JP2004205212A - Eddy current flaw detecting probe for magnetic material and eddy current flaw detector - Google Patents

Eddy current flaw detecting probe for magnetic material and eddy current flaw detector Download PDF

Info

Publication number
JP2004205212A
JP2004205212A JP2002370917A JP2002370917A JP2004205212A JP 2004205212 A JP2004205212 A JP 2004205212A JP 2002370917 A JP2002370917 A JP 2002370917A JP 2002370917 A JP2002370917 A JP 2002370917A JP 2004205212 A JP2004205212 A JP 2004205212A
Authority
JP
Japan
Prior art keywords
eddy current
flaw
coil
detection
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002370917A
Other languages
Japanese (ja)
Other versions
JP4117645B2 (en
Inventor
Hiroshi Hoshikawa
洋 星川
Kiyoshi Koyama
潔 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2002370917A priority Critical patent/JP4117645B2/en
Publication of JP2004205212A publication Critical patent/JP2004205212A/en
Application granted granted Critical
Publication of JP4117645B2 publication Critical patent/JP4117645B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To detect injuries in two directions crossing each other at a right angle of an inspection object by one detection coil in an eddy current flaw detecting probe. <P>SOLUTION: An exciting coil E generates a uniform eddy current in the winding direction of the exciting coil E in the inspection object T being a magnetic material to generate a uniform magnetic flux in the direction vertical to the coil surface of the exciting coil E. When there is an injury in the inspection object T in the direction vertical to the coil surface of the exciting coil E, an eddy current is disturbed at the part of the injury to change. Further, when there is an injury in the direction parallel to the winding direction of the exciting coil E, a leaked magnetic flux is generated in the part of the injury. A detection coil D detects a change of an eddy current or the leaked magnetic flux to detect the injury. That is, since detection coil D detects both of the change of the eddy current and the leaked magnetic flux caused by the inury, the injuries in two directions crossing each other at a right angle can be detected. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本願発明は、一様な渦電流と漏洩磁束により磁性材料のキズを検出する渦電流探傷プローブとそのプローブを備えた渦電流探傷装置に関する。
【0002】
【従来の技術】
【非特許文献1】平成14年5月28日 社団法人日本非破壊検査協会発行の平成14年度春季大会講演概要集(第209,210頁)
図9〜図11を参照して従来の渦電流探傷プローブを説明する。なお各図に共通の部分は、同じ符号を使用している。
【0003】
図9は、従来の渦電流探傷プローブの斜視図(図9(a))と渦電流を示す図(図9(b))である。図9の渦電流探傷プローブは、例えば
【非特許文献1】を参照。
磁性材料の検査体Tには、パンケーキ状の励磁コイルE0と矩形状の縦置き型の検出コイルD0とからなる渦電流探傷プローブを設置してある。励磁コイルE0に励磁電流を流すと、検査体Tには、図9(b)のように励磁コイルE0の巻線方向の渦電流Ieが発生する。この場合、渦電流Ieは、検出コイルD0の巻線方向に流れる成分を有しないから、電磁誘導により検出コイルD0に起電力が誘導されることはない。したがって検出コイルD0には、電流が発生しない。
【0004】
図10は、検査体Tのキズの方向と検出コイルD0の配置関係を示す図で、図10(a)は、キズF0が検出コイルD0のコイル面と平行する方向(コイルの軸と直交する方向)にある場合を、図10(b)は、キズF0が検出コイルD0のコイル面と直交する方向(コイルの軸方向)にある場合を示す。
【0005】
まず図10(a)の場合、渦電流Ieは、検査体Tにおいて乱れて変化し、キズF0に沿って流れる成分が生じるため、検出コイルD0には、起電力が誘導され、いわゆるキズ信号が発生する。したがって検出コイルD0に発生するキズ信号によりキズF0を検出できる。他方図10(b)の場合、検出コイルD0の巻線方向に流れる成分はほとんどないため、検出コイルD0には、キズ信号はほとんど発生しない。したがって図10(b)の場合には、キズF0の検出が難しくなる。
【0006】
そこで図10(a)と図10(b)のキズF0を検出する方法として、図11のように、励磁コイルE0内に2つの検出コイルD1,D2を直交させて配置した
渦電流探傷プローブが提案されている(
【非特許文献1】参照)。
【0007】
【発明が解決しようとする課題】
図11の従来の渦電流探傷プローブは、励磁コイルE0内に2つの検出コイルD1,D2を直交させて配置しなければならないが、2つのコイルを交差させて組み立てることは、構造的に難しく、かつ渦電流探傷プローの構造が複雑になるためその組立て作業が困難であった。
本願発明は、これらの問題点に鑑み、キズの方向に関係なく、1個の検出コイルにより図10(a)のキズも、図10(b)のキズも検出できる渦電流探傷プローブを提供することを目的とする。
