JP6170005B2 - Eddy current flaw detection method and eddy current flaw detection apparatus - Google Patents

Eddy current flaw detection method and eddy current flaw detection apparatus Download PDF

Info

Publication number
JP6170005B2
JP6170005B2 JP2014072769A JP2014072769A JP6170005B2 JP 6170005 B2 JP6170005 B2 JP 6170005B2 JP 2014072769 A JP2014072769 A JP 2014072769A JP 2014072769 A JP2014072769 A JP 2014072769A JP 6170005 B2 JP6170005 B2 JP 6170005B2
Authority
JP
Japan
Prior art keywords
detection
absolute value
signal
coil
eddy current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014072769A
Other languages
Japanese (ja)
Other versions
JP2015194419A (en
JP2015194419A5 (en
Inventor
小池 正浩
正浩 小池
亮 西水
亮 西水
克己 井坂
克己 井坂
将史 成重
将史 成重
潤一郎 長沼
潤一郎 長沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2014072769A priority Critical patent/JP6170005B2/en
Publication of JP2015194419A publication Critical patent/JP2015194419A/en
Publication of JP2015194419A5 publication Critical patent/JP2015194419A5/ja
Application granted granted Critical
Publication of JP6170005B2 publication Critical patent/JP6170005B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

本発明は、相互誘導形標準比較方式の渦電流探傷プローブを用いた渦電流探傷方法及び渦電流探傷装置に関する。   The present invention relates to an eddy current flaw detection method and an eddy current flaw detection apparatus using a mutual induction type standard comparison eddy current flaw probe.

非破壊試験方法の一つである渦電流探傷方法は、渦電流探傷プローブの励磁コイルに励磁信号(交流)を印加して励磁し、プローブを導電性の被検査体に近づけ、電磁誘導によって被検査体に渦電流を誘起し、この渦電流の乱れ(若しくはそれに伴う磁束密度の乱れ)をプローブの検出コイルで検出する方法である(例えば特許文献1参照)。渦電流が被検査体の導電率や透磁率等で変化することから、被検査体のきず等を検知することが可能である。具体的には、例えば健全な標準試験片等に対して検出された基準検出信号を予め取得し、被検査体に対して検出された検出信号と基準検出信号との差分を画面上で表示する。検出信号の表示形態の一つとして、検出信号(電圧)を基準信号の位相と同じ成分(X成分)の電圧と90度異なる成分(Y成分)の電圧に分解してから、縦軸にX成分電圧又はY成分電圧をとり、横軸に時間又はプローブ位置をとって表示するものが知られている。そして、例えばX成分電圧又はY成分電圧が予め設定された閾値より大きい場合に、きずと判定する。   One of the nondestructive testing methods is an eddy current flaw detection method in which an excitation signal (alternating current) is applied to an excitation coil of an eddy current flaw detection probe to excite it, the probe is brought close to a conductive object to be inspected, and is subjected to electromagnetic induction. In this method, an eddy current is induced in an inspection object, and this eddy current disturbance (or magnetic flux density disturbance associated therewith) is detected by a detection coil of the probe (see, for example, Patent Document 1). Since the eddy current changes depending on the conductivity, magnetic permeability, etc. of the object to be inspected, it is possible to detect a flaw or the like of the object to be inspected. Specifically, for example, a reference detection signal detected for a healthy standard test piece or the like is acquired in advance, and the difference between the detection signal detected for the object to be inspected and the reference detection signal is displayed on the screen. . As one of the display forms of the detection signal, the detection signal (voltage) is decomposed into a voltage having the same component (X component) as the phase of the reference signal (Y component) and a voltage having a component (Y component) that is 90 degrees different from the reference signal. It is known to take a component voltage or a Y component voltage and display the time or probe position on the horizontal axis. Then, for example, when the X component voltage or the Y component voltage is larger than a preset threshold value, it is determined as a flaw.

特開2008−8806号公報Japanese Patent Laid-Open No. 2008-8806

渦電流探傷法では、きず以外の信号として、プローブと被検査体の表面との距離の変化に起因したリフトオフ信号も発生し、きず信号との識別が難しい場合がある。   In the eddy current flaw detection method, a lift-off signal due to a change in the distance between the probe and the surface of the object to be inspected is also generated as a signal other than a flaw, and it may be difficult to distinguish it from a flaw signal.

