JP2007108032A - Upper placing type eddy current flaw detection probe - Google Patents

Upper placing type eddy current flaw detection probe Download PDF

Info

Publication number
JP2007108032A
JP2007108032A JP2005299699A JP2005299699A JP2007108032A JP 2007108032 A JP2007108032 A JP 2007108032A JP 2005299699 A JP2005299699 A JP 2005299699A JP 2005299699 A JP2005299699 A JP 2005299699A JP 2007108032 A JP2007108032 A JP 2007108032A
Authority
JP
Japan
Prior art keywords
coil
eddy current
current flaw
flaw detection
bobbin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005299699A
Other languages
Japanese (ja)
Inventor
Naoki Saito
直樹 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marktec Corp
Original Assignee
Marktec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marktec Corp filed Critical Marktec Corp
Priority to JP2005299699A priority Critical patent/JP2007108032A/en
Publication of JP2007108032A publication Critical patent/JP2007108032A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To facilitate the positioning or attaching work of a detection coil at the time of manufacture of the upper placing type eddy current flaw detection probe and to enhance the attaching strength of the detection coil in a tangential type upper placing type eddy current flaw detection probe. <P>SOLUTION: The upper placing type eddy current flaw detection probe 2 is composed of exciting coils 211 and 212, a bobbin 23 and the detection coil 22. The exciting coils 211 and 212 are wound in the same direction and the winding end of the exciting coil 211 is connected to the winding start part of the exciting coil 212 while an exciting power supply 3 is connected to the winding start part of the exciting coil 211 and the winding end of the exciting coil 212. The detection coil 22 is attached to the peripheral surface of the bobbin 23 between the exciting coils 211 and 212. The upper placing type eddy current flaw detection probe 2 is moved in the direction shown by an arrow X3 along the inspection surface 11 (flaw) of an inspection target 1 to perform flaw detection. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本願発明は、励磁コイルと検出コイルからなり、励磁コイルのコイル軸が被検査体の検査面と平行になる、いわゆるタンジェンシャル型の上置型渦電流探傷プローブに関する。   The present invention relates to a so-called tangential type top-type eddy current flaw probe comprising an excitation coil and a detection coil, wherein the coil axis of the excitation coil is parallel to the inspection surface of an object to be inspected.

従来タンジェンシャル型の上置型渦電流探傷プローブの一つとして、一様渦電流を利用したものが提案されている(例えば特許文献1参照)。   Conventionally, as one of the tangential top-mounted eddy current flaw detection probes, one using a uniform eddy current has been proposed (see, for example, Patent Document 1).

図8により従来のタンジェンシャル型の上置型渦電流探傷プローブを説明する。
図8(a)は、平面図、図8(b)は、図8(a)のX1方向の断面図、図8(c)は、図8(a)のX2方向の断面図である。
渦電流探傷プローブ2は、励磁コイル21、検出コイル22からなり、励磁コイル21は円筒状のボビン23に巻き、検出コイル22は励磁コイル21の表面に取付けてある。検出コイル22は、そのコイル面(コイル軸と直交する面)が励磁コイル21のコイル面と直交し、被検査体の1の検査面と平行になるように配置してある。
A conventional tangential top-mounted eddy current flaw detection probe will be described with reference to FIG.
8A is a plan view, FIG. 8B is a cross-sectional view in the X1 direction of FIG. 8A, and FIG. 8C is a cross-sectional view in the X2 direction of FIG. 8A.
The eddy current flaw detection probe 2 includes an excitation coil 21 and a detection coil 22. The excitation coil 21 is wound around a cylindrical bobbin 23, and the detection coil 22 is attached to the surface of the excitation coil 21. The detection coil 22 is arranged such that its coil surface (a surface orthogonal to the coil axis) is orthogonal to the coil surface of the excitation coil 21 and parallel to one inspection surface of the object to be inspected.

励磁コイル21に励磁電流を流すと、被検査体1の検査面に励磁コイル21の巻線方向の一様な渦電流が発生するが、被検査体1の検査面にキズ11があるときは、そのキズの部分で局所的に一様性が崩れる。渦電流探傷プローブ2をX3方向へ移動する場合、被検査体1の検査面にキズのない領域では、検出コイル22に出力電圧は発生しないが、キズ11がある領域では、渦電流の一様性が崩れるため検出コイル22に出力電圧が発生し、いわゆるキズ信号が発生する。   When an exciting current is passed through the exciting coil 21, a uniform eddy current in the winding direction of the exciting coil 21 is generated on the inspection surface of the inspection object 1, but when there is a scratch 11 on the inspection surface of the inspection object 1. The uniformity is locally broken at the scratch. When the eddy current flaw detection probe 2 is moved in the X3 direction, an output voltage is not generated in the detection coil 22 in a region where the inspection surface of the inspection object 1 is not scratched, but an eddy current is uniform in a region where the scratch 11 is present. As a result, the output coil voltage is generated in the detection coil 22 and a so-called scratch signal is generated.