【0008】
【課題を解決するための手段】
本願発明の磁性材料の渦電流探傷用プローブは、励磁コイルと検出コイルを備えた渦電流探傷プローブにおいて、励磁コイルは磁性材料の検査体に一様な渦電流と一様な磁束を発生し、検出コイルは前記検査体のキズによって発生する渦電流の変化と漏洩磁束を検出することを特徴とする。
本願発明の磁性材料の渦電流探傷用プローブは、励磁コイルと検出コイルを備えた渦電流探傷プローブにおいて、励磁コイルは磁性材料の検査体に一様な渦電流と一様な磁束を発生し、検出コイルは前記検査体のキズに沿って流れる渦電流と前記キズにおいて発生する漏洩磁束を検出することを特徴とする。
本願発明の磁性材料の渦電流探傷用プローブは、前記1番目又は前記2番目に記載の磁性材料の渦電流探傷プローブにおいて、前記励磁コイルは矩形状の縦置き型であり、前記検出コイルはパンケーキ状であることを特徴とする。
【0009】
本願発明の磁性材料の渦電流探傷装置は、磁性材料の検査体に一様な渦電流及び一様な磁束を発生する励磁コイルと前記検査体のキズによって発生する渦電流の変化及び漏洩磁束を検出する検出コイルとからなる渦電流探傷プローブ、前記励磁コイルに励磁電流を供給する励磁電流供給器、前記検出コイルに誘導されるキズ信号を検出するキズ信号検出器、キズ信号検出器が検出したキズ信号に基づいてキズを評価するキズ評価器、及び前記渦電流探傷プローブを前記励磁コイルのコイル面と垂直な方向に走査するプローブ駆動装置を備えていることを特徴とする。
本願発明の磁性材料の渦電流探傷装置は、前記の磁性材料の渦電流探傷装置において、前記励磁コイルは矩形状の縦置き型であり、前記検出コイルはパンケーキ状であることを特徴とする。
【0010】
【発明の実施の形態】
図1〜図7により、本願発明の実施の形態に係る渦電流探傷プローブを説明する。なお各図に共通の部分は、同じ符号を使用している。
【0011】
図1は、本願発明の実施の形態に係る渦電流探傷プローブの構成を示す図で、図1(a)は、渦電流探傷プローブを検査体Tに設置したときの平面図、図1(b)は、図1(a)のY1−Y1部分の断面図である。
図1において、Tは、磁性材料の検査体、Eは、コイル面が矩形状の縦置き型の励磁コイル、Dは、パンケーキ状の検出コイル、Ecは、励磁コイルEの巻線である。t1〜t4は、検査体Tの端部を示す。渦電流探傷プローブは、検出コイルDが励磁コイルEと検査体Tの間に位置するように設置してある。
【0012】
図2は、図1の励磁コイルEに励磁電流を流したとき、検査体Tに発生する渦電流と磁束を説明する図で、図2(a)は、平面図、図2(b)は、図1(a)のY2−Y2部分の断面図である。
励磁コイルEに励磁電流を流すと、図2(a)のように励磁コイルEの巻線方向に一様に同じ方向に流れる渦電流、いわゆる一様な渦電流Ie1が発生する。検出コイルDには、渦電流Ie1により起電力Ed1,Ed2が誘導されるが、起電力Ed1,Ed2は、検出コイルDの巻線方向に関して逆方向となり、互いに打消し合う。その結果検出コイルDには、起電力が発生しない。したがって検出コイルDには、電流が発生しない。
【0013】
また励磁コイルEに励磁電流を流すと、図2(b)のように、励磁コイルEのコイル面と垂直な方向(励磁コイルEの巻線方向と直交する方向或いは励磁コイルEの軸方向)に一様な磁束Mf1が発生する。磁束Mf1は、検査体T中に発生し、検査体Tの外へ出ないから、磁束Mf1により検出コイルDに起電力が誘導されことはない。したがって検出コイルDには、電流が発生しない。
【0014】
図3は、検査体Tにキズがある場合の渦電流と磁束の変化を説明する図である。
まず図3(a)のように、検査体Tに渦電流Ie1と直交(或いは交差)する方向のスリット状のキズF1があるときは、キズF1付近で渦電流Ie1が乱れて変化し、キズF1に沿って流れる渦電流Ie2が生じる。
また図3(b)のように、検査体Tに渦電流Ie1と平行する方向(キズF1と直交(或いは交差)する方向)のスリット状のキズF2があるときは、磁束Mf1の一部は、キズF2において検査体Tの外へ漏れ、いわゆる漏洩磁束Mf2が生じる。
【0015】
図4、図5は、渦電流探傷プローブを励磁コイルEのコイル面と垂直な方向に走査したときに発生するキズ信号を説明する図である。
図4は、キズF1に起因して発生する渦電流Ie2とキズ信号の関係を説明する図である。
【0016】
図4(a)において、検出コイルDを矢印S方向に走査した場合、検出コイルDには、渦電流Ie2により起電力が誘導され、キズ信号は、図4(b)のようになる。キズ信号は、検出コイルDがキズF1に対して位置イにあるとき最大になり、位置ロにあるとき0になる。検出コイルDが位置ロにあるときは、渦電流Ie2は、キズF1の長さ方向と垂直な軸に関して対称になるから、検出コイルDの起電力は打消し合い、キズ信号は発生しない。検出コイルDが位置ロを過ぎると、キズ信号は極性が反転し、位置ハで最大になる。
【0017】
図5は、キズF2に起因して発生する漏洩磁束Mf2とキズ信号の関係を説明する図である。
図5(a)において、検出コイルDを矢印S方向に走査した場合、検出コイルDには、漏洩磁束Mf2により起電力が誘導され、キズ信号は、図5(b)のようになる。キズ信号は、検出コイルDがキズF2に対して位置ニにあるとき最大になり、位置ホにあるとき0になる。検出コイルDが位置ホにあるときは、キズF2が検出コイルDの中心を貫いているため、検出コイルDの起電力が打消し合い、キズ信号は発生しない。検出コイルDが位置ホを過ぎると、キズ信号は極性が反転し、位置ヘで最大になる。
【0018】
図4、図5から分かるように、本願発明の渦電流探傷プローブは、そのプローブを励磁コイルEのコイル面と垂直な方向に走査した場合、検査体Tのキズが渦電流Ie1と垂直な方向にあるときは渦電流によってキズを検出し、また検査体Tのキズが渦電流Ie1と平行な方向にあるときは漏洩磁束によってキズを検出することができる。したがって本願発明の渦電流探傷プローブは、キズの方向に関係なく検査体Tのキズを検出することができる。
【0019】
図6は、本願発明の渦電流探傷プローブを用いて測定したキズ信号パターンを示す図で、図6(a)は、検査体が磁性材料の場合を、図6(b)は、検査体が非磁性材料の場合を示す。
図6において、横軸は、励磁信号と同相のキズ信号成分を表し、縦軸は、励磁90度進相したキズ信号成分を表している。またキズの角度0度は、励磁コイルのコイル面と直交する方向のキズ(図4(a)に相当)を、キズの角度90度は、励磁コイルの巻線方向と平行な方向のキズ(図5(a)に相当)を示す。なお図6は、正規化してある。
【0020】
測定に用いた渦電流探傷プローブ等の寸法は、次の通りである。
励磁コイルは、幅30mm、長さ40mm、高さ30mm、検出コイルは、巻線断面積1×1mm2、外径6mmである。検査体は、160×160×15mm3のSM鋼材板(磁性材料)と160×160×1.5mm3の黄銅板(非磁性材料)を用い、SM鋼材板には、深さ1.5mm、長さ15mm、幅0.2mmのスリット状キズを形成し、黄銅板には、深さ1.2mm、長さ15mm、幅0.5mmのスリット状キズを形成した。励磁コイルには、20kHzの励磁電流を流した。
【0021】
渦電流探傷プローブを用いると、検査体が磁性材料の場合には、図6(a)のようにキズ角度が0度のときも、90度のときもともに大きなキズ信号を検出することができる。他方検査体が非磁性材料の場合には、図6(b)のようにキズ角度が0度のときのキズ信号は大きいが、90度のときのキズ信号は小さくなってしまう。
【0022】
図6から、検査体が磁性材料の場合には、漏洩磁束を検出することにより渦電流を検出する場合と同程度にキズ信号を検出できることが分かる。本願発明の渦電流探傷プローブは、漏洩磁束を利用することにより、1個の検出コイルを用いるのみで従来の2個の検出コイルを用いた場合と同様に直交(交差)する2方向のキズを検出することができる。