本発明の目的は、きず信号とリフトオフ信号を識別できる渦電流探傷方法及び渦電流探傷装置を提供することにある。   An object of the present invention is to provide an eddy current flaw detection method and an eddy current flaw detection device capable of discriminating a flaw signal and a lift-off signal.

上記目的を達成するために、本発明は、励磁コイル、前記励磁コイルに対して第1の並び方向に配置された第1検出コイル、及び前記励磁コイルに対して前記第1の並び方向と交差する第2の並び方向に配置された第2検出コイルを有する渦電流探傷プローブを用いた渦電流探傷方法において、前記第1検出コイルの検出信号と前記第2検出コイルの検出信号との差分を演算して差分信号を生成し、前記第1検出コイルの検出信号の絶対値及び前記第2検出コイルの検出信号の絶対値のうちの大きいほうの絶対値を前記差分信号の絶対値と比較して、前記差分信号の絶対値より小さい場合にきず有りと判定し、前記差分信号の絶対値より大きい場合にきず無しと判定する。 To achieve the above object, the present invention includes an excitation coil, a first detection coil disposed in a first arrangement direction with respect to the exciting coil, and the first alignment direction with respect to the excitation coil In an eddy current flaw detection method using an eddy current flaw detection probe having second detection coils arranged in intersecting second arrangement directions, a difference between a detection signal of the first detection coil and a detection signal of the second detection coil To generate a differential signal and compare the absolute value of the absolute value of the detection signal of the first detection coil and the absolute value of the detection signal of the second detection coil with the absolute value of the differential signal Then, it is determined that there is a flaw when it is smaller than the absolute value of the difference signal, and it is determined that there is no flaw when it is larger than the absolute value of the difference signal.

上記目的を達成するために、本発明は、励磁コイル、前記励磁コイルに対して第1の並び方向に配置された第1検出コイル、及び前記励磁コイルに対して前記第1の並び方向と交差する第2の並び方向に配置された第2検出コイルを有する渦電流探傷プローブを備えた渦電流探傷装置において、前記第1検出コイルの検出信号と前記第2検出コイルの検出信号との差分を演算して差分信号を生成する差分演算部と、前記第1検出コイルの検出信号の絶対値及び前記第2検出コイルの検出信号の絶対値のうちの大きいほうの絶対値を前記差分信号の絶対値と比較することにより、きずの有無を判定する比較判定部とを備え、前記比較判定部は、前記第1検出コイルの検出信号の絶対値及び前記第2検出コイルの検出信号の絶対値のうちの大きいほうの絶対値が前記差分信号の絶対値より小さい場合にきず有りと判定し、前記差分信号の絶対値より大きい場合にきず無しと判定する。 To achieve the above object, the present invention includes an excitation coil, a first detection coil disposed in a first arrangement direction with respect to the exciting coil, and the first alignment direction with respect to the excitation coil In an eddy current flaw detector provided with an eddy current flaw detection probe having a second detection coil arranged in the intersecting second arrangement direction, the difference between the detection signal of the first detection coil and the detection signal of the second detection coil A difference calculation unit that generates a difference signal by calculating the difference between the absolute value of the detection signal of the first detection coil and the absolute value of the detection signal of the second detection coil. A comparison / determination unit that determines the presence or absence of a flaw by comparing with an absolute value, and the comparison / determination unit includes an absolute value of a detection signal of the first detection coil and an absolute value of a detection signal of the second detection coil Big of The sale of an absolute value is determined that there flaws is smaller than the absolute value of the difference signal, it is determined that no scratches when the absolute value is greater than said difference signal.

本発明によれば、きず信号とリフトオフ信号を識別できる。   According to the present invention, a flaw signal and a lift-off signal can be distinguished.

