JP2009287981A - Eddy-current flaw detector and eddy-current flaw detecting method - Google Patents

Eddy-current flaw detector and eddy-current flaw detecting method Download PDF

Info

Publication number
JP2009287981A
JP2009287981A JP2008138798A JP2008138798A JP2009287981A JP 2009287981 A JP2009287981 A JP 2009287981A JP 2008138798 A JP2008138798 A JP 2008138798A JP 2008138798 A JP2008138798 A JP 2008138798A JP 2009287981 A JP2009287981 A JP 2009287981A
Authority
JP
Japan
Prior art keywords
coil
excitation
scratch
eddy current
current flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008138798A
Other languages
Japanese (ja)
Inventor
Naoki Saito
直樹 斎藤
Takashi Hibino
俊 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marktec Corp
Original Assignee
Marktec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marktec Corp filed Critical Marktec Corp
Priority to JP2008138798A priority Critical patent/JP2009287981A/en
Publication of JP2009287981A publication Critical patent/JP2009287981A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To make the phases of flaw signals constant, with respect to flaws in all of directions in an eddy-current flaw detecting probe constituted so that two exciting coils are arranged so as to allow the coil axes of them to cross each other at a right angle and separate exciting power supplies are respectively connected to the exciting coils. <P>SOLUTION: The exciting power supplies EV1 and EV2 which differ in frequencies are connected to the exciting coils 11 and 12 and are arranged so that the coil axes of them may cross each other at right angles, and the frequency of the exciting power supply EV1 is set to f1, while the frequency of the exciting power supply EV2 is set to f2. The detection output of a detection coil separately performs synchronous detection by a reference current, having the same frequency as the exciting power supplies EV1 and EV2 to separately take out flaw signals. The maximum amplitude characteristics of both flaw signals after synchronous detection are indicated by graphs b1 and b2. The phases of both flaw signals after synchronous detection are not changed by the angles of the flaws. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本願発明は、渦電流探傷装置と渦電流探傷方法に関する。   The present invention relates to an eddy current flaw detector and an eddy current flaw detection method.

従来回転磁界(回転渦電流)を用いて全方向のキズを検出する回転渦電流探傷プローブが提案されている(例えば特許文献1参照)。
図6、図7により従来の回転磁界を用いた渦電流探傷プローブを説明する。
図6は、励磁コイルと検出コイルの配置を示す図で、図6(a)は、平面図、図6(b)は、図6(a)のX1部分の矢印方向の断面図、図6(c)は、図6(a)のX2部分の矢印方向の断面図である。
Conventionally, a rotating eddy current flaw detection probe that detects flaws in all directions using a rotating magnetic field (rotating eddy current) has been proposed (see, for example, Patent Document 1).
A conventional eddy current flaw detection probe using a rotating magnetic field will be described with reference to FIGS.
6A and 6B are diagrams showing the arrangement of the excitation coil and the detection coil. FIG. 6A is a plan view, FIG. 6B is a cross-sectional view of the X1 portion in FIG. (C) is sectional drawing of the arrow direction of X2 part of Fig.6 (a).

渦電流探傷プローブは、励磁コイル部1と検出コイル2からなり、励磁コイル部1は、2個(一対)の四角形の励磁コイル11,12からなる。励磁コイル11,12は、一方の励磁コイル11の内側に他方の励磁コイル12を配置(挿入)し、両励磁コイルのコイル軸(コイル中心軸)が直交する(コイル面も直交する)ように配置してある。また検出コイル2は、コイル軸が励磁コイル11,12のコイル軸と直交する(コイル面は両励磁コイルのコイル面と直交する)ように、励磁コイル11の外周面(外側)の略中央に配置してある。そして励磁コイル11,12は、被検査体Mの検査面M1上にコイル軸が検査面M1と平行するように(コイル面は検査面M1と直交するように)設置し、検出コイル2は、励磁コイル11と検査面M1の間にコイル軸が検査面M1と直交するように(コイル面は検査面M1と平行するように)設置してある。なおコイル面は、巻線に囲まれたコイル軸と直交する面である。
図6の渦電流探傷プローブは、励磁コイル11,12を1個のボビンに重ね巻きして形成するため、一方の励磁コイル11の内側に他方の励磁コイル12を配置(挿入)しているが、必ずしも一方の内側に他方を挿入する必要はなく、両励磁コイルは、コイル軸が直交するように配置してあればよい。
The eddy current flaw detection probe includes an excitation coil unit 1 and a detection coil 2, and the excitation coil unit 1 includes two (a pair) square excitation coils 11 and 12. The excitation coils 11 and 12 have the other excitation coil 12 disposed (inserted) inside the one excitation coil 11 so that the coil axes (coil central axes) of both excitation coils are orthogonal (coil surfaces are also orthogonal). It is arranged. In addition, the detection coil 2 has a coil axis orthogonal to the coil axes of the excitation coils 11 and 12 (the coil surface is orthogonal to the coil surfaces of both excitation coils), and is substantially at the center of the outer peripheral surface (outside) of the excitation coil 11. It is arranged. The excitation coils 11 and 12 are placed on the inspection surface M1 of the object M to be inspected so that the coil axis is parallel to the inspection surface M1 (the coil surface is orthogonal to the inspection surface M1). Between the exciting coil 11 and the inspection surface M1, it is installed so that the coil axis is orthogonal to the inspection surface M1 (the coil surface is parallel to the inspection surface M1). The coil surface is a surface orthogonal to the coil axis surrounded by the windings.
In the eddy current flaw detection probe shown in FIG. 6, the exciting coils 11 and 12 are formed by being wound around one bobbin, and therefore, the other exciting coil 12 is disposed (inserted) inside one exciting coil 11. It is not always necessary to insert the other inside one, and the two exciting coils may be disposed so that the coil axes are orthogonal to each other.