【0023】
図7は、本願発明の渦電流探傷プローブを用い、磁性材料の検査体について、キズの深さを変えて測定したキズ信号とリフトオフ雑音を示す。図7は、検出された信号の振幅の最大値のみをプロットしてある。
測定は、キズの角度が0度と90度で、キズの深さが、1.5mm、1.0mm、0.5mm、0.25mmの4種類のキズについて、渦電流探傷プローブのリフトオフ(渦電流探傷プローブと検査体Tの距離)の変化が0.1〜2.0mmの範囲で行った。
【0024】
図7から、本願発明の渦電流探傷プローブは、キズの角度が0度、90度いずれの場合にも、広い範囲の深さのキズを検出することができ、深さ0.25mmの程度の浅いキズも検出できることがわかる。また本願発明の渦電流探傷プローブは、リフトオフの変化に起因して発生する雑音、いわゆるリフトオフ雑音が非常に小さくなるから、リフトオフの変化の影響を受けずにキズを検出することができる。
なお検出されたキズ信号の振幅は、キズの深さによって異なるから、この振幅の違いからキズの深さを判別することもできる。
【0025】
前記実施の形態の渦電流探傷プローブは、矩形状の励磁コイルとパンケーキ状検出コイルについて説明したが、励磁コイルは、一様な渦電流と一様な磁束を発生するコイルであれば矩形状に限らず、例えば三角形状等他の形状であってもよい。また検出コイルは、パンケーキ状に限らず矩形状、三角形状等他の形状であってもよい。
【0026】
図8は、本発明の渦電流探傷プローブを用いた渦電流探傷装置の構成図である。励磁コイルEと検出コイルDからなる渦電流探傷プローブPは、渦電流探傷プローブ駆動装置11によって、磁性材料の検査体T上を励磁コイルEのコイル面と垂直な方向(矢印S)へ走査する。渦電流探傷プローブPの励磁コイルEは、励磁電流供給器12から供給される励磁電流によって、検査体Tに一様な渦電流と一様な磁束を発生する。検査体Tのキズによって発生する渦電流の変化と漏洩磁束によって、プローブPの検出コイルDに誘導されるキズ信号をキズ信号検出器13によって検出し、キズ評価器14より検査体Tのキズの有無、キズの深さ等を評価する。
【0027】
【発明の効果】
本願の発明者は、一様な渦電流を発生する励磁コイルは、一様な磁束を発生し、検査体にキズがある場合には、そのキズの部分において漏洩磁束を発生することを突き止めた。そしてその漏洩磁束は、キズの検出に利用できることを実験により確認した。
【0028】
本願発明の渦電流探傷プローブは、そのプローブを励磁コイルのコイル面と垂直な方向に走査した場合、検査体のキズが励磁コイルのコイル面と垂直(走査方向と平行)なキズは渦電流によって検出し、また検査体のキズが励磁コイルのコイル面と平行(走査方向と直交)なキズは漏洩磁束によって検出することができる。したがって本願発明の渦電流探傷プローブは、検査体のキズの方向に関係なくそのキズを検出することができる。
【0029】
本願発明の渦電流探傷プローブは、1個の検出コイルを用いるのみでよく、従来のように2つのコイルを交差させる必要がないから、構造が簡単になり、組立て作業が容易になる。その結果本願発明は、渦電流探傷プローブのコストを低減することもできる。
本願発明の渦電流探傷プローブは、一様な渦電流と一様な磁束を利用するから、リフトオフ雑音がほとんど発生しない。したがって本願発明の渦電流探傷プローブは、リフトオフ変動の影響を受けることなく高いSN比でキズ信号を検出することができる。
【図面の簡単な説明】
【図1】本願発明の実施の形態に係る渦電流探傷プローブの構成を示す図である。
【図2】本願発明の実施の形態に係る渦電流探傷プローブにより、キズのない検査体に発生する渦電流と磁束を説明する図である。
【図3】本願発明の実施の形態に係る渦電流探傷プローブにより、キズのある検査体に発生する渦電流と磁束の変化を説明する図である。
【図4】図3(a)の渦電流Ie2とキズ信号の関係を説明する図である。
【図5】図3(b)の漏洩磁束Mf2とキズ信号の関係を説明する図である。
【図6】本願発明の実施の形態に係る渦電流探傷プローブにより、磁性材料と非磁性材料の検査体について検出した信号パターンを示す図である。
【図7】本願発明の実施の形態に係る渦電流探傷プローブにより、磁性材料の検査体の深さが異なるキズについて検出した信号パターンを示す図である。
【図8】本発明の渦電流探傷プローブを用いた渦電流探傷装置の構成図である。
【図9】従来の渦電流探傷プローブの斜視図と渦電流を説明する図である。
【図10】従来の渦電流探傷プローブの検出コイルによる検査体のキズの検出を説明する図である。
【図11】従来の検出コイルを2個備えた渦電流探傷プローブの平面図である。
【符号の説明】
D 検出コイル
E 励磁コイル
Ec 励磁コイルの巻線
F1,F2 検査体のキズ
Ed1,Ed2 起電力
Ie1,Ie2 渦電流
Mf1,Mf2 磁束
P 渦電流探傷プローブ
T 検査体
t1〜t4 検査体Tの端部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an eddy current flaw detection probe for detecting a flaw in a magnetic material by a uniform eddy current and leakage magnetic flux, and an eddy current flaw detection apparatus including the probe.
[0002]
[Prior art]
[Non-Patent Document 1] Summary of the lectures of the spring meeting of 2002 issued by the Japan Non-Destructive Inspection Association on May 28, 2002 (pp. 209, 210)
A conventional eddy current testing probe will be described with reference to FIGS. Note that the same reference numerals are used for the parts common to the drawings.
[0003]
FIG. 9 is a perspective view of a conventional eddy current flaw detection probe (FIG. 9A) and a diagram showing eddy currents (FIG. 9B). For example, see [Non-Patent Document 1] for the eddy current flaw detection probe in FIG.
An eddy-current flaw detection probe including a pancake-shaped excitation coil E0 and a rectangular vertically-placed detection coil D0 is installed on the magnetic material inspection object T. When an exciting current is supplied to the exciting coil E0, an eddy current Ie in the winding direction of the exciting coil E0 is generated in the test object T as shown in FIG. 9B. In this case, since the eddy current Ie does not have a component flowing in the winding direction of the detection coil D0, no electromotive force is induced in the detection coil D0 by electromagnetic induction. Therefore, no current is generated in the detection coil D0.