本発明の一実施形態における渦電流探傷装置の構成を表す概略図である。It is the schematic showing the structure of the eddy current flaw detector in one Embodiment of this invention. 本発明の一実施形態における渦電流探傷方法の手順を表すフローチャートである。It is a flowchart showing the procedure of the eddy current flaw detection method in one Embodiment of this invention. 本発明の一実施形態の動作を説明するための平面図及び側面図であり、きず信号を検出する場合を示す。It is the top view and side view for explaining operation of one embodiment of the present invention, and shows the case where a flaw signal is detected. 本発明の一実施形態における第1検出コイルの検出信号SA、第2検出コイルの検出信号SB、及び差分信号SCの具体例を表す図であり、きず信号である場合を示す。It is a figure showing the specific example of detection signal SA of the 1st detection coil, detection signal SB of the 2nd detection coil, and difference signal SC in one embodiment of the present invention, and shows the case where it is a flaw signal. 本発明の一実施形態の動作を説明するための側面図であり、リフトオフ信号を検出する場合を示す。It is a side view for demonstrating operation | movement of one Embodiment of this invention, and shows the case where a lift-off signal is detected. 本発明の一実施形態における第1検出コイルの検出信号SA、第2検出コイルの検出信号SB、及び差分信号SCの具体例を表す図であり、リフトオフ信号である場合を示す。It is a figure showing the specific example of detection signal SA of the 1st detection coil, detection signal SB of the 2nd detection coil, and difference signal SC in one embodiment of the present invention, and shows the case where it is a lift-off signal. 本発明の一変形例における渦電流探傷プローブの構成を表す概略図である。It is the schematic showing the structure of the eddy current test probe in the modification of this invention.

本発明の一実施形態を、図面を参照しつつ説明する。   An embodiment of the present invention will be described with reference to the drawings.

図1は、本実施形態における渦電流探傷装置の構成を表す概略図である。   FIG. 1 is a schematic diagram showing the configuration of the eddy current flaw detector according to this embodiment.

本実施形態の渦電流探傷装置は、大別して、渦電流探傷プローブ1と、制御装置2とを備えている。   The eddy current flaw detector according to the present embodiment is roughly divided into an eddy current flaw probe 1 and a control device 2.

渦電流探傷プローブ1は、励磁コイル3と、励磁コイル3に対して第1の並び方向(図中左右方向)に配置された検出コイル4aと、励磁コイル3に対して第1の並び方向と交差する第2の並び方向(図中上下方向)に配置された検出コイル4bとを有している。なお、本実施形態では、第1の並び方向と第2の並び方向が直交する場合を例にとって示しているが、これに限られない。また、後述の図3(a)で示すように、励磁コイル3及び検出コイル4a,4bは、被検査体5の表面に沿って配置されるようになっている。また、励磁コイル3及び検出コイル4a,4bの軸方向が被検査体5の表面に対して垂直となっている。   The eddy current flaw detection probe 1 includes an excitation coil 3, a detection coil 4a disposed in a first alignment direction (left and right direction in the figure) with respect to the excitation coil 3, and a first alignment direction with respect to the excitation coil 3. And a detection coil 4b arranged in the intersecting second arrangement direction (vertical direction in the figure). In the present embodiment, the case where the first arrangement direction and the second arrangement direction are orthogonal to each other is shown as an example, but the present invention is not limited to this. Further, as shown in FIG. 3A described later, the excitation coil 3 and the detection coils 4a and 4b are arranged along the surface of the inspection object 5. Further, the axial directions of the excitation coil 3 and the detection coils 4 a and 4 b are perpendicular to the surface of the inspection object 5.

制御装置2は、機能的構成として、励磁信号発生部6、検出信号処理部7a,7b、差分演算部8、比較判定部9、記憶部10、及び表示部11を備えている。   The control device 2 includes an excitation signal generation unit 6, detection signal processing units 7 a and 7 b, a difference calculation unit 8, a comparison determination unit 9, a storage unit 10, and a display unit 11 as functional configurations.

励磁信号発生部6は、プローブ1の励磁コイル3に励磁信号(交流)を印加する。これにより、励磁コイル3が励磁し、電磁誘導によって被検査体5に渦電流が誘起する。そして、きず等の要因による渦電流の変化(若しくはそれに伴う磁束密度の変化)が検出コイル4a,4bで検出され、検出信号として出力される。   The excitation signal generator 6 applies an excitation signal (alternating current) to the excitation coil 3 of the probe 1. Thereby, the exciting coil 3 is excited, and an eddy current is induced in the inspection object 5 by electromagnetic induction. A change in eddy current (or a change in magnetic flux density associated therewith) due to a flaw or the like is detected by the detection coils 4a and 4b and output as a detection signal.