図7は、図6の励磁コイル11,12により回転磁界を発生する励磁方法を説明する図である。
図7(a)は、励磁コイルに励磁電源を接続した状態を示し、図7(b)は、キズの方向(角度)とキズ信号の関係を説明する図で、キズ信号のパターン(ベクトル波形)を示す。図7(b)において、横軸は、キズ信号の0相成分の振幅を、縦軸は、キズ信号の90度進相成分の振幅を表している。
励磁コイル11,12には、周波数が同じで位相が90度異なる励磁電源EV1,EV2を接続してある。励磁電源EV1,EVから励磁コイル11,12に励磁電流を供給すると、回転磁界が発生し、被検査体Mの検査面M1に回転渦電流が発生(誘導)する。
検査面M1にキズがあると、回転渦電流により検出コイル2に検出出力(高周波のキズ信号)が発生(誘導)する。検出コイル2の検出出力は、励磁電流と同じ周波数の参照電流(搬送波)で同期検波してキズ信号を取り出す。
FIG. 7 is a diagram for explaining an excitation method for generating a rotating magnetic field by the excitation coils 11 and 12 of FIG.
FIG. 7A shows a state in which an excitation power source is connected to the excitation coil, and FIG. 7B is a diagram for explaining the relationship between a scratch direction (angle) and a scratch signal, and a scratch signal pattern (vector waveform). ). In FIG. 7B, the horizontal axis represents the amplitude of the zero-phase component of the scratch signal, and the vertical axis represents the amplitude of the 90-degree phase advance component of the scratch signal.
Excitation power sources EV1 and EV2 having the same frequency and a phase difference of 90 degrees are connected to the excitation coils 11 and 12, respectively. When an excitation current is supplied from the excitation power sources EV1 and EV to the excitation coils 11 and 12, a rotating magnetic field is generated, and a rotating eddy current is generated (inducted) on the inspection surface M1 of the inspection object M.
If there is a scratch on the inspection surface M1, a detection output (a high-frequency scratch signal) is generated (inducted) in the detection coil 2 due to the rotating eddy current. The detection output of the detection coil 2 is synchronously detected with a reference current (carrier wave) having the same frequency as the excitation current, and a scratch signal is extracted.

キズ信号は、キズの方向(角度)によって位相が変化し、キズの方向が、例えば0度、45度、135度のとき、キズ信号のパターン(ベクトル波形)は、図7(b)のイ、ロ、ハのようになる。即ちキズ信号の位相は、キズの方向により変わる。しかし振幅は変わらない。
なおキズの方向は、渦電流探傷プローブの走査方向(例えば励磁コイル11のコイル軸と直交する方向)のキズ(走査方向に長いキズ)の角度を0度とし、走査方向に対する角度で表している。
図7(c)は、図7(a)の渦電流探傷プローブを用いて行った試験結果を示し、キズの角度が、0度、30度、60度、90度、120度、150度、180度のときのキズ信号のパターンを重ねた図である。この図からも、キズ信号の位相は、キズの方向により変化することが分かる。なお図7(c)において、横軸は、キズ信号の0相成分の振幅を、縦軸は、90度進相成分の振幅を表している。
図7(c)の試験には、アルミニウムの被検査体(試験体)に長さ20mm、深さ2mm、幅0.2mmのキズを放電加工したものを用い、128kHzの励磁電流を用いた。
The phase of the scratch signal changes depending on the direction (angle) of the scratch. When the scratch direction is, for example, 0 °, 45 °, or 135 °, the scratch signal pattern (vector waveform) is the same as that shown in FIG. , Like ro, ha. That is, the phase of the scratch signal changes depending on the direction of the scratch. However, the amplitude does not change.
The direction of the flaw is expressed as an angle with respect to the scanning direction, where the angle of a flaw (a flaw long in the scanning direction) in the scanning direction of the eddy current flaw detection probe (for example, the direction orthogonal to the coil axis of the exciting coil 11) is 0 degree. .
FIG.7 (c) shows the test result performed using the eddy current flaw detection probe of Fig.7 (a), and the angle of a crack is 0 degree | times, 30 degree | times, 60 degree | times, 90 degree | times, 120 degree | times, 150 degree | times, It is the figure which piled up the pattern of the crack signal at the time of 180 degree | times. Also from this figure, it can be seen that the phase of the scratch signal changes depending on the direction of the scratch. In FIG. 7C, the horizontal axis represents the amplitude of the zero-phase component of the scratch signal, and the vertical axis represents the amplitude of the 90-degree advanced phase component.
In the test shown in FIG. 7C, an aluminum inspected object (test object) obtained by electric discharge machining of a scratch having a length of 20 mm, a depth of 2 mm, and a width of 0.2 mm was used, and an excitation current of 128 kHz was used.