[0004]
FIG. 10 is a diagram showing the relationship between the direction of the flaw of the test object T and the arrangement of the detection coil D0. FIG. 10A shows the direction in which the flaw F0 is parallel to the coil surface of the detection coil D0 (perpendicular to the axis of the coil). 10B), and FIG. 10B shows a case where the flaw F0 is in a direction (axial direction of the coil) orthogonal to the coil surface of the detection coil D0.
[0005]
First, in the case of FIG. 10A, the eddy current Ie is disturbed and changes in the test object T, and a component flowing along the flaw F0 is generated. Therefore, an electromotive force is induced in the detection coil D0, and a so-called flaw signal is generated. appear. Therefore, the flaw F0 can be detected by the flaw signal generated in the detection coil D0. On the other hand, in the case of FIG. 10B, since almost no component flows in the winding direction of the detection coil D0, almost no flaw signal is generated in the detection coil D0. Therefore, in the case of FIG. 10B, it is difficult to detect the flaw F0.
[0006]
Therefore, as a method of detecting the flaw F0 in FIGS. 10A and 10B, an eddy current flaw detection probe in which two detection coils D1 and D2 are arranged orthogonally in an excitation coil E0 as shown in FIG. Proposed(
[See Non-Patent Document 1].
[0007]
[Problems to be solved by the invention]
In the conventional eddy current inspection probe shown in FIG. 11, two detection coils D1 and D2 must be arranged orthogonally in the excitation coil E0, but it is structurally difficult to assemble the two coils crossing each other. In addition, since the structure of the eddy current inspection probe is complicated, the assembling work is difficult.
In view of these problems, the present invention provides an eddy current flaw detection probe that can detect the flaw in FIG. 10A and the flaw in FIG. 10B with one detection coil regardless of the direction of the flaw. The purpose is to:
[0008]
[Means for Solving the Problems]
The magnetic material eddy current flaw detection probe of the present invention is an eddy current flaw detection probe provided with an excitation coil and a detection coil, wherein the excitation coil generates a uniform eddy current and a uniform magnetic flux on the test object of the magnetic material, The detection coil detects a change in an eddy current and a leakage magnetic flux generated by a flaw of the inspection object.
The magnetic material eddy current flaw detection probe of the present invention is an eddy current flaw detection probe provided with an excitation coil and a detection coil, wherein the excitation coil generates a uniform eddy current and a uniform magnetic flux on the test object of the magnetic material, The detection coil detects an eddy current flowing along a flaw of the test object and a leakage magnetic flux generated at the flaw.
The magnetic material eddy current inspection probe according to the present invention is the magnetic material eddy current inspection probe according to the first or second aspect, wherein the excitation coil is a rectangular vertical type, and the detection coil is a pan. It is characterized by a cake shape.