特開2004−205212号公報JP 2004-205212 A

図8の上置型渦電流探傷プローブは、検出コイル22のコイル面を、励磁コイル21のコイル面と直交するように配置し、かつ被検査体1の検査面と平行になるように配置しなければならないが、検出コイル22は、円筒状の励磁コイル21の周面に取付けなければならないため、検出コイルの角度の調整や位置決めが難しく、検出コイル22の取付け作業が難しくなる。また検出コイル22は、励磁コイル21の長手方向の中央部に取付けなないと雑音の影響を受け易いため、その中央部の位置決めが難しい。
また検出コイル22は、円筒状の励磁コイル21の周面に接着剤によって取付けるが、コイルの周面への接着は難しく、また両コイルの接触面が小さいために検出コイル22の接着強度を大きくできない。
本願発明は、従来の上置型渦電流探傷プローブの前記問題を解決することを目的とし、検出コイルの角度や位置決めが容易で、検出コイルの取付け強度を大きくすることができる構造のタンジェンシャル型の上置型渦電流探傷プローブを提供することを目的とする。
The upper eddy current flaw detection probe shown in FIG. 8 must be arranged so that the coil surface of the detection coil 22 is orthogonal to the coil surface of the exciting coil 21 and parallel to the inspection surface of the object 1 to be inspected. However, since the detection coil 22 must be attached to the circumferential surface of the cylindrical excitation coil 21, it is difficult to adjust and position the angle of the detection coil, and the installation work of the detection coil 22 becomes difficult. Further, since the detection coil 22 is easily affected by noise unless it is attached to the central portion in the longitudinal direction of the exciting coil 21, it is difficult to position the central portion.
The detection coil 22 is attached to the circumferential surface of the cylindrical excitation coil 21 with an adhesive. However, it is difficult to bond the coil to the circumferential surface of the coil, and the contact surface of both the coils is small, so the adhesion strength of the detection coil 22 is increased. Can not.
The present invention is intended to solve the above-mentioned problems of the conventional eddy current flaw detection probe, and the angle and positioning of the detection coil is easy, and the tangential type of the structure capable of increasing the mounting strength of the detection coil. An object of the present invention is to provide a top-mounted eddy current flaw detection probe.

本願発明は、その目的を達成するため、請求項1に記載の上置型渦電流探傷プローブは、ボビンに形成した2個の励磁コイルとその2個の励磁コイルの間に配置した検出コイルからなり、検出コイルは、そのコイル面が励磁コイルのコイル面と直交し被検査体の検査面と平行になるようにボビンの周面に取付けてあり、2個の励磁コイルは、同じ方向の磁束を発生するように接続してあることを特徴とする。
請求項2に記載の上置型渦電流探傷プローブは、請求項1に記載の上置型渦電流探傷プローブにおいて、前記ボビンは、磁性材からなるコアを備えていることを特徴とする。
請求項3に記載の上置型渦電流探傷プローブは、請求項1又は請求項2に記載の上置型渦電流探傷プローブにおいて、前記検出コイルは、前記ボビンの周面の平ら面に取付けてあり、その平らな面は、励磁コイルのコイル面と直交し、被検査体の検査面と平行になるように形成してあることを特徴とする。
請求項4に記載の上置型渦電流探傷プローブは、請求項1又は請求項2に記載の上置型渦電流探傷プローブにおいて、前記検出コイルは、前記ボビンに取付けた検出コイル取付け軸部材に取付けてあり、その検出コイル取付け軸部材は、ボビンの軸と直交し、被検査体の検査面と直交する方向に取付けあることを特徴とする。
In order to achieve the object of the present invention, the upper eddy current flaw detection probe according to claim 1 comprises two excitation coils formed on a bobbin and a detection coil disposed between the two excitation coils. The detection coil is mounted on the peripheral surface of the bobbin so that its coil surface is orthogonal to the coil surface of the excitation coil and parallel to the inspection surface of the object to be inspected. It is connected so that it may occur.
The top eddy current flaw detection probe according to claim 2 is the top eddy current flaw detection probe according to claim 1, wherein the bobbin includes a core made of a magnetic material.
The upper eddy current flaw detection probe according to claim 3 is the upper eddy current flaw detection probe according to claim 1 or 2, wherein the detection coil is attached to a flat surface of the peripheral surface of the bobbin. The flat surface is formed to be orthogonal to the coil surface of the exciting coil and to be parallel to the inspection surface of the object to be inspected.
The upper eddy current flaw detection probe according to claim 4 is the upper eddy current flaw detection probe according to claim 1 or 2, wherein the detection coil is attached to a detection coil attachment shaft member attached to the bobbin. And the detection coil mounting shaft member is mounted in a direction perpendicular to the bobbin axis and perpendicular to the inspection surface of the object to be inspected.

本願発明の上置型渦電流探傷プローブは、励磁コイルを2個に分割し、検出コイルは、両励磁コイルの間のボビンの周面に取付けるから、励磁コイルの略中央部に容易に取り付けることができる。
本願発明の上置型渦電流探傷プローブは、磁性材のコアを有するから、励磁コイルを2分割しても両励磁コイルが発生する磁束を一様渦電流の発生に有効に利用することができる。
Since the upper eddy current flaw detection probe of the present invention divides the excitation coil into two parts and the detection coil is attached to the peripheral surface of the bobbin between the two excitation coils, it can be easily attached to the substantially central portion of the excitation coil. it can.
Since the stationary eddy current flaw detection probe of the present invention has a magnetic core, the magnetic flux generated by both excitation coils can be effectively used for the generation of a uniform eddy current even if the excitation coil is divided into two.