特開2002−131285号公報JP 2002-131285 A

図7(a)の回転渦電流探傷プローブの励磁コイル11,12に、周波数が同じで位相が90度異なる励磁電流を供給した場合、キズの方向(角度)によりキズ信号の位相が変わるから、キズ信号の位相に基づいてキズの方向を知ることができる。しかし検出コイル2には、キズ信号の外に雑音も検出されることがあり、そのときには、キズ信号か雑音かの判別が困難になる場合がある。
キズ信号に雑音が混入する場合であっても、例えば溶接部分のキズを探傷する場合、溶接部分の凹凸に起因する雑音も検出されるが、溶接部分のキズの方向は事前にある程度予測できるから、そのキズによって発生するキズ信号の位相も事前に予測できる。したがってその場合には、検出コイル2により検出された信号の位相から、キズ信号か雑音かを、比較的容易に判別できる。一方キズの方向が予測できない被検査体の場合、キズ信号と雑音が同じ位相で検出されることもあり、そのときには、キズ信号か雑音かを位相により判別することは困難である。
キズの方向が予測できない被検査体の場合、キズの方向を判別できなくてもよいから全方向のキズについてキズの有無を検知したい場合がある。
そこで本願発明は、その点に鑑み、図6、図7(a)の渦電流探傷プローブを用いて、キズの方向によりキズ信号の位相が変化しない渦電流探傷装置を提供することを目的する。
When excitation currents having the same frequency and a phase different by 90 degrees are supplied to the excitation coils 11 and 12 of the rotating eddy current flaw detection probe shown in FIG. 7A, the phase of the scratch signal changes depending on the direction (angle) of the scratch. The direction of the scratch can be known based on the phase of the scratch signal. However, in addition to the scratch signal, noise may be detected in the detection coil 2, and in that case, it may be difficult to determine whether the scratch signal is noise.
Even if noise is mixed in the scratch signal, for example, when flaws in the welded portion are detected, noise due to the unevenness of the welded portion is also detected, but the direction of the scratch in the welded portion can be predicted to some extent in advance. The phase of the scratch signal generated by the scratch can also be predicted in advance. Therefore, in that case, it can be determined relatively easily from the phase of the signal detected by the detection coil 2 whether it is a scratch signal or noise. On the other hand, in the case of an inspected object in which the direction of the scratch cannot be predicted, the scratch signal and the noise may be detected with the same phase.
In the case of an inspected object in which the direction of the scratch cannot be predicted, it may not be possible to determine the direction of the scratch, so it may be desired to detect the presence or absence of a scratch in all directions.
In view of this point, the present invention has an object to provide an eddy current flaw detector in which the phase of a flaw signal does not change depending on the flaw direction, using the eddy current flaw probe shown in FIGS.

本願発明は、その目的を達成するため、請求項1に記載の渦電流探傷装置は、コイル軸が直交する2個の励磁コイルと1個の検出コイルからなり、検出コイルはコイル軸が2個の励磁コイルのコイル軸と直交するように励磁コイルの外周面に配置してあり、2個の励磁コイルはコイル軸が被検査体の検査面と平行になり、検出コイルはコイル軸が査面と直交するように設置して使用する渦電流探傷プローブを備え、2個の励磁コイルに異なる周波数の励磁電流を供給する励磁電源、検出コイルの検出出力を励磁電流と同じ周波数の参照電流を用いて検波する2個の同期検波器を備えていることを特徴とする。
請求項2に記載の渦電流探傷装置は、請求項1に記載の渦電流探傷装置において、前記2個の励磁コイルは、2つの部分からなり、前記外周面は、前記2つの部分の間であることを特徴とする。
請求項3に記載の渦電流探傷方法は、コイル軸が直交する2個の励磁コイルと1個の検出コイルからなり、検出コイルはコイル軸が2個の励磁コイルのコイル軸と直交するように励磁コイルの外周面に配置してあり、2個の励磁コイルはコイル軸が検査面と平行になり、検出コイルはコイル軸が被検査体の検査面と直交するように設置して使用する渦電流探傷プローブを用い、2個の励磁コイルに異なる周波数の励磁電流を供給し、検出コイルの検出出力を励磁電流と同じ周波数の参照電流を用いて2個の同期検波器により検波することを特徴とする。
請求項4に記載の渦電流探傷方法は、請求項3に記載の渦電流探傷方法において、前記2個の励磁コイルは、2つの部分からなり、前記外周面は、前記2つの部分の間であることを特徴とする。
In order to achieve the object of the present invention, the eddy current flaw detector according to claim 1 includes two excitation coils and one detection coil whose coil axes are orthogonal to each other, and the detection coil has two coil axes. It is arranged on the outer peripheral surface of the exciting coil so as to be orthogonal to the coil axis of the exciting coil, the coil axes of the two exciting coils are parallel to the inspection surface of the object to be inspected, and the coil axis of the detecting coil is the inspection surface An eddy current flaw detection probe that is installed so as to be orthogonal to the excitation power supply that supplies excitation currents of different frequencies to the two excitation coils, and the detection output of the detection coil uses a reference current of the same frequency as the excitation current It is characterized by having two synchronous detectors that detect the above.
The eddy current flaw detector according to claim 2 is the eddy current flaw detector according to claim 1, wherein the two excitation coils are composed of two parts, and the outer peripheral surface is between the two parts. It is characterized by being.
The eddy current flaw detection method according to claim 3 includes two excitation coils and one detection coil whose coil axes are orthogonal to each other, and the detection coil has a coil axis orthogonal to the coil axes of the two excitation coils. Arranged on the outer peripheral surface of the exciting coil, the two exciting coils are used with the coil axis parallel to the inspection surface, and the detection coil installed so that the coil axis is perpendicular to the inspection surface of the object to be inspected. A current flaw detection probe is used, excitation currents of different frequencies are supplied to two excitation coils, and the detection output of the detection coil is detected by two synchronous detectors using a reference current having the same frequency as the excitation current. And
The eddy current flaw detection method according to a fourth aspect of the present invention is the eddy current flaw detection method according to the third aspect, wherein the two exciting coils are composed of two parts, and the outer peripheral surface is between the two parts. It is characterized by being.

本願発明により検出されるキズ信号は、キズの方向(角度)により位相が変わらないから、被検査体等の状態によりキズ信号の外に雑音が検出される場合にも、キズ信号か雑音かを比較的容易に判別することができ、かつ本願発明は、全方向のキズを検出することができる。また本願発明は、2個(一対)の励磁コイルに周波数の異なる励磁電流を供給するから、両励磁コイルにより発生するキズ信号を別々に取り出すことができ、キズの有無の判別は、そのキズ信号を別々に用いて行なうこともできるし、加算して行なうこともできる。
また本発明の渦電流探傷プローブは、2個の励磁コイルにより発生するキズ信号を別々に取り出すにも係らず、検出コイルは1個でよいから、渦電流探傷プローブの構成が簡単になる。
本発明の渦電流探傷プローブの2個の励磁コイルは、夫々2つの部分に分割されているから、渦電流探傷プローブを製造するとき検出コイルの位置決めが簡単になる。
Since the phase of the scratch signal detected according to the present invention does not change depending on the direction (angle) of the scratch, whether the scratch signal or noise is detected even if noise is detected outside the scratch signal due to the state of the object to be inspected, etc. It can be determined relatively easily, and the present invention can detect scratches in all directions. In addition, since the present invention supplies excitation currents having different frequencies to two (a pair) excitation coils, scratch signals generated by both excitation coils can be taken out separately. Can be performed separately or added together.
In addition, the eddy current flaw detection probe of the present invention can simplify the configuration of the eddy current flaw detection probe because only one detection coil is required although the flaw signals generated by the two exciting coils are separately taken out.
Since the two exciting coils of the eddy current flaw detection probe of the present invention are each divided into two parts, the positioning of the detection coil is simplified when manufacturing the eddy current flaw detection probe.

図2〜図5により本願発明の実施例に係る渦電流探傷プローブと渦電流探傷装置を説明する。   An eddy current flaw detection probe and an eddy current flaw detection device according to an embodiment of the present invention will be described with reference to FIGS.

実施例を説明する前に、図1の渦電流探傷プローブについて説明する。
図1(a)の渦電流探傷プローブの励磁コイル部1と検出コイル2の構成及び配置は、図6、図7(a)と同じである。
Before describing the embodiment, the eddy current flaw detection probe of FIG. 1 will be described.
The configuration and arrangement of the excitation coil unit 1 and the detection coil 2 of the eddy current flaw detection probe shown in FIG. 1A are the same as those shown in FIG. 6 and FIG.

本願発明者は、図1(a)の渦電流探傷プローブについて、キズの方向(角度)によりキズ信号の位相が変わらない励磁方法を種々検討した結果、同じ周波数(f)、同じ位相の励磁電源EV1,EV2を用い、両励磁電源から励磁コイル11,12へ励磁電流を同時に供給し、検出コイル2の検出出力を励磁電流と同じ周波数(f)の参照電流で同期検波してキズ信号を取り出す場合、キズ信号の位相は、キズの方向により変化しないことを突き止めた。
例えば、励磁コイル11,12に同じ位相の128kHzの励磁電流を供給すると、キズの方向が45度、0度、135度のとき、キズ信号のパターン(ベクトル波形)は、図2(a)のイ、ロ、ハのようになり、キズ信号の位相は、キズの方向により変わらないことが分かる。なおキズ信号の振幅は、キズの方向により変わる。
The inventor of the present application has studied various excitation methods in which the phase of the scratch signal does not change depending on the direction (angle) of the scratch with respect to the eddy current flaw detection probe of FIG. 1A. As a result, the excitation power supply having the same frequency (f) and the same phase. Using EV1 and EV2, excitation current is simultaneously supplied from both excitation power supplies to the excitation coils 11 and 12, and the detection output of the detection coil 2 is synchronously detected with a reference current having the same frequency (f) as the excitation current to extract a scratch signal. In this case, it was found that the phase of the scratch signal does not change depending on the direction of the scratch.
For example, when a 128 kHz exciting current having the same phase is supplied to the exciting coils 11 and 12, the scratch signal pattern (vector waveform) is shown in FIG. 2A when the scratch direction is 45 degrees, 0 degrees, and 135 degrees. It can be seen that the phase of the scratch signal does not change depending on the direction of the scratch. The amplitude of the scratch signal varies depending on the direction of the scratch.

図2(b)は、図1(a)の渦電流探傷プローブを用いて行った試験結果を示す。図2(b)において、横軸は、キズ信号の0相成分の振幅を、縦軸は、90度進相成分の振幅を示す。ここでキズの方向(角度)は、渦電流探傷プローブの走査方向(例えば励磁コイル11のコイル軸と直交する方向)に長いキズの角度を0度とし、走査方向に対する角度で表わしてある
図2(b)は、キズの角度が0度、10度、20度、・・・、170度、180度のときのキズ信号のパターンを重ねた図であるが、この図からも、キズ信号の位相は、キズの方向により変わらないことが分かる。この試験結果は、128kHz以外の周波数の励磁電流についても同様である。
図2(b)の試験には、アルミニウムの被検査体に長さ20mm、深さ2mm、幅0.2mmのキズを放電加工したものを用い、128kHzの励磁電流を用いた。
FIG.2 (b) shows the test result done using the eddy current flaw detection probe of Fig.1 (a). In FIG. 2B, the horizontal axis indicates the amplitude of the zero-phase component of the scratch signal, and the vertical axis indicates the amplitude of the 90-degree advanced phase component. Here, the direction (angle) of the scratch is expressed as an angle with respect to the scanning direction, where the angle of the scratch long in the scanning direction of the eddy current flaw detection probe (for example, the direction orthogonal to the coil axis of the exciting coil 11) is 0 degree. (B) is a diagram in which scratch signal patterns are superimposed when the scratch angle is 0 degree, 10 degrees, 20 degrees,..., 170 degrees, and 180 degrees. It can be seen that the phase does not change depending on the direction of the scratch. This test result is the same for the excitation current having a frequency other than 128 kHz.
In the test of FIG. 2 (b), an aluminum inspected object having a 20 mm length, a depth of 2 mm, and a width of 0.2 mm was subjected to electric discharge machining, and an excitation current of 128 kHz was used.

次に図1(a)の渦電流探傷プローブの励磁コイル11,12に、同じ周波数(128kHz)、同じ位相の励磁電流を供給し、128kHzの参照信号で同期検波して取り出したキズ信号の最大振幅特性(peak
to peak特性)について説明する
図1(b)は、キズの角度が0度、10度、20度、・・・、170度、180度のときのキズ信号の最大振幅を示す。キズの各角度におけるキズ信号の最大振幅は、グラフaのようになり、キズの角度45付近において最大(即ち探傷感度は最大)になり、135度付近において最小(即ち探傷感度は最小)になる。
励磁コイル11,12に同じ周波数、同じ位相の励磁電流を供給した場合、キズ信号の位相は、前述したようにキズの角度により変わらない。しかしキズ信号の振幅は、図1(b)のように、キズの角度により大きく変わり、特に135度付近で小さくなり、探傷感度が小さくなるため、全方向のキズの探傷には、不十分である。
Next, excitation currents of the same frequency (128 kHz) and the same phase are supplied to the excitation coils 11 and 12 of the eddy current flaw detection probe in FIG. 1A, and the maximum of the scratch signals extracted by synchronous detection with a reference signal of 128 kHz. Amplitude characteristics (peak
FIG. 1B illustrates the maximum amplitude of a scratch signal when the scratch angle is 0 degree, 10 degrees, 20 degrees,..., 170 degrees, and 180 degrees. The maximum amplitude of the scratch signal at each angle of the scratch is as shown in the graph a, and is maximum near the scratch angle 45 (that is, the flaw detection sensitivity is maximum), and minimum near 135 degrees (that is, the flaw detection sensitivity is minimum). .
When exciting currents having the same frequency and the same phase are supplied to the exciting coils 11 and 12, the phase of the scratch signal does not change depending on the scratch angle as described above. However, as shown in FIG. 1B, the amplitude of the scratch signal varies greatly depending on the angle of the scratch, and particularly becomes small near 135 degrees, so that the flaw detection sensitivity is low. Therefore, it is insufficient for flaw detection in all directions. is there.

そこで図3、図4により、その点を改良した本願発明の実施例に係る渦電流探傷プローブを説明する。
まず図3について説明する。
図3(a)の渦電流探傷プローブの励磁コイル部1と検出コイル2の構成及び配置は、図6、図7(a)と同じである。励磁電源EV1,EV2は、周波数が相違し、夫々f1(133kHz),f2(128kHz)に設定してある。
励磁コイル11,12には、励磁電源EV1,EV2から周波数f1,f2の励磁電流を同時に供給し、検出コイル2の検出出力(高周波のキズ信号)を、周波数f1,f2の参照電流(搬送波)で別々に同期検波して別々にキズ信号を取り出す。
キズの角度が0度、10度、20度、・・・、170度、180度のときのキズ信号の最大振幅特性(peak to peak特性)は、図3(b)のグラフb1,b2のようになる。グラフb1は、周波数f1(128kHz)の参照電流で同期検波して得たキズ信号の最大振幅特性であり、グラフb2は、周波数f2(133kHz)の参照電流で同期検波して得たキズ信号の最大振幅特性である。
An eddy current flaw detection probe according to an embodiment of the present invention in which this point is improved will be described with reference to FIGS.
First, FIG. 3 will be described.
The configuration and arrangement of the excitation coil unit 1 and the detection coil 2 of the eddy current flaw detection probe shown in FIG. 3A are the same as those shown in FIGS. 6 and 7A. The excitation power supplies EV1 and EV2 have different frequencies and are set to f1 (133 kHz) and f2 (128 kHz), respectively.
The excitation coils 11 and 12 are simultaneously supplied with excitation currents of frequencies f1 and f2 from excitation power sources EV1 and EV2, and the detection output (high-frequency scratch signal) of the detection coil 2 is used as a reference current (carrier wave) of frequencies f1 and f2. And synchronous detection separately to extract the scratch signal separately.
The maximum amplitude characteristics (peak to peak characteristics) of the scratch signal when the scratch angle is 0 degree, 10 degrees, 20 degrees,..., 170 degrees, 180 degrees are shown in the graphs b1 and b2 in FIG. It becomes like this. Graph b1 shows the maximum amplitude characteristic of a scratch signal obtained by synchronous detection with a reference current of frequency f1 (128 kHz), and graph b2 shows the scratch signal obtained by synchronous detection with a reference current of frequency f2 (133 kHz). Maximum amplitude characteristics.

グラフb1は、キズの角度0度、180度付近において最大振幅が最大になり、90度付近において最小になる。即ちキズの角度0度、180度付近において探傷感度は最大になり、90度付近において最小になる。一方グラフb2は、キズの角度0度、180度付近において最大振幅が最小になり、90度付近において最大になる。即ちキズの角度0度、180度付近において探傷感度は最小になり、90度付近において最大になる。
したがってグラフb1、b2は、お互いに補う関係にあり、両者を合わせた最大振幅特性は、略一定になるから、両グラフのキズ信号を利用すれば全方向のキズを検出することができる。その際両グラフのキズ信号は、別々に用いてもよいし、両キズ信号を加算して用いてもよい。加算した場合には、キズの角度が変わってもキズ信号の最大振幅は、略一定になるから、キズ信号有無の判別が簡単になる。
なお周波数f1,f2は、128kHz,133kHzに限らず、他の周波数であってもよいが、両周波数があまり離れると、探傷時の周波数特性等が変わることもあるから、その点を考慮して設定する。
In the graph b1, the maximum amplitude is maximum near the scratch angle of 0 degrees and 180 degrees, and is minimum near 90 degrees. That is, the flaw detection sensitivity is maximized when the scratch angle is around 0 ° and 180 °, and is minimized near 90 °. On the other hand, in the graph b2, the maximum amplitude is minimum near the scratch angle of 0 degrees and 180 degrees, and is maximum near 90 degrees. That is, the flaw detection sensitivity is minimum when the scratch angle is near 0 ° and 180 °, and is maximum near 90 °.
Accordingly, the graphs b1 and b2 are in a complementary relationship with each other, and the combined maximum amplitude characteristics are substantially constant. Therefore, if the scratch signals in both graphs are used, scratches in all directions can be detected. In that case, the flaw signals of both graphs may be used separately, or both flaw signals may be added and used. In the case of addition, the maximum amplitude of the scratch signal is substantially constant even if the scratch angle changes, so that it is easy to determine the presence or absence of the scratch signal.
The frequencies f1 and f2 are not limited to 128 kHz and 133 kHz, but may be other frequencies. If both frequencies are too far apart, the frequency characteristics at the time of flaw detection may change. Set.

図3(a)の渦電流探傷プローブは、励磁コイル11,12に周波数の異なる励磁電流を供給するから、両励磁コイルによって発生するキズ信号を別々に取り出すことができる。したがって別々に取り出したキズ信号は、別々に或いは加算して利用することができる。そしてキズ信号の位相は、キズの角度によって変わらないから、キズ信号か雑音かの判別が容易になる。また図3(a)の渦電流探傷プローブは、2個の励磁コイルによって発生するキズ信号を別々に取り出すにも係らず検出コイル2は1個でよいから、渦電流探傷プローブの構成が簡単になる。   Since the eddy current flaw detection probe shown in FIG. 3A supplies excitation currents having different frequencies to the excitation coils 11 and 12, scratch signals generated by both excitation coils can be taken out separately. Therefore, scratch signals taken out separately can be used separately or added. Since the phase of the scratch signal does not change depending on the angle of the scratch, it is easy to determine whether it is a scratch signal or noise. The eddy current flaw detection probe shown in FIG. 3 (a) has only one detection coil 2 although the flaw signals generated by the two exciting coils are separately taken out, so that the configuration of the eddy current flaw detection probe can be simplified. Become.

次に図4により、図3(a)の渦電流探傷プローブに周波数f1,f2の励磁電流を供給したときのキズ信号の位相特性を説明する。
図4(a)は、図3(b)のグラフb1のキズ信号のパターン(ベクトル波形)に相当し、図4(b)は、そのパターンの試験結果を示す。
図4(a)のイ,ロ、ハは、キズの角度が0度、45度、90度のときのキズ信号のパターンを示すが、キズの角度が変わっても、キズ信号の位相は変わらないことが分かる。
また図4(b)は、キズの角度が0度、10度、20度、・・・、170度、180度のときのキズ信号のパターンを重ねた図であるが、この図からもキズの角度が変わっても、キズ信号の位相は変わらないことが分かる。
Next, with reference to FIG. 4, the phase characteristic of the scratch signal when the exciting currents having the frequencies f1 and f2 are supplied to the eddy current flaw detection probe shown in FIG.
4A corresponds to the scratch signal pattern (vector waveform) of the graph b1 in FIG. 3B, and FIG. 4B shows the test result of the pattern.
4A shows the scratch signal pattern when the scratch angle is 0 degrees, 45 degrees, and 90 degrees. Even if the scratch angle changes, the phase of the scratch signal changes. I understand that there is no.
FIG. 4B is a diagram in which scratch signal patterns are superimposed when the scratch angle is 0 degree, 10 degrees, 20 degrees,..., 170 degrees, and 180 degrees. It can be seen that the phase of the scratch signal does not change even if the angle of is changed.

図5は、図2(a)の渦電流探傷プローブを用いた渦電流探傷装置と励磁コイルを分割して構成した例を示す。
まず図5(a)の渦電流探傷装置を説明する。
励磁コイル11,12には、励磁電源EV1,EV2から周波数の異なる励磁電流を供給する。同期検波器31,32には、検出コイル2の検出出力(高周波のキズ信号)を供給するとともに、同期検波器31には、参照電源RV1から励磁電源EV1と同じ周波数の参照電流を供給し、同期検波器32には、参照電源RV2から励磁電源EV2と同じ周波数の参照電流を供給する。同期検波器31,32は、夫々の参照電流によって検出コイル2のキズ信号を同期検波し、検波出力を信号処理回路33へ供給する。信号処理回路33は、同期検波器31,32の検波出力を別々に或いは加算して用いてキズの有無を判別する。その判別は、観察者が視認で行ってもよいし、表示装置等に表示してもよい。
FIG. 5 shows an example in which an eddy current flaw detector using the eddy current flaw probe shown in FIG.
First, the eddy current flaw detector shown in FIG.
Excitation currents having different frequencies are supplied to the excitation coils 11 and 12 from the excitation power sources EV1 and EV2. The synchronous detectors 31 and 32 are supplied with the detection output (high-frequency scratch signal) of the detection coil 2, and the synchronous detector 31 is supplied with a reference current having the same frequency as that of the excitation power supply EV1 from the reference power supply RV1. The synchronous detector 32 is supplied with a reference current having the same frequency as that of the excitation power supply EV2 from the reference power supply RV2. The synchronous detectors 31 and 32 synchronously detect a flaw signal of the detection coil 2 with each reference current and supply a detection output to the signal processing circuit 33. The signal processing circuit 33 determines the presence or absence of a flaw by using the detection outputs of the synchronous detectors 31 and 32 separately or added. The determination may be made by an observer visually or may be displayed on a display device or the like.

次に図5(b)の励磁コイルについて説明する。なお図5(b)は、渦電流探傷プローブを分解して励磁コイル11,12を別々に記載してある。
励磁コイル11は、部分111,112に分割し、両部分を直列に接続してある。即ち励磁コイル11は、部分111,112により1個の励磁コイルを形成している。同様に励磁コイル12は、部分121,122に分割し、両部分を直列に接続してある。即ち励磁コイル12は、部分121,122により1個の励磁コイルを形成している。
図(b)のように励磁コイルを分割した場合、検出コイル2は、励磁コイル11の部分111,112の間に配置すればよいから、渦電流探傷プローブを製造するとき検出コイル2の位置決めが簡単になる。
Next, the exciting coil in FIG. 5B will be described. FIG. 5B shows the exciting coils 11 and 12 separately by disassembling the eddy current flaw detection probe.
The exciting coil 11 is divided into parts 111 and 112, and both parts are connected in series. That is, the exciting coil 11 forms one exciting coil by the portions 111 and 112. Similarly, the exciting coil 12 is divided into parts 121 and 122, and both parts are connected in series. That is, the exciting coil 12 forms one exciting coil by the portions 121 and 122.
When the excitation coil is divided as shown in FIG. 2B, the detection coil 2 may be disposed between the portions 111 and 112 of the excitation coil 11, so that when the eddy current flaw detection probe is manufactured, the detection coil 2 is positioned. It will be easy.

キズの方向によりキズ信号の位相が変化しない渦電流探傷プローブを示す。An eddy current flaw detection probe in which the phase of the scratch signal does not change depending on the direction of the scratch is shown. 図1の渦電流探傷プローブのキズ信号のパターンを示す。The pattern of the crack signal of the eddy current flaw detection probe of FIG. 1 is shown. 本願発明の実施例に係る渦電流探傷プローブを示す。1 shows an eddy current flaw detection probe according to an embodiment of the present invention. 図3の渦電流探傷プローブのキズ信号のパターンを示す。The pattern of the crack signal of the eddy current flaw detection probe of FIG. 3 is shown. 本願発明の実施例に係る渦電流探傷装置及び励磁コイルを分割した例を示す。The example which divided | segmented the eddy current flaw detector and excitation coil which concern on the Example of this invention is shown. 従来の回転渦電流探傷プローブの構成を示す。The structure of the conventional rotating eddy current flaw detection probe is shown. 従来の回転渦電流探傷プローブとキズ信号のパターンを示す。A conventional rotating eddy current flaw detection probe and a scratch signal pattern are shown.

符号の説明Explanation of symbols

1 励磁コイル部
11,12 励磁コイル
111,112,121,122 励磁コイル11,12の部分
2 検出コイル
31,32 同期検波器
33 信号処理回路
EV1,EV2 励磁電源
RV1,RV2 参照電源
M 金属の被検査体
DESCRIPTION OF SYMBOLS 1 Excitation coil part 11,12 Excitation coil 111,112,121,122 Part 2 of excitation coil 11,12 Detection coil 31,32 Synchronous detector 33 Signal processing circuit EV1, EV2 Excitation power supply RV1, RV2 Reference power supply M Metal covered Inspection object

Claims (4)

コイル軸が直交する2個の励磁コイルと1個の検出コイルからなり、検出コイルはコイル軸が2個の励磁コイルのコイル軸と直交するように励磁コイルの外周面に配置してあり、2個の励磁コイルはコイル軸が被検査体の検査面と平行になり、検出コイルはコイル軸が検査面と直交するように設置して使用する渦電流探傷プローブを備え、2個の励磁コイルに異なる周波数の励磁電流を供給する励磁電源、検出コイルの検出出力を励磁電流と同じ周波数の参照電流を用いて検波する2個の同期検波器を備えていることを特徴とする渦電流探傷装置。   The coil axis is composed of two excitation coils and one detection coil, and the detection coil is arranged on the outer peripheral surface of the excitation coil so that the coil axis is orthogonal to the coil axes of the two excitation coils. Each excitation coil has an eddy current flaw probe that is installed and used so that the coil axis is parallel to the inspection surface of the object to be inspected and the coil axis is orthogonal to the inspection surface. An eddy current flaw detector comprising: an excitation power source for supplying excitation currents of different frequencies; and two synchronous detectors for detecting the detection output of the detection coil using a reference current having the same frequency as the excitation current. 請求項1に記載の渦電流探傷装置において、前記2個の励磁コイルは、2つの部分からなり、前記外周面は、前記2つの部分の間であることを特徴とする渦電流探傷装置。   2. The eddy current flaw detector according to claim 1, wherein the two exciting coils are composed of two parts, and the outer peripheral surface is between the two parts. コイル軸が直交する2個の励磁コイルと1個の検出コイルからなり、検出コイルはコイル軸が2個の励磁コイルのコイル軸と直交するように励磁コイルの外周面に配置してあり、2個の励磁コイルはコイル軸が被検査体の検査面と平行になり、検出コイルはコイル軸が検査面と直交するように設置して使用する渦電流探傷プローブを用い、2個の励磁コイルに異なる周波数の励磁電流を供給し、検出コイルの検出出力を励磁電流と同じ周波数の参照電流を用いて2個の同期検波器により検波することを特徴とする渦電流探傷方法。   The coil axis is composed of two excitation coils and one detection coil, and the detection coil is arranged on the outer peripheral surface of the excitation coil so that the coil axis is orthogonal to the coil axes of the two excitation coils. Each excitation coil uses an eddy current flaw detection probe that is installed so that the coil axis is parallel to the inspection surface of the object to be inspected and the coil axis is orthogonal to the inspection surface. An eddy current flaw detection method characterized in that excitation currents of different frequencies are supplied, and detection output of a detection coil is detected by two synchronous detectors using a reference current having the same frequency as the excitation current. 請求項3に記載の渦電流探傷方法において、前記2個の励磁コイルは、2つの部分からなり、前記外周面は、前記2つの部分の間であることを特徴とする渦電流探傷方法。   4. The eddy current flaw detection method according to claim 3, wherein the two exciting coils are composed of two parts, and the outer peripheral surface is between the two parts.
JP2008138798A 2008-05-27 2008-05-27 Eddy-current flaw detector and eddy-current flaw detecting method Pending JP2009287981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008138798A JP2009287981A (en) 2008-05-27 2008-05-27 Eddy-current flaw detector and eddy-current flaw detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008138798A JP2009287981A (en) 2008-05-27 2008-05-27 Eddy-current flaw detector and eddy-current flaw detecting method

Publications (1)

Publication Number Publication Date
JP2009287981A true JP2009287981A (en) 2009-12-10

Family

ID=41457350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008138798A Pending JP2009287981A (en) 2008-05-27 2008-05-27 Eddy-current flaw detector and eddy-current flaw detecting method

Country Status (1)

Country Link
JP (1) JP2009287981A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122859A (en) * 2010-12-08 2012-06-28 Marktec Corp Eddy current probe for flaw detection, eddy current device for flaw detection, and eddy current method for flaw detection
CN112378993A (en) * 2020-11-12 2021-02-19 北京航空航天大学 Sensing system for nondestructive testing

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07253412A (en) * 1994-03-14 1995-10-03 Nkk Corp Magnetic powder flaw detector
JP2002131285A (en) * 2000-10-26 2002-05-09 Univ Nihon Weld line, detection probe of position and direction of welding butt section, detection device, and detection method
JP2004077231A (en) * 2002-08-14 2004-03-11 Daido Steel Co Ltd Eddy current flaw detecting device
JP2004205212A (en) * 2002-12-20 2004-07-22 Univ Nihon Eddy current flaw detecting probe for magnetic material and eddy current flaw detector
JP2004212141A (en) * 2002-12-27 2004-07-29 Daido Steel Co Ltd Eddy current flaw detector
JP2005172525A (en) * 2003-12-09 2005-06-30 Nippon Steel Corp Magnetic field analysis method, magnetic field analysis system, and computer program
JP2006220630A (en) * 2005-02-14 2006-08-24 Marktec Corp Probe for eddy current flaw detection
JP2007108032A (en) * 2005-10-14 2007-04-26 Marktec Corp Upper placing type eddy current flaw detection probe

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07253412A (en) * 1994-03-14 1995-10-03 Nkk Corp Magnetic powder flaw detector
JP2002131285A (en) * 2000-10-26 2002-05-09 Univ Nihon Weld line, detection probe of position and direction of welding butt section, detection device, and detection method
JP2004077231A (en) * 2002-08-14 2004-03-11 Daido Steel Co Ltd Eddy current flaw detecting device
JP2004205212A (en) * 2002-12-20 2004-07-22 Univ Nihon Eddy current flaw detecting probe for magnetic material and eddy current flaw detector
JP2004212141A (en) * 2002-12-27 2004-07-29 Daido Steel Co Ltd Eddy current flaw detector
JP2005172525A (en) * 2003-12-09 2005-06-30 Nippon Steel Corp Magnetic field analysis method, magnetic field analysis system, and computer program
JP2006220630A (en) * 2005-02-14 2006-08-24 Marktec Corp Probe for eddy current flaw detection
JP2007108032A (en) * 2005-10-14 2007-04-26 Marktec Corp Upper placing type eddy current flaw detection probe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122859A (en) * 2010-12-08 2012-06-28 Marktec Corp Eddy current probe for flaw detection, eddy current device for flaw detection, and eddy current method for flaw detection
CN112378993A (en) * 2020-11-12 2021-02-19 北京航空航天大学 Sensing system for nondestructive testing
CN112378993B (en) * 2020-11-12 2023-12-12 北京航空航天大学 Sensing system for nondestructive testing

Similar Documents

Publication Publication Date Title
JP5201495B2 (en) Magnetic flaw detection method and magnetic flaw detection apparatus
JP4863127B2 (en) Magnetic flaw detection method and magnetic flaw detection apparatus
JP4998821B2 (en) Eddy current inspection method and eddy current inspection apparatus for implementing the eddy current inspection method
JP4756409B1 (en) Nondestructive inspection apparatus and nondestructive inspection method using alternating magnetic field
JP2006177952A (en) Eddy current probe, inspecting system and inspecting method
JP2015081815A (en) Eddy current flaw detection probe and eddy current flaw detection method
JP2008032575A (en) Eddy current measuring probe and flaw detection device using it
JP4766472B1 (en) Nondestructive inspection apparatus and nondestructive inspection method
CN110646508A (en) Enhanced magnetic field type non-directional orthogonal weld eddy current detection sensor and detection method
JP4835995B2 (en) Magnetic flux leakage flaw detection method and magnetic flux leakage inspection device
JP2013072667A (en) Probe for eddy current flaw detection
JP2011117872A (en) Eddy current flaw detection probe, and eddy current flaw detection testing apparatus using the same
JP2009287981A (en) Eddy-current flaw detector and eddy-current flaw detecting method
JP5140214B2 (en) Rotating eddy current flaw detection probe
CN103439405B (en) Iron core and ferrite core synthesize multifunction electric magnetic measurement sensor and detection method thereof
JP2008039394A (en) Electromagnetic-induction sensor for metal detector
JP6334267B2 (en) Eddy current flaw detection apparatus and method
JP2004205212A (en) Eddy current flaw detecting probe for magnetic material and eddy current flaw detector
JP2014066688A (en) Eddy current flaw detection probe, and eddy current flaw detection device
JP2004028897A (en) Eddy-current flaw detection apparatus
JP2016080596A (en) Eddy current flaw detection probe
JP2010175436A (en) Eddy current flaw detection probe and eddy current flaw detection method
JP4484723B2 (en) Eddy current testing probe
JP2016133345A (en) Magnetizing apparatus for steel pipes, and magnetic particle flaw detecting apparatus
JP6170005B2 (en) Eddy current flaw detection method and eddy current flaw detection apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130702