[0009]
The magnetic material eddy current flaw detector of the present invention uses an exciting coil that generates a uniform eddy current and a uniform magnetic flux in a magnetic material test object, and a change in eddy current and a leakage magnetic flux generated by a scratch of the test object. An eddy current flaw detection probe comprising a detection coil for detection, an excitation current supply device for supplying an excitation current to the excitation coil, a flaw signal detector for detecting a flaw signal induced in the detection coil, and a flaw signal detector. A flaw evaluator that evaluates flaws based on flaw signals and a probe drive device that scans the eddy current flaw detection probe in a direction perpendicular to the coil surface of the exciting coil are provided.
The magnetic material eddy current flaw detector of the present invention is characterized in that, in the magnetic material eddy current flaw detector, the exciting coil is a rectangular vertical type and the detection coil is a pancake shape. .
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
An eddy current testing probe according to an embodiment of the present invention will be described with reference to FIGS. Note that the same reference numerals are used for the parts common to the drawings.
[0011]
FIG. 1 is a diagram showing a configuration of an eddy current flaw detection probe according to an embodiment of the present invention. FIG. 1A is a plan view when the eddy current flaw detection probe is installed on a test object T, and FIG. 1) is a cross-sectional view taken along the line Y1-Y1 in FIG.
In FIG. 1, T is a test piece of a magnetic material, E is a vertical excitation coil having a rectangular coil surface, D is a pancake detection coil, and Ec is a winding of the excitation coil E. . t1 to t4 indicate end portions of the test object T. The eddy current flaw detection probe is installed so that the detection coil D is located between the excitation coil E and the test object T.
[0012]
2A and 2B are diagrams for explaining an eddy current and a magnetic flux generated in the test object T when an exciting current is applied to the exciting coil E in FIG. 1. FIG. 2A is a plan view, and FIG. FIG. 2 is a sectional view taken along line Y2-Y2 of FIG.
When an exciting current flows through the exciting coil E, an eddy current that flows in the same direction in the winding direction of the exciting coil E, that is, a so-called uniform eddy current Ie1 is generated as shown in FIG. Electromotive forces Ed1 and Ed2 are induced in the detection coil D by the eddy current Ie1, but the electromotive forces Ed1 and Ed2 are in opposite directions with respect to the winding direction of the detection coil D and cancel each other. As a result, no electromotive force is generated in the detection coil D. Therefore, no current is generated in the detection coil D.
[0013]
When an exciting current is applied to the exciting coil E, a direction perpendicular to the coil surface of the exciting coil E (a direction orthogonal to the winding direction of the exciting coil E or an axial direction of the exciting coil E) is applied as shown in FIG. , A uniform magnetic flux Mf1 is generated. Since the magnetic flux Mf1 is generated in the test object T and does not go out of the test object T, no electromotive force is induced in the detection coil D by the magnetic flux Mf1. Therefore, no current is generated in the detection coil D.
[0014]
FIG. 3 is a diagram illustrating changes in eddy current and magnetic flux when the inspection object T has a flaw.
First, as shown in FIG. 3A, when there is a slit-shaped flaw F1 in a direction orthogonal (or intersecting) with the eddy current Ie1 in the test object T, the eddy current Ie1 is disturbed and changes near the flaw F1, and the flaw is changed. An eddy current Ie2 flowing along F1 is generated.
Further, as shown in FIG. 3B, when the inspection object T has a slit-shaped flaw F2 in a direction parallel to the eddy current Ie1 (a direction orthogonal (or crossing) with the flaw F1), a part of the magnetic flux Mf1 is partially removed. , F2 leaks out of the test object T, so-called leakage magnetic flux Mf2 is generated.
[0015]
4 and 5 are diagrams illustrating a flaw signal generated when the eddy current flaw detection probe is scanned in a direction perpendicular to the coil surface of the exciting coil E.
FIG. 4 is a diagram illustrating the relationship between the eddy current Ie2 generated due to the flaw F1 and the flaw signal.
[0016]
In FIG. 4A, when the detection coil D is scanned in the direction of the arrow S, an electromotive force is induced in the detection coil D by the eddy current Ie2, and the flaw signal becomes as shown in FIG. 4B. The flaw signal becomes maximum when the detection coil D is at the position A with respect to the flaw F1, and becomes 0 when the detection coil D is at the position B. When the detection coil D is at the position B, the eddy current Ie2 is symmetric with respect to an axis perpendicular to the length direction of the flaw F1, so that the electromotive force of the detection coil D cancels out and no flaw signal is generated. When the detection coil D passes the position B, the polarity of the flaw signal is inverted and becomes maximum at the position C.
[0017]
FIG. 5 is a diagram illustrating the relationship between the leakage magnetic flux Mf2 generated due to the flaw F2 and the flaw signal.
In FIG. 5A, when the detection coil D is scanned in the direction of arrow S, an electromotive force is induced in the detection coil D by the leakage magnetic flux Mf2, and the flaw signal becomes as shown in FIG. 5B. The flaw signal becomes maximum when the detection coil D is at the position d with respect to the flaw F2, and becomes 0 when it is at the position e. When the detection coil D is at the position E, the flaw F2 penetrates the center of the detection coil D, so that the electromotive forces of the detection coil D cancel each other and no flaw signal is generated. When the detection coil D passes the position E, the polarity of the flaw signal is inverted and becomes maximum at the position.
[0018]
As can be seen from FIGS. 4 and 5, in the eddy current flaw detection probe of the present invention, when the probe is scanned in a direction perpendicular to the coil surface of the exciting coil E, the flaw of the test object T is directed in a direction perpendicular to the eddy current Ie1. In the case of (1), the flaw can be detected by the eddy current, and when the flaw of the test object T is in the direction parallel to the eddy current Ie1, the flaw can be detected by the leakage magnetic flux. Therefore, the eddy current inspection probe of the present invention can detect a flaw of the test object T regardless of the direction of the flaw.