本願発明の上置型渦電流探傷プローブは、ボビンに予め検出コイルを取付ける平らな面を形成してあるから、渦電流探傷プローブを作製するときは、検出コイルをその平らな面に取付けるのみで検出コイルの位置や角度が決まるから、作製作業が容易になる。また検出コイルは、平ら面に取付けるから接着強度が大きくなる。
本願発明の上置型渦電流探傷プローブは、ボビンに取付けた検出コイル取付け軸部材に検出コイルの開口部を挿入するのみで、検出コイルの位置や角度が決まるから、作製作業が容易になる。また検出コイルの開口部に検出コイル取付け軸部材を挿入するから、検出コイルの取付け強度が大きくなる。
Since the upper eddy current flaw detection probe of the present invention has a flat surface on which a detection coil is attached in advance to the bobbin, when the eddy current flaw detection probe is manufactured, it is detected only by attaching the detection coil to the flat surface. Since the position and angle of the coil are determined, the manufacturing operation is facilitated. Further, since the detection coil is attached to a flat surface, the adhesive strength is increased.
Since the position and angle of the detection coil are determined simply by inserting the detection coil opening into the detection coil attachment shaft member attached to the bobbin, the above-described eddy current flaw detection probe of the present invention can be easily manufactured. Further, since the detection coil mounting shaft member is inserted into the opening of the detection coil, the mounting strength of the detection coil is increased.

図1〜図7により本願発明の実施例に係るタンジェンシャル型の上置型渦電流探傷プローブを説明する。なお各図に共通の部分は、同じ符号を使用している。   A tangential top-mounted eddy current flaw detection probe according to an embodiment of the present invention will be described with reference to FIGS. In addition, the same code | symbol is used for the part common to each figure.

図1は、本願発明の実施例1に係る上置型渦電流探傷プローブの構成を示す。
図1(a)は、平面図、図1(b)は、図1(a)のX1方向の断面図、図1(c)は、図1(a)のX2方向の断面図である。
上置型渦電流探傷プローブ2は、励磁コイル211,212、円形(パンケーキ状)の検出コイル22からなり、励磁コイル211,212は円筒状のボビン23に巻き、検出コイル22は、励磁コイル211,212の間のボビン23の周面に取付けてある。励磁コイル211,212の間隔は、両コイルの間に検出コイル22を配置できる大きさに設定し、検出コイル22の直径よりも少し大きくなる程度が好ましい。励磁コイル211,212は、巻線方向が同じで、励磁コイル211の巻き終わりを励磁コイル212の巻き始めに接続して、両コイルの発生する磁束の方向が同じになるように設定してある。励磁コイル211の巻き始めと励磁コイル212の巻き終わりには励磁電源3を接続してある。なお励磁コイル211,212の巻方向が逆の場合には、両コイルの巻き終わりを接続し、両コイルの巻き始めに励磁電源3を接続すれば、両コイルの発生する磁束の方向が同じになる。
FIG. 1 shows the configuration of an upright eddy current flaw detection probe according to Embodiment 1 of the present invention.
1A is a plan view, FIG. 1B is a cross-sectional view in the X1 direction of FIG. 1A, and FIG. 1C is a cross-sectional view in the X2 direction of FIG. 1A.
The upright eddy current flaw detection probe 2 includes excitation coils 211 and 212 and a circular (pancake-shaped) detection coil 22. The excitation coils 211 and 212 are wound around a cylindrical bobbin 23, and the detection coil 22 is an excitation coil 211. , 212 are attached to the peripheral surface of the bobbin 23. The interval between the excitation coils 211 and 212 is preferably set to a size that allows the detection coil 22 to be disposed between the two coils, and is preferably slightly larger than the diameter of the detection coil 22. The exciting coils 211 and 212 have the same winding direction, and the end of winding of the exciting coil 211 is connected to the beginning of winding of the exciting coil 212 so that the directions of magnetic flux generated by both coils are the same. . An excitation power source 3 is connected to the start of winding of the excitation coil 211 and the end of winding of the excitation coil 212. When the winding directions of the exciting coils 211 and 212 are opposite, if the winding ends of both coils are connected and the exciting power source 3 is connected at the beginning of winding of both coils, the direction of the magnetic flux generated by both coils is the same. Become.

検出コイル22は、そのコイル面(コイル軸(コイルの中心を通る軸)と直交する面)が励磁コイル211,212のコイル面と直交し、被検査体の1の検査面と平行になるように配置してある。
探傷は、渦電流探傷プローブ2を被検査体1の検査面に沿ってX3方向へ移動して行う。なお11は、被検査体1のキズである。
ここでコイル面は、コイルの巻き線に囲まれた面で、コイル軸(コイルの中心を通る軸)と直交する面(開口面)である。
The detection coil 22 has a coil surface (a surface orthogonal to the coil axis (axis passing through the center of the coil)) orthogonal to the coil surfaces of the excitation coils 211 and 212 and parallel to one inspection surface of the object to be inspected. It is arranged in.
The flaw detection is performed by moving the eddy current flaw detection probe 2 along the inspection surface of the inspection object 1 in the X3 direction. Reference numeral 11 denotes a scratch on the device under test 1.
Here, the coil surface is a surface (opening surface) that is surrounded by the coil winding and is orthogonal to the coil axis (axis passing through the center of the coil).

