-2 is determined by the material of the material to be inspected and the gap between the material to be inspected and the detection end 5. This value is preferably determined experimentally.

第6図は検出端5が被検査材のエツジに直角に
当つていない場合の影響を説明したものである。
第6図において20は渦流の主なルート、21は
その等価ルートである。小電流ループ14が発生
する磁界が検出コイル3に電圧を誘起する。22
は磁界形状制御コア4―1,4―2が無い場合の
渦電流を、23は磁界形状制御コア4―1,4―
2が有る本発明の場合の渦電流を示している。前
者では磁束24は主コア1の方へ引かれてほとん
ど全て検出コイル3に鎖交するのに比べて、後者
の本発明の場合は、小電流ループ14の上は全部
コアで覆われている為に、磁束24は四方に拡が
り、その出力は約1/6に小さくすることが出来
た。同様な実験で欠陥に対する検出力は同様に保
つたままで、検出端5と被検査材間のギヤツプの
影響を1/2以下に、検出端5とエツジ部6の重な
り具合の影響を1/2以下に抑えることができ、磁
界形状制御コア4―1,4―2の働きが非常に優
れたものであることが確認された。
FIG. 6 illustrates the effect when the detection end 5 does not touch the edge of the material to be inspected at right angles.
In FIG. 6, 20 is the main route of the vortex, and 21 is its equivalent route. The magnetic field generated by the small current loop 14 induces a voltage in the detection coil 3. 22
23 is the eddy current when there is no magnetic field shape control core 4-1, 4-2, and 23 is the magnetic field shape control core 4-1, 4-
2 shows the eddy current in the case of the present invention. In the former case, the magnetic flux 24 is drawn toward the main core 1 and almost entirely interlinks with the detection coil 3, whereas in the latter case of the present invention, the entire top of the small current loop 14 is covered by the core. Therefore, the magnetic flux 24 spreads in all directions, and its output could be reduced to about 1/6. In a similar experiment, while maintaining the same detection power for defects, the influence of the gap between the detection end 5 and the inspected material was reduced to 1/2 or less, and the influence of the overlap between the detection end 5 and the edge portion 6 was reduced to 1/2. It was confirmed that the magnetic field shape control cores 4-1 and 4-2 functioned extremely well.

上述の如く、本発明の検出端5は薄板の如き高
速で走行し上下振動や形状不良の為に倣うことの
出来ない対象のエツジ部の欠陥探傷に際し、従来
法と比し圧倒的に優れた特徴を有している。
As mentioned above, the detection end 5 of the present invention is overwhelmingly superior to conventional methods in detecting defects in edge portions of objects such as thin plates that run at high speed and cannot be imitated due to vertical vibration or poor shape. It has characteristics.

第7図に検出信号処理装置の一例を示す。第7
図において2は主コア1に巻かれた高周波励磁コ
イル、3は検出コイルである。検出端5は、第1
図に示す如く被検査材のエツジ部の上方に間隔を
おいて配置される。25は高周波励磁コイル2に
高周波電流を流す為の発振器、26は検出された
電圧の増幅器である。この増幅器26は100倍程
度増幅して同期検波器27へ送る。28は移相器
であり、発振器25の電圧位相より任意の位相だ
け遅れた信号を送り、同期検波器27の同期検波
信号を生成する。同期検波器27で同期検波され
た信号は、ローパスフイルター29へ送られて、
エツジ欠陥の信号成分が押出される。30は比較
器であり、欠陥信号の振幅判定を行つて警報器3
1を作動させる。32は記録計でありアナログ信
号と欠陥有無を記録する。
FIG. 7 shows an example of a detection signal processing device. 7th
In the figure, 2 is a high frequency excitation coil wound around the main core 1, and 3 is a detection coil. The detection end 5 is the first
As shown in the figure, they are arranged at intervals above the edge of the material to be inspected. 25 is an oscillator for causing a high frequency current to flow through the high frequency excitation coil 2, and 26 is an amplifier for the detected voltage. This amplifier 26 amplifies the signal by about 100 times and sends it to a synchronous detector 27 . A phase shifter 28 sends a signal delayed by an arbitrary phase from the voltage phase of the oscillator 25 to generate a synchronous detection signal for the synchronous detector 27. The signal synchronously detected by the synchronous detector 27 is sent to the low-pass filter 29,
The signal component of the edge defect is extruded. 30 is a comparator, which judges the amplitude of the defect signal and sends the alarm 3
Activate 1. 32 is a recorder that records analog signals and the presence or absence of defects.

本発明は以上の如くであるので金属板のエツジ
部の欠陥が、被検材の上下動、被検個所の形状不
良および被検材幅方向への移動に影響されず高精
度で検出される。
Since the present invention is as described above, defects in the edge portion of a metal plate can be detected with high accuracy without being affected by vertical movement of the test material, defective shape of the test location, or movement in the width direction of the test material. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例主要部を示す斜視
図、第2図は被検査材の渦電流を示す斜視図、第
3図は渦電流分布を示す平面図、第4図は欠陥と
検出コイル誘起電圧の関係を示す説明図、第5図
は欠陥検出端の構成と磁束分布を示す説明図、第
6図は欠陥検出端の姿勢と渦電流の相関を示す説
明図、第7図は欠陥検出端を付勢し、欠陥信号を
処理する処理装置の構成を示すブロツク図であ
る。 1……主コア、2……高周波励磁コイル、3…
…検出コイル、4―1,4―2……磁界形状制御
コア、5……検出端(欠陥検出装置)、6……被
検査材(エツジ部)、7―1,7―2,11〜1
4……渦電流、8……2次磁束、9,15……検
出コイル3の投影位置、10……欠陥、16……
被検査材移動方向、17……検波信号、24……
磁束。
Fig. 1 is a perspective view showing the main parts of an embodiment of the present invention, Fig. 2 is a perspective view showing eddy currents in a material to be inspected, Fig. 3 is a plan view showing eddy current distribution, and Fig. 4 is a perspective view showing defects and defects. An explanatory diagram showing the relationship between the detection coil induced voltage, Fig. 5 is an explanatory diagram showing the configuration of the defect detection end and magnetic flux distribution, Fig. 6 is an explanatory diagram showing the correlation between the attitude of the defect detection end and eddy current, and Fig. 7 FIG. 2 is a block diagram showing the configuration of a processing device that energizes a defect detection terminal and processes a defect signal. 1...Main core, 2...High frequency excitation coil, 3...
...detection coil, 4-1, 4-2...magnetic field shape control core, 5...detection end (defect detection device), 6...material to be inspected (edge part), 7-1, 7-2, 11~ 1
4... Eddy current, 8... Secondary magnetic flux, 9, 15... Projection position of detection coil 3, 10... Defect, 16...
Movement direction of inspected material, 17...Detection signal, 24...
magnetic flux.

Claims (1)

【特許請求の範囲】[Claims] 1 主コアの外周水平まわりに、被検材面と平行
に巻回され、被検材に渦電流を発生せしめる高周
波励磁コイルと、該高周波励磁コイルに直交し、
主コアの巾方向中心部に垂直まわりに巻回され、
被検材の欠陥が前記渦電流を乱すことにより発生
する水平方向の磁界成分を検出する検出コイル
と、前記主コアをはさんで被検材検査方向の前方
および後方に間隔調整自在に設けられた磁界形状
制御コアとからなることを特徴とする金属板エツ
ヂ欠陥検出装置。
1. A high-frequency excitation coil that is wound around the horizontal outer circumference of the main core in parallel to the surface of the material to be tested and generates eddy currents in the material to be tested, and a high-frequency excitation coil that is perpendicular to the high-frequency excitation coil,
Wound vertically around the widthwise center of the main core,
A detection coil for detecting a horizontal magnetic field component generated when a defect in the material to be inspected disturbs the eddy current; A metal plate edge defect detection device comprising a magnetic field shape control core.
JP55147387A 1980-10-21 1980-10-21 Device for detecting edge defect of metallic plate Granted JPS5770451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55147387A JPS5770451A (en) 1980-10-21 1980-10-21 Device for detecting edge defect of metallic plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55147387A JPS5770451A (en) 1980-10-21 1980-10-21 Device for detecting edge defect of metallic plate

Publications (2)

Publication Number Publication Date
JPS5770451A JPS5770451A (en) 1982-04-30
JPS6128938B2 true JPS6128938B2 (en) 1986-07-03

Family

ID=15429098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55147387A Granted JPS5770451A (en) 1980-10-21 1980-10-21 Device for detecting edge defect of metallic plate

Country Status (1)

Country Link
JP (1) JPS5770451A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100573561B1 (en) * 2001-12-24 2006-04-25 주식회사 포스코 Pin-hole detector with edge filter
JP5765140B2 (en) * 2011-08-29 2015-08-19 Jfeスチール株式会社 Magnetic characteristic measuring method and magnetic characteristic measuring apparatus
JP5851783B2 (en) * 2011-09-27 2016-02-03 三菱重工業株式会社 Eddy current testing probe
JP5940401B2 (en) * 2012-07-24 2016-06-29 株式会社東芝 Eddy current flaw detector
JP6474343B2 (en) * 2015-11-27 2019-02-27 株式会社電子工学センター Eddy current flaw inspection apparatus probe and eddy current flaw inspection apparatus

Also Published As

Publication number Publication date
JPS5770451A (en) 1982-04-30

Similar Documents

Publication Publication Date Title
CN110308200B (en) Differential magnetic leakage and eddy current composite high-speed rail flaw detection method
US4107605A (en) Eddy current flaw detector utilizing plural sets of four planar coils, with the plural sets disposed in a common bridge
JPS62500683A (en) Method and device for detecting surface defects using eddy currents
JPS6128938B2 (en)
JP3266899B2 (en) Method and apparatus for flaw detection of magnetic metal body
JPS63221239A (en) Leak magnetic flux flaw detecting method
JPH0989843A (en) Method and apparatus for eddy current flaw detection
JPH06294775A (en) Detector and detecting apparatus for nonoriented defect
JP2004205212A (en) Eddy current flaw detecting probe for magnetic material and eddy current flaw detector
JP3307220B2 (en) Method and apparatus for flaw detection of magnetic metal body
JP3309702B2 (en) Metal body flaw detection method and apparatus
JP3743191B2 (en) Eddy current testing
JPH09269316A (en) Eddy current flaw detection method and eddy current flaw detector
JP2000227422A (en) Eddy current examination
JPH09166582A (en) Electromagnetic flaw detection method
Tajima et al. Low frequency eddy current testing to measure thickness of double layer plates made of nonmagnetic steel
JPS612065A (en) Flaw detector using eddy current
JPH05203629A (en) Electromagnetic flaw detection and device
JP4048256B2 (en) Magnetic flux leakage flaw detector
JPH0125019B2 (en)
JPS5920673Y2 (en) Hoop material joint detection device between pipe mill runs
JP2000275219A (en) Leakage flux flaw detecting method
RU2146817C1 (en) Electromagnetic flaw detector to test long-length articles
JPS62232558A (en) Method for inspecting welded part by eddy current flaw detection
JPH02236446A (en) Method and device for detecting flaw by leaked magnetic flux