[0019]
FIG. 6 is a diagram showing a flaw signal pattern measured by using the eddy current flaw detection probe of the present invention. FIG. 6A shows a case where the test object is a magnetic material, and FIG. The case of a non-magnetic material is shown.
In FIG. 6, the horizontal axis represents a flaw signal component in phase with the excitation signal, and the vertical axis represents a flaw signal component advanced by 90 degrees in excitation. A scratch angle of 0 degree refers to a scratch in a direction orthogonal to the coil surface of the exciting coil (corresponding to FIG. 4A), and a 90 ° scratch angle refers to a scratch in a direction parallel to the winding direction of the exciting coil. FIG. 5 (a) is shown. FIG. 6 is normalized.
[0020]
The dimensions of the eddy current probe used for the measurement are as follows.
The excitation coil has a width of 30 mm, a length of 40 mm, and a height of 30 mm. The detection coil has a winding cross-sectional area of 1 × 1 mm 2 and an outer diameter of 6 mm. The test body uses a 160 × 160 × 15 mm 3 SM steel plate (magnetic material) and a 160 × 160 × 1.5 mm 3 brass plate (non-magnetic material). The SM steel plate has a depth of 1.5 mm. A slit flaw having a length of 15 mm and a width of 0.2 mm was formed, and a slit flaw having a depth of 1.2 mm, a length of 15 mm and a width of 0.5 mm was formed on the brass plate. An excitation current of 20 kHz was passed through the excitation coil.
[0021]
When the test object is a magnetic material, a large flaw signal can be detected both when the flaw angle is 0 degree and when the flaw angle is 90 degrees as shown in FIG. . On the other hand, when the test object is a non-magnetic material, the flaw signal is large when the flaw angle is 0 degrees as shown in FIG. 6B, but becomes small when the flaw angle is 90 degrees.
[0022]
FIG. 6 shows that when the test object is a magnetic material, the flaw signal can be detected by detecting the leakage magnetic flux to the same extent as when detecting the eddy current. The eddy current flaw detection probe of the present invention utilizes a leakage magnetic flux to remove scratches in two orthogonal (intersecting) directions in the same manner as in the case of using two conventional detection coils by using only one detection coil. Can be detected.
[0023]
FIG. 7 shows a flaw signal and a lift-off noise measured by using the eddy current flaw detection probe of the present invention and changing the flaw depth of a test piece of a magnetic material. FIG. 7 plots only the maximum value of the amplitude of the detected signal.
The measurement was carried out by measuring the lift-off (eddy) of the eddy current probe for four types of flaws with a flaw angle of 0 degree and 90 degrees and a flaw depth of 1.5 mm, 1.0 mm, 0.5 mm, and 0.25 mm. The change of the current flaw detection probe and the test object T) was performed in the range of 0.1 to 2.0 mm.
[0024]
From FIG. 7, it can be seen that the eddy current flaw detection probe of the present invention can detect a flaw having a wide range of depths regardless of whether the flaw angle is 0 ° or 90 °, and the flaw angle is about 0.25 mm. It can be seen that shallow scratches can be detected. Further, the eddy current flaw detection probe of the present invention can detect a flaw without being affected by a change in lift-off because noise generated due to a change in lift-off, that is, a so-called lift-off noise is extremely small.
Since the amplitude of the detected flaw signal varies depending on the depth of the flaw, the depth of the flaw can be determined from the difference in the amplitude.
[0025]
Although the eddy current flaw detection probe of the embodiment has been described with respect to the rectangular excitation coil and the pancake detection coil, the excitation coil may be rectangular if it generates a uniform eddy current and a uniform magnetic flux. However, other shapes such as a triangular shape may be used. Further, the detection coil is not limited to the pancake shape, and may have another shape such as a rectangular shape, a triangular shape, or the like.
[0026]
FIG. 8 is a configuration diagram of an eddy current inspection device using the eddy current inspection probe of the present invention. The eddy current flaw detection probe P composed of the excitation coil E and the detection coil D is scanned by the eddy current flaw detection probe driving device 11 on the test object T of the magnetic material in a direction (arrow S) perpendicular to the coil surface of the excitation coil E. . The exciting coil E of the eddy current flaw detection probe P generates a uniform eddy current and a uniform magnetic flux in the test object T by the exciting current supplied from the exciting current supplier 12. A flaw signal induced in the detection coil D of the probe P is detected by a flaw signal detector 13 based on a change in eddy current generated by the flaw of the test object T and a leakage magnetic flux. Evaluate the presence / absence, scratch depth, etc.
[0027]
【The invention's effect】
The inventor of the present application has found that an exciting coil that generates a uniform eddy current generates a uniform magnetic flux, and if a test piece has a flaw, generates a leakage magnetic flux at the flaw. . Experiments have confirmed that the leakage magnetic flux can be used for detecting flaws.
[0028]
In the eddy current flaw detection probe of the present invention, when the probe is scanned in a direction perpendicular to the coil surface of the exciting coil, the flaw of the inspection object is perpendicular to the coil surface of the exciting coil (parallel to the scanning direction). Flaws detected and flaws in the inspection object parallel to the coil surface of the exciting coil (perpendicular to the scanning direction) can be detected by leakage magnetic flux. Therefore, the eddy current inspection probe of the present invention can detect a flaw regardless of the direction of the flaw of the inspection object.
[0029]
The eddy current flaw detection probe of the present invention only needs to use one detection coil, and it is not necessary to cross two coils as in the prior art, so that the structure is simplified and the assembling work is facilitated. As a result, the present invention can also reduce the cost of the eddy current inspection probe.