図1の渦電流探傷プローブ2は、励磁コイルを2つの励磁コイル211,212に分割し、両コイルの間に検出コイル22を配置してあるから、検出コイル22は、その取付け位置が一義的に決まり、励磁コイル211,212の略中央部に取り付けることができる。したがって検出コイル22の位置決めが容易になり、渦電流探傷プローブ2の作製作業が容易になる。   In the eddy current flaw detection probe 2 of FIG. 1, the excitation coil is divided into two excitation coils 211 and 212, and the detection coil 22 is arranged between the two coils. It can be attached to the approximate center of the exciting coils 211 and 212. Therefore, the positioning of the detection coil 22 is facilitated, and the manufacturing operation of the eddy current flaw detection probe 2 is facilitated.

図2は、本願発明の実施例2に係る上置型渦電流探傷プローブの構成を示す。
図2(a)は、平面図、図2(b)は、図2(a)のX1方向の断面図、図2(c)は、図2(a)のX2方向の断面図である。
実施例2は、基本的には、実施例1と同じであるが、ボビンがコアを備えている点が実施例1と相違している。
ボビン23の内部に磁性材料からなるコア24を取付けてある。渦電流探傷プローブ2は、励磁コイルを211,212の2つに分割してあるから、両励磁コイルの発生する磁束は、主たる磁束F0の他に局所的に磁束F11,F12も発生するが、コア24を設けることにより両励磁コイルの磁束をコア24に集中させることができる。したがって図2の渦電流探傷プローブ2は、磁束F11,F12を低減することができ、励磁コイル211,212が発生する磁束を、被検査体の検査面の一様な渦電流の発生に有効に利用することができる。
FIG. 2 shows the configuration of an upright eddy current flaw detection probe according to Embodiment 2 of the present invention.
2A is a plan view, FIG. 2B is a cross-sectional view in the X1 direction of FIG. 2A, and FIG. 2C is a cross-sectional view in the X2 direction of FIG. 2A.
The second embodiment is basically the same as the first embodiment, but differs from the first embodiment in that the bobbin includes a core.
A core 24 made of a magnetic material is attached inside the bobbin 23. Since the eddy current flaw detection probe 2 has the exciting coil divided into two parts 211 and 212, the magnetic flux generated by the two exciting coils locally generates magnetic fluxes F11 and F12 in addition to the main magnetic flux F0. By providing the core 24, the magnetic fluxes of both exciting coils can be concentrated on the core 24. Therefore, the eddy current flaw detection probe 2 of FIG. 2 can reduce the magnetic fluxes F11 and F12, and the magnetic flux generated by the exciting coils 211 and 212 is effectively used to generate a uniform eddy current on the inspection surface of the inspection object. Can be used.

図3は、本願発明の実施例3に係る上置型渦電流探傷プローブのボビンの構成を示す。
図3(a)は、平面図、図3(b1),(b2)は、図3(a)のX1方向の断面図、図3(c1),(c2)は、図3(a)のX2方向の断面図である。図3(b2),(c2)は、図3(b1),(c1)において、検出コイルを取付けてない状態を示す。なお図3は、励磁コイルを省略してある。
ボビン23の周面に検出コイル22を取付ける平らな面(底面)を有するU字状の凹状部231を形成してある。凹状部231は、2つの励磁コイルの間に位置するように形成し、その平らな面は、励磁コイルのコイル面と直交し、被検査体の検査面と平行になるように、或いはボビン23の直径方向(或いは励磁コイルの直径方向)と直交するように形成してある。
FIG. 3 shows the configuration of a bobbin of an upright eddy current flaw detection probe according to Embodiment 3 of the present invention.
3A is a plan view, FIGS. 3B1 and 3B2 are cross-sectional views in the X1 direction of FIG. 3A, and FIGS. 3C1 and 3C are those of FIG. It is sectional drawing of a X2 direction. FIGS. 3B2 and 3C2 show a state where the detection coil is not attached in FIGS. 3B1 and 3C1. In FIG. 3, the exciting coil is omitted.
A U-shaped concave portion 231 having a flat surface (bottom surface) for attaching the detection coil 22 is formed on the peripheral surface of the bobbin 23. The concave portion 231 is formed so as to be positioned between the two excitation coils, and the flat surface thereof is orthogonal to the coil surface of the excitation coil and parallel to the inspection surface of the object to be inspected, or the bobbin 23. It is formed so as to be orthogonal to the diameter direction (or the diameter direction of the exciting coil).

検出コイル22は、凹状部231の平らな面に接着するのみで、位置決めでき、かつ励磁コイルのコイル面と直交し、被検査体の検査面と平行になるように取付けることができる。したがって渦電流探傷プローブを作製するとき、検出コイル22は、凹状部231の平らな面に接着するだけで、所定の位置に所定の角度で(励磁コイルのコイル面と直交し、被検査体の検査面と平行になるように)取付けることができ、作成作業が容易になる。また検出コイル22は、凹状部231の平らな面に接着するから、接着強度が大きくなる。   The detection coil 22 can be positioned simply by adhering to the flat surface of the concave portion 231 and can be attached so as to be orthogonal to the coil surface of the exciting coil and parallel to the inspection surface of the object to be inspected. Therefore, when the eddy current flaw detection probe is manufactured, the detection coil 22 is simply adhered to the flat surface of the concave portion 231 and is placed at a predetermined position at a predetermined angle (perpendicular to the coil surface of the excitation coil and It can be attached (in parallel with the inspection surface), making the creation work easier. Moreover, since the detection coil 22 adheres to the flat surface of the concave portion 231, the adhesive strength increases.

凹状部231は、ボビンの23の軸(ボビンの中心を通る軸)方向、即ち長手方向にのみ壁を有するが、ボビン23が肉厚の場合には、凹状部231を口字状或いは円状にして四方に壁を有する穴部(四角或いは丸い皿状部)を形成し、その穴部に検出コイル22をはめ込むように取付けてもよい。また凹状部231の平らな面に、さらに凸状部を形成しその凸状部を検出コイル22の中央の開口部を挿入するようにして検出コイル22を取付けることもできる。この場合には、凸状部により検出コイル22の位置決めがさらに容易になり、取付け強度が大きくなる。   The concave portion 231 has a wall only in the direction of the axis of the bobbin 23 (the axis passing through the center of the bobbin), that is, in the longitudinal direction, but when the bobbin 23 is thick, the concave portion 231 is shaped like a mouth or a circle. Then, a hole (square or round dish-shaped part) having walls on all sides may be formed, and the detection coil 22 may be fitted into the hole. Further, the detection coil 22 can be attached by forming a convex portion on the flat surface of the concave portion 231 and inserting the central opening of the detection coil 22 into the convex portion. In this case, the positioning of the detection coil 22 is further facilitated by the convex portion, and the mounting strength is increased.

図4は、本願発明の実施例4に係る上置型渦電流探傷プローブのボビンの構成を示す。
図4(a)は、平面図、図4(b1)は、図4(a)のX1方向の断面図、図4(c1)は、図4(a)のX2方向の断面図である。図4(b2),(c2)は、図4(a),(b1),(c1)の変形例を示す。なお図4は、励磁コイルを省略してある。
FIG. 4 shows the configuration of a bobbin of an upright eddy current flaw detection probe according to Embodiment 4 of the present invention.
4A is a plan view, FIG. 4B1 is a cross-sectional view in the X1 direction of FIG. 4A, and FIG. 4C1 is a cross-sectional view in the X2 direction of FIG. 4A. 4 (b2) and (c2) show modified examples of FIGS. 4 (a), (b1) and (c1). In FIG. 4, the exciting coil is omitted.

まず図4(a)、(b1)、(c1)について説明する。
ボビン23の周面に検出コイル22を取付ける平らな面を有する凸状部232を形成してある。凸状部232は、2つの励磁コイルの間に位置するように形成し、その平らな面は、励磁コイルのコイル面と直交し、被検査体の検査面と平行になるように、或いはボビン23の直径方向(或いは励磁コイルの直径方向)と直交するように形成してある。したがって渦電流探傷プローブを作製するとき、検出コイル22は、凸状部232の平らな面に接着するだけで、所定の位置に所定の角度で(励磁コイルのコイル面と直交し、被検査体の検査面と平行になるように)取付けることができる。
First, FIGS. 4A, 4B1 and 4C1 will be described.
A convex portion 232 having a flat surface on which the detection coil 22 is attached is formed on the peripheral surface of the bobbin 23. The convex portion 232 is formed so as to be positioned between the two excitation coils, and its flat surface is perpendicular to the coil surface of the excitation coil and parallel to the inspection surface of the object to be inspected, or a bobbin. It is formed so as to be orthogonal to the diameter direction of 23 (or the diameter direction of the exciting coil). Therefore, when the eddy current flaw detection probe is manufactured, the detection coil 22 is simply adhered to the flat surface of the convex portion 232, and at a predetermined position at a predetermined angle (perpendicular to the coil surface of the excitation coil, To be parallel to the inspection surface).

凸状部232は、その平らな面に、さらに図4(b2),(c2)のように凸状部2321を形成しその凸状部2321を検出コイル22の中央の開口部に挿入して検出コイル22を取付けることもできる。この場合、検出コイル22は、平らな面に接着するとともに、その開口部に凸状部2321を挿入するからより強固に取付けることができ、かつ凸状部2321により検出コイル22の位置決めが容易になる。   The convex portion 232 is further formed with a convex portion 2321 on its flat surface as shown in FIGS. 4B2 and 4C2, and the convex portion 2321 is inserted into the central opening of the detection coil 22. A detection coil 22 can also be attached. In this case, the detection coil 22 is adhered to a flat surface, and the convex portion 2321 is inserted into the opening thereof, so that the detection coil 22 can be attached more firmly, and the convex portion 2321 can easily position the detection coil 22. Become.

図5は、本願発明の実施例5に係る上置型渦電流探傷プローブのボビンの構成を示す。
図5(a1),(b1)は、断面図、図5(a2),(b2)は、斜視図である。
図5(a1),(a2)は、ボビンを貫通する検出コイル取付け軸部材を設けた例を示し、図5(b1),(b2)は、ボビンを貫通しない検出コイル取付け軸部材を設けた例を示す。なお図5は、励磁コイルを省略してある。
FIG. 5 shows the configuration of a bobbin of an upright eddy current flaw detection probe according to Embodiment 5 of the present invention.
FIGS. 5A1 and 5B1 are cross-sectional views, and FIGS. 5A2 and 5B2 are perspective views.
FIGS. 5 (a1) and (a2) show an example in which a detection coil attachment shaft member that penetrates the bobbin is provided, and FIGS. 5 (b1) and (b2) provide a detection coil attachment shaft member that does not penetrate the bobbin. An example is shown. In FIG. 5, the exciting coil is omitted.