検出信号処理部7aは、検出コイル4aからの検出信号に対し所定の処理を行い、検出信号処理部7bは、検出コイル4bからの検出信号に対し所定の処理を行う。詳細には、例えば、基準信号の位相と同じ成分(X成分)と90度異なる成分(Y成分)に分解する。そして、処理後のデータを記憶部10に記憶させるとともに、表示部11に表示させる。表示部11では、検出コイル4aの検出信号SAとして、縦軸にX成分電圧及びY成分電圧のうちの一方(詳細には、感度校正を行ったほうの成分電圧が好ましく、本実施形態ではY成分電圧)をとり、横軸に時間又はプローブ位置をとって表示する。同様に、検出コイル4bの検出信号SBとして、縦軸にX成分電圧及びY成分電圧のうちの一方(詳細には、感度校正を行ったほうの成分電圧が好ましく、本実施形態ではY成分電圧)をとり、横軸に時間又はプローブ位置をとって表示する。   The detection signal processing unit 7a performs predetermined processing on the detection signal from the detection coil 4a, and the detection signal processing unit 7b performs predetermined processing on the detection signal from the detection coil 4b. Specifically, for example, it is decomposed into a component (X component) that is the same as the phase of the reference signal and a component (Y component) that is 90 degrees different. Then, the processed data is stored in the storage unit 10 and displayed on the display unit 11. In the display unit 11, as the detection signal SA of the detection coil 4a, one of the X component voltage and the Y component voltage on the vertical axis (specifically, the component voltage on which sensitivity calibration is performed is preferable. Component voltage), and the time or probe position is plotted on the horizontal axis. Similarly, as the detection signal SB of the detection coil 4b, one of the X component voltage and the Y component voltage on the vertical axis (specifically, the component voltage on which sensitivity calibration is performed is preferable. In this embodiment, the Y component voltage ) And display the time or probe position on the horizontal axis.

差分演算部8は、検出コイル4aの検出信号SAと検出コイル4bの検出信号SBとの差分を演算して差分信号SCを生成する。比較判定部9は、検出コイル4aの検出信号の絶対値|SA|及び検出コイル4bの検出信号の絶対値|SB|のうちの大きいほうの絶対値を差分信号の絶対値|SC|と比較することにより、きずの有無を判定する。そして、その判定結果を、記憶部10に記憶されたデータに関連付けて記憶させるとともに、表示部11に表示させるようになっている。   The difference calculation unit 8 calculates a difference between the detection signal SA of the detection coil 4a and the detection signal SB of the detection coil 4b to generate a difference signal SC. The comparison determination unit 9 compares the larger absolute value of the absolute value | SA | of the detection signal of the detection coil 4a and the absolute value | SB | of the detection signal of the detection coil 4b with the absolute value | SC | of the difference signal. By doing so, the presence or absence of a flaw is determined. The determination result is stored in association with the data stored in the storage unit 10 and is displayed on the display unit 11.

図2は、本実施形態における渦電流探傷方法の手順を表すフローチャートである。   FIG. 2 is a flowchart showing the procedure of the eddy current flaw detection method according to this embodiment.

まず、渦電流探傷プローブ1を被検査体5の検査位置に配置し(ステップ100)、プローブ1の励磁コイル3に励磁信号を印加して、被検査体5に渦電流を誘起する(ステップ110)。そして、渦電流の変化(若しくはそれに伴う磁束密度の変化)をプローブ1の検出コイル4a,4bで検出し、検出信号SA,SBを取得する(ステップ120)。   First, the eddy current flaw detection probe 1 is placed at the inspection position of the inspection object 5 (step 100), and an excitation signal is applied to the excitation coil 3 of the probe 1 to induce an eddy current in the inspection object 5 (step 110). ). Then, a change in eddy current (or a change in magnetic flux density associated therewith) is detected by the detection coils 4a and 4b of the probe 1 to obtain detection signals SA and SB (step 120).