Since the eddy current inspection probe of the present invention utilizes a uniform eddy current and a uniform magnetic flux, almost no lift-off noise is generated. Therefore, the eddy current flaw detection probe of the present invention can detect a flaw signal with a high SN ratio without being affected by lift-off fluctuation.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of an eddy current inspection probe according to an embodiment of the present invention.
FIG. 2 is a diagram illustrating an eddy current and a magnetic flux generated in a defect-free inspection object by the eddy current inspection probe according to the embodiment of the present invention.
FIG. 3 is a diagram illustrating changes in eddy current and magnetic flux generated in a flawed inspection object by the eddy current flaw detection probe according to the embodiment of the present invention.
FIG. 4 is a diagram illustrating a relationship between an eddy current Ie2 and a flaw signal in FIG.
FIG. 5 is a diagram illustrating a relationship between a leakage magnetic flux Mf2 and a flaw signal in FIG. 3B.
FIG. 6 is a diagram showing a signal pattern detected by the eddy current flaw detection probe according to the embodiment of the present invention for an inspection object made of a magnetic material and a non-magnetic material.
FIG. 7 is a diagram showing a signal pattern detected by the eddy current flaw detection probe according to the embodiment of the present invention for a flaw having a different depth of an inspection object of a magnetic material.
FIG. 8 is a configuration diagram of an eddy current inspection device using the eddy current inspection probe of the present invention.
FIG. 9 is a perspective view of a conventional eddy current flaw detection probe and a diagram for explaining eddy currents.
FIG. 10 is a diagram illustrating detection of a flaw of an inspection object by a detection coil of a conventional eddy current detection probe.
FIG. 11 is a plan view of an eddy current flaw detection probe provided with two conventional detection coils.
[Explanation of symbols]
D Detector coil E Excitation coil Ec Windings F1, F2 of excitation coil Scratches Ed1, Ed2 Electromotive force Ie1, Ie2 Eddy currents Mf1, Mf2 Magnetic flux P Eddy current flaw detection probe T Inspection body t1 to t4

Claims (5)

励磁コイルと検出コイルを備えた渦電流探傷プローブにおいて、励磁コイルは磁性材料の検査体に一様な渦電流と一様な磁束を発生し、検出コイルは前記検査体のキズによって発生する渦電流の変化と漏洩磁束を検出することを特徴とする磁性材料の渦電流探傷プローブ。In an eddy current flaw detection probe having an excitation coil and a detection coil, the excitation coil generates a uniform eddy current and a uniform magnetic flux on a magnetic material test object, and the detection coil generates an eddy current generated by a scratch on the test object. Eddy current flaw detection probe of a magnetic material, characterized by detecting a change in magnetic flux and a leakage magnetic flux. 励磁コイルと検出コイルを備えた渦電流探傷プローブにおいて、励磁コイルは磁性材料の検査体に一様な渦電流と一様な磁束を発生し、検出コイルは前記検査体のキズに沿って流れる渦電流と前記キズにおいて発生する漏洩磁束を検出することを特徴とする磁性材料の渦電流探傷プローブ。In an eddy current flaw detection probe provided with an exciting coil and a detecting coil, the exciting coil generates a uniform eddy current and a uniform magnetic flux on a test piece of a magnetic material, and the detecting coil generates an eddy current flowing along a flaw of the test piece. An eddy current flaw detection probe for a magnetic material, which detects a current and a leakage magnetic flux generated by the flaw. 請求項1又は請求項2に記載の磁性材料の渦電流探傷プローブにおいて、前記励磁コイルは矩形状の縦置き型であり、前記検出コイルはパンケーキ状であることを特徴とする磁性材料の渦電流探傷プローブ。3. The eddy current flaw detection probe for a magnetic material according to claim 1, wherein the excitation coil is a rectangular vertical type, and the detection coil is a pancake shape. Current testing probe. 磁性材料の検査体に一様な渦電流及び一様な磁束を発生する励磁コイルと前記検査体のキズによって発生する渦電流の変化及び漏洩磁束を検出する検出コイルとからなる渦電流探傷プローブ、前記励磁コイルに励磁電流を供給する励磁電流供給器、前記検出コイルに誘導されるキズ信号を検出するキズ信号検出器、キズ信号検出器が検出したキズ信号に基づいてキズを評価するキズ評価器、及び前記渦電流探傷プローブを前記励磁コイルのコイル面と垂直な方向に走査するプローブ駆動装置を備えていることを特徴とする磁性材料の渦電流探傷装置。An eddy current flaw detection probe comprising: an excitation coil that generates a uniform eddy current and a uniform magnetic flux on a test piece of magnetic material; and a detection coil that detects a change in eddy current and a leakage magnetic flux generated by a scratch on the test piece, An exciting current supplier for supplying an exciting current to the exciting coil, a flaw signal detector for detecting a flaw signal induced in the detection coil, a flaw evaluator for evaluating flaws based on a flaw signal detected by the flaw signal detector An eddy current flaw detection device for a magnetic material, comprising: a probe driving device for scanning the eddy current flaw detection probe in a direction perpendicular to a coil surface of the exciting coil. 請求項4に記載の磁性材料の渦電流探傷装置において、前記励磁コイルは矩形状の縦置き型であり、前記検出コイルはパンケーキ状であることを特徴とする磁性材料の渦電流探傷装置。5. The eddy current flaw detector for a magnetic material according to claim 4, wherein the exciting coil is a rectangular vertical type, and the detection coil has a pancake shape.