まず図5(a1),(a2)について説明する。
ボビン23には、検出コイル取付け軸部材233を取付けてある。検出コイル取付け軸部材233は、ボビン23を貫通し、検出コイル取付け軸部材233の軸方向が、ボビン23の直径方向と一致し或いはボビン23の軸(ボビンの中心を通る軸)と直交し、かつ被検査体の検査面と直交するように取付け、その先端部2331を検出コイル22の中央の開口部に挿入してある。検出コイル22は、ボビン23の接触面に接着するとともに、検出コイル取付け軸部材233の先端部2331によって固定するから、検出コイル22は、強固に取付けることができ、かつ渦電流探傷プローブを組立てるとき、検出コイル22の先端部2331を検出コイル22の中央の開口部に挿入するだけで、所定の位置に所定の角度で(励磁コイルのコイル面と直交し、被検査体の検査面と平行になるように)取付けることができる。
First, FIGS. 5A1 and 5A2 will be described.
A detection coil attachment shaft member 233 is attached to the bobbin 23. The detection coil mounting shaft member 233 passes through the bobbin 23, and the axial direction of the detection coil mounting shaft member 233 coincides with the diameter direction of the bobbin 23 or is orthogonal to the axis of the bobbin 23 (axis passing through the center of the bobbin). And it attaches so that it may orthogonally cross the inspection surface of a to-be-inspected object, The front-end | tip part 2331 is inserted in the opening part of the center of the detection coil 22. Since the detection coil 22 is adhered to the contact surface of the bobbin 23 and is fixed by the distal end portion 2331 of the detection coil attachment shaft member 233, the detection coil 22 can be firmly attached and when the eddy current flaw detection probe is assembled. By simply inserting the distal end portion 2331 of the detection coil 22 into the central opening of the detection coil 22, the detection coil 22 is placed at a predetermined position at a predetermined angle (perpendicular to the coil surface of the excitation coil and parallel to the inspection surface of the object to be inspected) Can be installed as).

次に図5(b1),(b2)について説明する。
検出コイル取付け軸部材234は、ボビン23の穴部に固定部2342を挿入してボビン23に取付けてある。検出コイル取付け軸部材234は、その軸方向が、ボビン23の直径方向と一致し或いはボビン23の軸(ボビンの中心を通る軸)と直交し、かつ被検査体の検査面と直交するように取付け、その頭部2341を検出コイル22の中央の開口部に挿入してある。検出コイル22は、ボビン23の接触面に接着するとともに、検出コイル取付け軸部材234の頭部2341によって固定するから、検出コイル22は、強固に取付けることができ、かつ渦電流探傷プローブを作製するとき、検出コイル取付け軸部材234の頭部2341を検出コイル22の中央の開口部に挿入するだけで、所定の位置に所定の角度で(励磁コイルのコイル面と直交し、被検査体の検査面と平行になるように)取付けることができる。
検出コイル取付け軸部材234は、ボビン23の穴部と固定部2342の双方にネジ部を形成して固定部2342をボビン23の穴部にネジ込むように構成してもよい。
Next, FIGS. 5B1 and 5B2 will be described.
The detection coil attachment shaft member 234 is attached to the bobbin 23 by inserting a fixing portion 2342 into the hole of the bobbin 23. The detection coil mounting shaft member 234 has an axial direction that coincides with the diameter direction of the bobbin 23 or is orthogonal to the axis of the bobbin 23 (axis passing through the center of the bobbin) and orthogonal to the inspection surface of the object to be inspected. The head 2341 is attached and inserted into the central opening of the detection coil 22. Since the detection coil 22 is adhered to the contact surface of the bobbin 23 and is fixed by the head portion 2341 of the detection coil attachment shaft member 234, the detection coil 22 can be firmly attached and an eddy current flaw detection probe is manufactured. When the head 2341 of the detection coil mounting shaft member 234 is simply inserted into the central opening of the detection coil 22, the inspection coil is inspected at a predetermined position at a predetermined angle (perpendicular to the coil surface of the exciting coil). Can be mounted parallel to the surface).
The detection coil attachment shaft member 234 may be configured such that screw portions are formed in both the hole portion of the bobbin 23 and the fixing portion 2342 and the fixing portion 2342 is screwed into the hole portion of the bobbin 23.

ここで図6と図7により本願発明の上置型渦電流探傷プルーブと従来の上置型渦電流探傷プルーブの出力特性の試験結果について説明する。
図6(a)は、試験に用いた本願発明の上置型渦電流探傷プローブを、図6(b)は、試験に用いた従来の上置型渦電流探傷プローブを示し、図7(a)は、本願発明の上置型渦電流探傷プローブの出力特性を、図7(b)は、従来の上置型渦電流探傷プローブの出力特性を示す。
図6において、ボビン23の外径、長さは、8mm,10mm、コア24の外径、長さは、4mm,12mm、励磁コイル211,212の巻数は、50回、励磁コイル21の巻数は、70回、それらのコイルの線径は、0.1mmである。コア24の材料は、PCパーマロイ(Ni78%のパーマロイ)である。
Here, the test results of the output characteristics of the upper eddy current flaw probe according to the present invention and the conventional upper eddy current flaw probe will be described with reference to FIGS.
FIG. 6A shows the above-described eddy current flaw detection probe of the present invention used in the test, FIG. 6B shows the conventional eddy current flaw detection probe used in the test, and FIG. FIG. 7B shows the output characteristics of the conventional upper eddy current flaw detection probe. FIG. 7B shows the output characteristics of the conventional upper eddy current flaw detection probe.
In FIG. 6, the outer diameter and length of the bobbin 23 are 8 mm and 10 mm, the outer diameter and length of the core 24 are 4 mm and 12 mm, the number of turns of the exciting coils 211 and 212 is 50, and the number of turns of the exciting coil 21 is 70 times, the coil wire diameter is 0.1 mm. The material of the core 24 is PC permalloy (Ni 78% permalloy).

検出コイル22の外径、内径、厚さは、3.5mm,2mm,0.5mm、検出コイル22の線径は、0.05mm、検出コイル22の巻数は、80回である。
被検査体1は、SM490(溶接構造用圧延鋼材)の板を用い、深さ1mm、長さ4mm、幅0.2mmのキズを放電加工によって形成した。
試験は、励磁電源の周波数25Hz、励磁電流20mAに設定し、渦電流探傷プローブ2を矢印X3の方向へ移動して検出コイル22の検出電圧を測定した。
The outer diameter, inner diameter, and thickness of the detection coil 22 are 3.5 mm, 2 mm, and 0.5 mm, the wire diameter of the detection coil 22 is 0.05 mm, and the number of turns of the detection coil 22 is 80 times.
The inspection object 1 was a plate of SM490 (rolled steel for welded structure), and scratches having a depth of 1 mm, a length of 4 mm, and a width of 0.2 mm were formed by electric discharge machining.
In the test, the frequency of the excitation power source was set to 25 Hz, the excitation current was set to 20 mA, the eddy current flaw detection probe 2 was moved in the direction of the arrow X3, and the detection voltage of the detection coil 22 was measured.

図7にいて、縦軸は、渦電流探傷プローブ2(検出コイル22)の出力電圧を示し、横軸は、渦電流探傷プローブ2の位置を示す。
図7(b)の従来の渦電流探傷プローブ2の出力特性についてみると、キズ11の前後では出力電圧を発生しないが、キズ11のところで出力電圧を発生している。即ち従来の渦電流探傷プローブ2は、リフトオフ雑音を発生することなく、キズ11を確実に検出することができる。一方図7(a)の本願発明の渦電流探傷プローブ2の出力特性についてみると、図7(b)と略同じ出力特性が得られることが分かる。即ち、本願発明の渦電流探傷プローブ2のように励磁コイルを2つに分割し、両励磁コイルの間に検出コイルを配置した渦電流探傷プローブも、励磁コイルを分割しない渦電流探傷プローブと略同じ出力特性が得られることが分かる。
In FIG. 7, the vertical axis indicates the output voltage of the eddy current flaw detection probe 2 (detection coil 22), and the horizontal axis indicates the position of the eddy current flaw detection probe 2.
As for the output characteristics of the conventional eddy current flaw detection probe 2 shown in FIG. 7B, an output voltage is not generated before and after the scratch 11, but an output voltage is generated at the scratch 11. That is, the conventional eddy current flaw detection probe 2 can reliably detect the flaw 11 without generating lift-off noise. On the other hand, looking at the output characteristics of the eddy current flaw detection probe 2 of the present invention in FIG. 7A, it can be seen that substantially the same output characteristics as in FIG. 7B are obtained. That is, the eddy current flaw probe in which the excitation coil is divided into two and the detection coil is arranged between the two excitation coils as in the eddy current flaw probe 2 of the present invention is also substantially different from the eddy current flaw probe in which the excitation coil is not divided. It can be seen that the same output characteristics can be obtained.

前記各実施例は、ボビンが円筒状のものについて説明したが、四角形等多角形の筒状体であってもよい。   In each of the above-described embodiments, the bobbin has a cylindrical shape, but may be a polygonal cylindrical body such as a quadrangle.

本願発明の実施例1に係る上置型渦電流探傷用プローブの構成を示す。1 shows a configuration of a top-type eddy current flaw detection probe according to Embodiment 1 of the present invention. 本願発明の実施例2に係る上置型渦電流探傷用プローブの構成を示す。The structure of the probe for eddy current flaw detection according to Example 2 of the present invention is shown. 本願発明の実施例3に係る上置型渦電流探傷プローブのボビンの構成を示す。The structure of the bobbin of the top type eddy current flaw detection probe which concerns on Example 3 of this invention is shown. 本願発明の実施例4に係る上置型渦電流探傷プローブのボビンの構成を示す。The structure of the bobbin of the top type eddy current flaw detection probe which concerns on Example 4 of this invention is shown. 本願発明の実施例5に係る上置型渦電流探傷プローブのボビンの構成を示す。The structure of the bobbin of the top type eddy current flaw detection probe which concerns on Example 5 of this invention is shown. 試験に用いた本願発明と従来の上置型渦電流探傷用プローブを示す。The invention of this application used for the test and a conventional probe for eddy current flaw detection are shown. 本願発明と従来の上置型渦電流探傷用プローブの試験結果を示す。The test results of the present invention and the conventional probe for detecting an eddy current in the prior art are shown. 従来の上置型渦電流探傷プローブの構成を示す。The structure of the conventional top-mounted eddy current flaw detection probe is shown.

符号の説明Explanation of symbols

1 被検査体
11 キズ
2 上置型渦電流探傷プローブ
21,211,212 励磁コイル
22 検出コイル
23 ボビン
24 コア
3 励磁電源
F0,F11,F12 磁束
DESCRIPTION OF SYMBOLS 1 Inspected object 11 Scratch 2 Stationary eddy current flaw detection probe 21, 211, 212 Excitation coil 22 Detection coil 23 Bobbin 24 Core 3 Excitation power supply F0, F11, F12 Magnetic flux

Claims (4)

ボビンに形成した2個の励磁コイルとその2個の励磁コイルの間に配置した検出コイルからなり、検出コイルは、そのコイル面が励磁コイルのコイル面と直交し被検査体の検査面と平行になるようにボビンの周面に取付けてあり、2個の励磁コイルは、同じ方向の磁束を発生するように接続してあることを特徴とする上置型渦電流探傷プローブ。   It consists of two excitation coils formed on the bobbin and a detection coil arranged between the two excitation coils. The detection coil has a coil surface orthogonal to the coil surface of the excitation coil and parallel to the inspection surface of the object to be inspected. The above-described eddy current flaw detection probe is attached to the peripheral surface of the bobbin so that the two exciting coils are connected to generate magnetic flux in the same direction. 請求項1に記載の上置型渦電流探傷プローブにおいて、前記ボビンは、磁性材からなるコアを備えていることを特徴とする上置型渦電流探傷プローブ。   2. The upper eddy current flaw detection probe according to claim 1, wherein the bobbin includes a core made of a magnetic material. 請求項1又は請求項2に記載の上置型渦電流探傷プローブにおいて、前記検出コイルは、前記ボビンの周面の平ら面に取付けてあり、その平らな面は、励磁コイルのコイル面と直交し、被検査体の検査面と平行になるように形成してあることを特徴とする上置型渦電流探傷プローブ。   The top-type eddy current flaw detection probe according to claim 1 or 2, wherein the detection coil is attached to a flat surface of a peripheral surface of the bobbin, and the flat surface is orthogonal to a coil surface of the excitation coil. The above-described eddy current flaw detection probe is formed so as to be parallel to the inspection surface of the object to be inspected. 請求項1又は請求項2に記載の上置型渦電流探傷プローブにおいて、前記検出コイルは、前記ボビンに取付けた検出コイル取付け軸部材に取付けてあり、その検出コイル取付け軸部材は、ボビンの軸と直交し、被検査体の検査面と直交する方向に取付けあることを特徴とする上置型渦電流探傷プローブ。   3. The upper eddy current flaw detection probe according to claim 1, wherein the detection coil is attached to a detection coil attachment shaft member attached to the bobbin, and the detection coil attachment shaft member is connected to a bobbin shaft. An overhead eddy current flaw detection probe characterized in that the probe is mounted in a direction perpendicular to the inspection surface of the object to be inspected.
JP2005299699A 2005-10-14 2005-10-14 Upper placing type eddy current flaw detection probe Pending JP2007108032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005299699A JP2007108032A (en) 2005-10-14 2005-10-14 Upper placing type eddy current flaw detection probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005299699A JP2007108032A (en) 2005-10-14 2005-10-14 Upper placing type eddy current flaw detection probe

Publications (1)

Publication Number Publication Date
JP2007108032A true JP2007108032A (en) 2007-04-26

Family

ID=38033997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005299699A Pending JP2007108032A (en) 2005-10-14 2005-10-14 Upper placing type eddy current flaw detection probe

Country Status (1)

Country Link
JP (1) JP2007108032A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287981A (en) * 2008-05-27 2009-12-10 Marktec Corp Eddy-current flaw detector and eddy-current flaw detecting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287981A (en) * 2008-05-27 2009-12-10 Marktec Corp Eddy-current flaw detector and eddy-current flaw detecting method

Similar Documents

Publication Publication Date Title
JP6805986B2 (en) Magnetic material inspection device
JP6437586B2 (en) Measuring probe for measuring the thickness of a thin layer and method for manufacturing a sensor element of a measuring probe
JP4182121B2 (en) Torsional vibration generation and measurement method using magnetic deformation, and torsional vibration generation and measurement apparatus using the same
RU2411454C2 (en) Magnetic-inductive transducer
CN101311714A (en) High-sensitivity vortex flow dot type probe
JP4842922B2 (en) Electromagnetic ultrasonic probe
JP2011117872A (en) Eddy current flaw detection probe, and eddy current flaw detection testing apparatus using the same
JP2007108032A (en) Upper placing type eddy current flaw detection probe
JP5607192B2 (en) Eddy current flaw detection probe and eddy current flaw detection test apparatus using the same
JP2009092388A (en) Eddy current test probe
RU2579431C2 (en) Magnetiser for magnetic-particle inspection of wheel
JP4484723B2 (en) Eddy current testing probe
JP2013185951A (en) Magnetic flaw detection probe
JP2010266277A (en) Eddy-current flaw detection system
JP2014066688A (en) Eddy current flaw detection probe, and eddy current flaw detection device
JP3443007B2 (en) Electromagnetic flow meter
JP2014192060A (en) Spark plug inspection device and spark plug inspection method
JP2011053160A (en) Magnetic detection sensor
CN107430035B (en) Magnetic adsorption type temperature sensor and manufacturing method thereof
JP5204938B2 (en) Eddy current testing probe
JP2006284506A (en) Probe for detecting eddy current flaw
JP3130115B2 (en) Tube Magnetostrictive Stress Measurement Method and Apparatus
JP2009287981A (en) Eddy-current flaw detector and eddy-current flaw detecting method
JPS6319023B2 (en)
JP2007333392A (en) Electromagnetic flowmeter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090414