制御装置2の差分演算部8は、検出信号SAと検出信号SBとの差分を演算して差分信号SCを生成する(ステップ130)。制御装置2の比較判定部9は、検出コイル4aの検出信号の絶対値|SA|及び検出コイル4bの検出信号の絶対値|SB|のうちの大きいほうの絶対値を差分信号の絶対値|SC|と比較する(ステップ140)。詳細には、例えば検出信号の絶対値|SA|が検出信号の絶対値|SB|以上であれば、検出信号の絶対値|SA|が差分信号の絶対値|SC|以下であるかどうかを判定する。一方、例えば検出信号の絶対値|SA|が検出信号の絶対値|SB|未満であれば、検出信号の絶対値|SB|が差分信号の絶対値|SC|以下であるかどうかを判定する。   The difference calculation unit 8 of the control device 2 calculates the difference between the detection signal SA and the detection signal SB to generate a difference signal SC (step 130). The comparison determination unit 9 of the control device 2 uses the larger absolute value of the absolute value | SA | of the detection signal of the detection coil 4a and the absolute value | SB | of the detection signal of the detection coil 4b as the absolute value of the difference signal | Compare with SC | (step 140). Specifically, for example, if the absolute value | SA | of the detection signal is greater than or equal to the absolute value | SB | of the detection signal, whether or not the absolute value | SA | of the detection signal is less than or equal to the absolute value | SC | judge. On the other hand, for example, if the absolute value | SA | of the detection signal is less than the absolute value | SB | of the detection signal, it is determined whether or not the absolute value | SB | of the detection signal is less than or equal to the absolute value | SC | .

具体例をあげて説明する。例えば図3で示すように被検査体5のきず部分をプローブ1で走査した場合は、図4(a)及び図4(b)で示すような検出信号SA,SBが得られ、図4(c)で示すような差分信号SCが得られる。この場合、検出信号の絶対値|SA|が検出信号の絶対値|SB|より大きいから、検出信号の絶対値|SA|が差分信号の絶対値|SC|以下であるかどうかを判定する。そして、検出信号の絶対値|SA|が差分信号の絶対値|SC|以下であるから、ステップ140の判定が満たされ、ステップ150に移る。ステップ150では、検出信号SA,SBがきず信号である、すなわち、きず有りと判定する。   A specific example will be described. For example, as shown in FIG. 3, when the flaw portion of the inspection object 5 is scanned with the probe 1, detection signals SA and SB as shown in FIGS. 4A and 4B are obtained, and FIG. A differential signal SC as shown in c) is obtained. In this case, since the absolute value | SA | of the detection signal is larger than the absolute value | SB | of the detection signal, it is determined whether or not the absolute value | SA | of the detection signal is less than or equal to the absolute value | SC | Since the absolute value | SA | of the detection signal is equal to or smaller than the absolute value | SC | of the difference signal, the determination in step 140 is satisfied, and the routine proceeds to step 150. In step 150, it is determined that the detection signals SA and SB are flaw signals, that is, there are flaws.

また、例えば図5で示すようにプローブ1と被検査体5の表面との距離が変化した場合は、図6(a)及び図6(b)で示すような検出信号SA,SBが得られ、図6(c)で示すような差分信号SCが得られる。この場合、検出信号の絶対値|SA|が検出信号の絶対値|SB|より大きいから、検出信号の絶対値|SA|が差分信号の絶対値|SC|以下であるかどうかを判定する。そして、検出信号の絶対値|SA|が差分信号の絶対値|SC|未満であるから、ステップ140の判定が満たされず、ステップ160に移る。ステップ160では、検出信号SA,SBがリフトオフ信号である、すなわち、きず無しと判定する。   For example, when the distance between the probe 1 and the surface of the inspection object 5 changes as shown in FIG. 5, detection signals SA and SB as shown in FIGS. 6 (a) and 6 (b) are obtained. A differential signal SC as shown in FIG. 6C is obtained. In this case, since the absolute value | SA | of the detection signal is larger than the absolute value | SB | of the detection signal, it is determined whether or not the absolute value | SA | of the detection signal is less than or equal to the absolute value | SC | Since the absolute value | SA | of the detection signal is less than the absolute value | SC | of the difference signal, the determination in step 140 is not satisfied, and the routine proceeds to step 160. In step 160, it is determined that the detection signals SA and SB are lift-off signals, that is, there are no flaws.

そして、例えば被検査体5に検査すべき他の位置があれば、ステップ170の判定が満たされず、次の検査位置にプローブ1を移動し(ステップ180)、上述したステップ110〜140とステップ150又は160の手順を繰り返す。一方、被検査体5に検査すべき他の位置がなければ、ステップ170の判定が満たされて、検査終了となる。   For example, if there is another position on the inspection object 5 to be inspected, the determination at Step 170 is not satisfied, and the probe 1 is moved to the next inspection position (Step 180), and Steps 110 to 140 and Step 150 described above are performed. Alternatively, the procedure of 160 is repeated. On the other hand, if there is no other position to be inspected in the inspection object 5, the determination in Step 170 is satisfied and the inspection is completed.

以上のように本実施形態においては、きず信号とリフトオフ信号を識別でき、きずの有無、すなわち被検査体5が健全かどうかを評価することができる。   As described above, in the present embodiment, the flaw signal and the lift-off signal can be identified, and it is possible to evaluate the presence or absence of flaws, that is, whether the inspected object 5 is healthy.

なお、上記一実施形態において、渦電流探傷プローブ1は、1組の励磁コイル3及び検出コイル4a,4b(すなわち、3つのコイル)を備えた場合を例にとって説明したが、本発明の趣旨及び技術思想を逸脱しない範囲内で変形が可能である。すなわち、例えば図7で示す変形例のように、渦電流探傷プローブ1Aは、2組以上の励磁コイル3及び検出コイル4a,4b(すなわち、5つ以上のコイル)を備えていてもよく、励磁コイル3及び検出コイル4a,4bの組合せを順次切替えるようにしてもよい。なお、本変形例では、励磁コイル3と検出コイル4aの並び方向(図中左右方向)と励磁コイル3と検出コイル4bの並び方向(図中上下方向)が直交する場合(言い換えれば複数のコイルを正方配列する場合)を例にとって示しているが、これに限られない。すなわち、例えば、複数のコイルを千鳥配列してもよい。   In the above-described embodiment, the eddy current flaw detection probe 1 has been described by taking as an example the case of including a pair of exciting coil 3 and detection coils 4a and 4b (that is, three coils). Modifications can be made without departing from the technical idea. That is, for example, as in the modification shown in FIG. 7, the eddy current flaw detection probe 1A may include two or more sets of excitation coils 3 and detection coils 4a and 4b (that is, five or more coils). The combination of the coil 3 and the detection coils 4a and 4b may be switched sequentially. In this modification, the arrangement direction of the excitation coil 3 and the detection coil 4a (the horizontal direction in the figure) and the arrangement direction of the excitation coil 3 and the detection coil 4b (the vertical direction in the figure) are orthogonal (in other words, a plurality of coils). Is shown as an example), but is not limited thereto. That is, for example, a plurality of coils may be arranged in a staggered manner.

また、上記一実施形態においては、制御装置2の差分演算部8が、検出コイル4aの検出信号SAと検出コイル4bの検出信号SBとの差分を演算して差分信号SCを生成し、制御装置2の比較判定部9が、検出コイル4aの検出信号の絶対値|SA|及び検出コイル4bの検出信号の絶対値|SB|のうちの大きいほうの絶対値を差分信号の絶対値|SC|と比較することにより、きずの有無を判定する場合を例にとって説明したが、本発明の趣旨及び技術思想を逸脱しない範囲内で変形が可能である。すなわち、例えば、検査者が、検出コイル4aの検出信号SAと検出コイル4bの検出信号SBとの差分を演算して差分信号SCを生成し、検出コイル4aの検出信号の絶対値|SA|及び検出コイル4bの検出信号の絶対値|SB|のうちの大きいほうの絶対値を差分信号の絶対値|SC|と比較することにより、きずの有無を判定してもよい。このような場合も、上記同様の効果を得ることができる。   In the above embodiment, the difference calculation unit 8 of the control device 2 calculates the difference between the detection signal SA of the detection coil 4a and the detection signal SB of the detection coil 4b to generate the difference signal SC, and the control device 2, the comparison / determination unit 9 calculates the larger absolute value of the absolute value | SA | of the detection signal of the detection coil 4a and the absolute value | SB | of the detection signal of the detection coil 4b as the absolute value | SC | The case where the presence / absence of a flaw is determined as an example has been described, but modifications can be made without departing from the spirit and technical idea of the present invention. That is, for example, the examiner calculates the difference between the detection signal SA of the detection coil 4a and the detection signal SB of the detection coil 4b to generate the difference signal SC, and the absolute value | SA | of the detection signal of the detection coil 4a The presence / absence of a flaw may be determined by comparing the larger absolute value | SB | of the detection signal of the detection coil 4b with the absolute value | SC | of the difference signal. In such a case, the same effect as described above can be obtained.

1,1A 渦電流探傷プローブ
2 制御装置
3 励磁コイル
4a,4b 検出コイル
8 差分演算部
9 比較判定部
11 表示部
DESCRIPTION OF SYMBOLS 1,1A Eddy current test probe 2 Control apparatus 3 Excitation coil 4a, 4b Detection coil 8 Difference calculating part 9 Comparison determination part 11 Display part

Claims (3)

励磁コイル、前記励磁コイルに対して第1の並び方向に配置された第1検出コイル、及び前記励磁コイルに対して前記第1の並び方向と交差する第2の並び方向に配置された第2検出コイルを有する渦電流探傷プローブを用いた渦電流探傷方法において、
前記第1検出コイルの検出信号と前記第2検出コイルの検出信号との差分を演算して差分信号を生成し、
前記第1検出コイルの検出信号の絶対値及び前記第2検出コイルの検出信号の絶対値のうちの大きいほうの絶対値を前記差分信号の絶対値と比較して、前記差分信号の絶対値より小さい場合にきず有りと判定し、前記差分信号の絶対値より大きい場合にきず無しと判定することを特徴とする渦電流探傷方法。
Excitation coil, a first detection coil disposed in a first arrangement direction with respect to the excitation coil, and the placed in a second arrangement direction intersecting with the first arrangement direction with respect to the exciting coil In an eddy current testing method using an eddy current testing probe having two detection coils,
Calculating a difference between the detection signal of the first detection coil and the detection signal of the second detection coil to generate a difference signal;
The larger absolute value of the absolute value of the detection signal of the first detection coil and the absolute value of the detection signal of the second detection coil is compared with the absolute value of the differential signal, and the absolute value of the differential signal is An eddy current flaw detection method characterized in that it is determined that there is a flaw when it is small and that there is no flaw when it is larger than the absolute value of the difference signal.
励磁コイル、前記励磁コイルに対して第1の並び方向に配置された第1検出コイル、及び前記励磁コイルに対して前記第1の並び方向と交差する第2の並び方向に配置された第2検出コイルを有する渦電流探傷プローブを備えた渦電流探傷装置において、
前記第1検出コイルの検出信号と前記第2検出コイルの検出信号との差分を演算して差分信号を生成する差分演算部と、
前記第1検出コイルの検出信号の絶対値及び前記第2検出コイルの検出信号の絶対値のうちの大きいほうの絶対値を前記差分信号の絶対値と比較することにより、きずの有無を判定する比較判定部とを備え、
前記比較判定部は、前記第1検出コイルの検出信号の絶対値及び前記第2検出コイルの検出信号の絶対値のうちの大きいほうの絶対値が前記差分信号の絶対値より小さい場合にきず有りと判定し、前記差分信号の絶対値より大きい場合にきず無しと判定することを特徴とする渦電流探傷装置。
Excitation coil, a first detection coil disposed in a first arrangement direction with respect to the excitation coil, and the placed in a second arrangement direction intersecting with the first arrangement direction with respect to the exciting coil In an eddy current flaw detector provided with an eddy current flaw probe having two detection coils,
A difference calculation unit that calculates a difference between a detection signal of the first detection coil and a detection signal of the second detection coil to generate a difference signal;
The presence / absence of a flaw is determined by comparing the absolute value of the absolute value of the detection signal of the first detection coil and the absolute value of the detection signal of the second detection coil with the absolute value of the difference signal. A comparison judgment unit,
The comparison / determination unit has a flaw when the larger absolute value of the absolute value of the detection signal of the first detection coil and the absolute value of the detection signal of the second detection coil is smaller than the absolute value of the difference signal. The eddy current flaw detector is characterized in that it is determined that there is no flaw when it is larger than the absolute value of the difference signal.
請求項2記載の渦電流探傷装置において、
前記比較判定部の判定結果を表示する表示部を備えたことを特徴とする渦電流探傷装置。
The eddy current flaw detector according to claim 2,
An eddy current flaw detector comprising a display unit for displaying a determination result of the comparison determination unit.
JP2014072769A 2014-03-31 2014-03-31 Eddy current flaw detection method and eddy current flaw detection apparatus Active JP6170005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014072769A JP6170005B2 (en) 2014-03-31 2014-03-31 Eddy current flaw detection method and eddy current flaw detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014072769A JP6170005B2 (en) 2014-03-31 2014-03-31 Eddy current flaw detection method and eddy current flaw detection apparatus

Publications (3)

Publication Number Publication Date
JP2015194419A JP2015194419A (en) 2015-11-05
JP2015194419A5 JP2015194419A5 (en) 2016-09-15
JP6170005B2 true JP6170005B2 (en) 2017-07-26

Family

ID=54433577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014072769A Active JP6170005B2 (en) 2014-03-31 2014-03-31 Eddy current flaw detection method and eddy current flaw detection apparatus

Country Status (1)

Country Link
JP (1) JP6170005B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6751645B2 (en) * 2016-10-20 2020-09-09 日立Geニュークリア・エナジー株式会社 Eddy current flaw detection system and eddy current flaw detection method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2753534B1 (en) * 1996-09-13 1999-04-23 Intercontrole Sa EDGE CURRENT PROBE FOR NON-DESTRUCTIVE INSPECTION OF ELECTRICALLY CONDUCTIVE PARTS
TR200002716A2 (en) * 1999-09-22 2001-04-20 General Electric Company Induction current setting size
JP2004028897A (en) * 2002-06-27 2004-01-29 Osaka Gas Co Ltd Eddy-current flaw detection apparatus
JP4311416B2 (en) * 2006-06-30 2009-08-12 株式会社日立製作所 Surface defect length evaluation method by eddy current testing
JP4902448B2 (en) * 2007-07-10 2012-03-21 株式会社日立製作所 Defect identification method and defect identification apparatus
US20130249540A1 (en) * 2012-03-22 2013-09-26 Olympus Ndt Inc. Eddy current array probe and method for lift-off compensation during operation without known lift references
JP5710536B2 (en) * 2012-03-29 2015-04-30 日立Geニュークリア・エナジー株式会社 Calibration check method for eddy current flaw detector and eddy current flaw detector

Also Published As

Publication number Publication date
JP2015194419A (en) 2015-11-05

Similar Documents

Publication Publication Date Title
JP4829883B2 (en) Method and apparatus for non-destructive inspection of tubes
JP4863127B2 (en) Magnetic flaw detection method and magnetic flaw detection apparatus
JP5017038B2 (en) Eddy current inspection apparatus and eddy current inspection method
JP5946086B2 (en) Eddy current inspection device, eddy current inspection probe, and eddy current inspection method
WO2014142306A1 (en) Eddy current flaw detection device, eddy current flaw detection method, and eddy current flaw detection program
JP6083613B2 (en) Magnetic nondestructive inspection equipment
JP2011133268A (en) Flaw detection device and method
JP2006177952A (en) Eddy current probe, inspecting system and inspecting method
JP4766472B1 (en) Nondestructive inspection apparatus and nondestructive inspection method
JP6209119B2 (en) Flaw detection method and flaw detection system
WO2013125462A1 (en) Eddy-current inspection method and device
JP6170005B2 (en) Eddy current flaw detection method and eddy current flaw detection apparatus
JP2020071125A (en) Method and device for determining defect, method for manufacturing steel plate, method for learning defect determination model, and defect determination model
US10775346B2 (en) Virtual channels for eddy current array probes
JP6551885B2 (en) Nondestructive inspection device and nondestructive inspection method
JP2011069623A (en) Eddy current flaw detection method
JP2007121050A (en) Flaw detector
JP6288640B2 (en) Eddy current flaw detection probe, eddy current flaw detection apparatus, and eddy current flaw detection method
JP6058436B2 (en) Eddy current flaw detector and eddy current flaw detection method
JP5611863B2 (en) Eddy current flaw detector, method, and program
JP2016180701A5 (en)
JP6776676B2 (en) Signal processing device and signal processing method
JP2016080596A (en) Eddy current flaw detection probe
Deng et al. Magneto-optic imaging for aircraft skins inspection: a probability of detection study of simulated and experimental image data
JP2015105926A (en) Eddy-current flaw detection device and eddy-current flaw detection method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160727

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170629

R150 Certificate of patent or registration of utility model

Ref document number: 6170005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150