JP2002370917A 2002-12-20 2002-12-20 Eddy current testing probe and eddy current testing equipment for magnetic materials Expired - Fee Related JP4117645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002370917A JP4117645B2 (en) 2002-12-20 2002-12-20 Eddy current testing probe and eddy current testing equipment for magnetic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002370917A JP4117645B2 (en) 2002-12-20 2002-12-20 Eddy current testing probe and eddy current testing equipment for magnetic materials

Publications (2)

Publication Number Publication Date
JP2004205212A true JP2004205212A (en) 2004-07-22
JP4117645B2 JP4117645B2 (en) 2008-07-16

Family

ID=32809954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002370917A Expired - Fee Related JP4117645B2 (en) 2002-12-20 2002-12-20 Eddy current testing probe and eddy current testing equipment for magnetic materials

Country Status (1)

Country Link
JP (1) JP4117645B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189347A (en) * 2005-01-06 2006-07-20 Tatsuo Hiroshima Flaw detection probe and flaw detector
JP2006220630A (en) * 2005-02-14 2006-08-24 Marktec Corp Probe for eddy current flaw detection
JP2006322860A (en) * 2005-05-20 2006-11-30 Marktec Corp Eddy current flaw detection probe
JP2007183197A (en) * 2006-01-10 2007-07-19 Hitachi Ltd Eddy current flaw sensor
JP2009287981A (en) * 2008-05-27 2009-12-10 Marktec Corp Eddy-current flaw detector and eddy-current flaw detecting method
JP2011191324A (en) * 2011-07-04 2011-09-29 Tatsuo Hiroshima Flaw detection probe
JP2012002705A (en) * 2010-06-17 2012-01-05 Toyota Motor Corp Eddy current measuring sensor and eddy current measuring method
JP2017058325A (en) * 2015-09-18 2017-03-23 株式会社Ihi検査計測 Eddy current testing equipment and method of using the same
CN112858467A (en) * 2021-04-09 2021-05-28 中国石油大学(华东) Rotating electromagnetic field pipeline crack detection probe and detection system in any direction

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189347A (en) * 2005-01-06 2006-07-20 Tatsuo Hiroshima Flaw detection probe and flaw detector
JP2006220630A (en) * 2005-02-14 2006-08-24 Marktec Corp Probe for eddy current flaw detection
JP4484723B2 (en) * 2005-02-14 2010-06-16 マークテック株式会社 Eddy current testing probe
JP2006322860A (en) * 2005-05-20 2006-11-30 Marktec Corp Eddy current flaw detection probe
JP2007183197A (en) * 2006-01-10 2007-07-19 Hitachi Ltd Eddy current flaw sensor
JP4627499B2 (en) * 2006-01-10 2011-02-09 株式会社日立製作所 Eddy current flaw detection sensor
JP2009287981A (en) * 2008-05-27 2009-12-10 Marktec Corp Eddy-current flaw detector and eddy-current flaw detecting method
JP2012002705A (en) * 2010-06-17 2012-01-05 Toyota Motor Corp Eddy current measuring sensor and eddy current measuring method
US8593137B2 (en) 2010-06-17 2013-11-26 Toyota Jidosha Kabushiki Kaisha Eddy current sensor and eddy current measurement method
JP2011191324A (en) * 2011-07-04 2011-09-29 Tatsuo Hiroshima Flaw detection probe
JP2017058325A (en) * 2015-09-18 2017-03-23 株式会社Ihi検査計測 Eddy current testing equipment and method of using the same
CN112858467A (en) * 2021-04-09 2021-05-28 中国石油大学(华东) Rotating electromagnetic field pipeline crack detection probe and detection system in any direction

Also Published As

Publication number Publication date
JP4117645B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
US5130652A (en) AC magnetic flux leakage flaw detecting apparatus for detecting flaws in flat surfaces with rotating leakage detection element
US8037764B2 (en) Device and method for the material testing and/or thickness measurements of a test object that contains at least fractions of electrically conductive and ferromagnetic material
JP4247723B2 (en) Eddy current flaw detection method and eddy current flaw detection apparatus
EP1674861A1 (en) Eddy current probe and inspection method comprising a pair of sense coils
JP2002195984A (en) Magnetic leakage detecting sensor for magnetic test device
JP6681069B2 (en) Magnetic nondestructive inspection method and magnetic nondestructive inspection apparatus
JP5851783B2 (en) Eddy current testing probe
JP4117645B2 (en) Eddy current testing probe and eddy current testing equipment for magnetic materials
JP4804006B2 (en) Flaw detection probe and flaw detection apparatus
JP2011047736A (en) Method of inspecting austenite-based stainless steel welding section
JP3938886B2 (en) Eddy current testing probe and eddy current testing equipment
JP3979606B2 (en) Eddy current flaw detection probe and eddy current flaw detection device using the probe
JP5140214B2 (en) Rotating eddy current flaw detection probe
JP2006322860A (en) Eddy current flaw detection probe
JP3981964B2 (en) Eddy current flaw detection probe and eddy current flaw detection device using the probe
JP3942165B2 (en) Eddy current testing probe
JP2014066688A (en) Eddy current flaw detection probe, and eddy current flaw detection device
JP4484723B2 (en) Eddy current testing probe
JP2016080596A (en) Eddy current flaw detection probe
JPWO2005114165A1 (en) Eddy current flaw detection probe and eddy current flaw detection device
JP2009287981A (en) Eddy-current flaw detector and eddy-current flaw detecting method
JP2006010665A (en) Eddy current flaw detecting method and eddy current flaw detecting probe for realizing deep penetration of eddy current
JP2017090364A (en) Leakage magnetic flux flaw detection device of thin steel strip and flaw detection method
JP5204938B2 (en) Eddy current testing probe
JP2022134986A (en) Detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4117645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees