JP2020071125A - Method and device for determining defect, method for manufacturing steel plate, method for learning defect determination model, and defect determination model - Google Patents

Method and device for determining defect, method for manufacturing steel plate, method for learning defect determination model, and defect determination model Download PDF

Info

Publication number
JP2020071125A
JP2020071125A JP2018205117A JP2018205117A JP2020071125A JP 2020071125 A JP2020071125 A JP 2020071125A JP 2018205117 A JP2018205117 A JP 2018205117A JP 2018205117 A JP2018205117 A JP 2018205117A JP 2020071125 A JP2020071125 A JP 2020071125A
Authority
JP
Japan
Prior art keywords
defect
signal waveform
eddy current
defect determination
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018205117A
Other languages
Japanese (ja)
Other versions
JP6950664B2 (en
Inventor
慶次 釣谷
Keiji Tsuritani
慶次 釣谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2018205117A priority Critical patent/JP6950664B2/en
Publication of JP2020071125A publication Critical patent/JP2020071125A/en
Application granted granted Critical
Publication of JP6950664B2 publication Critical patent/JP6950664B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

To provide a method and a device for determining a defect which can prevent false detection of detects.SOLUTION: The method for determining a defect according to the present invention generates an eddy current by giving an induction current to an inspection target body made of a conductor and determines the presence or absence of defects in the surface of the inspection target body on the basis of a signal waveform obtained from changes in the eddy current. The method includes the step of determining the presence or absence of defects in the surface of the inspection by inputting a signal waveform from the inspection target body to the defect determination model which has been caused to mechanically learn to determine whether the signal waveform is derived from a defect by using the result of evaluating the state of the inversion in the signal waveform as the feature amount.SELECTED DRAWING: Figure 7

Description

本発明は、被検体の表面における欠陥の有無を判定する欠陥判定方法、欠陥判定装置、鋼板の製造方法、欠陥判定モデルの学習方法、及び欠陥判定モデルに関する。   The present invention relates to a defect determination method, a defect determination device, a steel sheet manufacturing method, a defect determination model learning method, and a defect determination model for determining the presence or absence of a defect on the surface of a subject.

一般に、鋼板や棒鋼等の被検体の表面に形成されたヘゲや耳割れ等の欠陥は、渦流探傷装置を用いて検査されている。ところが、渦流探傷装置を用いた検査では、被検体の搬送時の振動や表面粗さ等に起因したノイズによって、実際には欠陥が存在しないのにも拘わらず欠陥が存在すると判定する誤検出(過検出ともいう)が発生する場合がある。このため、渦流探傷装置を用いた検査において欠陥が存在すると判定された場合には、目視検査によって欠陥の有無を判定している。しかしながら、目視検査では検査者の手間やコストがかかる。   In general, defects such as balding and ear cracks formed on the surface of a subject such as a steel plate and a steel bar are inspected using an eddy current flaw detector. However, in the inspection using the eddy current flaw detection device, erroneous detection of determining that there is a defect despite the fact that the defect does not actually exist due to noise caused by vibration during transportation of the subject, surface roughness, and the like ( (Also referred to as over-detection) may occur. Therefore, when it is determined that there is a defect in the inspection using the eddy current flaw detector, the presence or absence of the defect is determined by visual inspection. However, the visual inspection requires labor and cost for the inspector.

このような背景から、特許文献1には、一定距離だけ離して連接され、交流磁場を被検体に与えて発生した渦電流を検出する極性の異なる2つのコイルを備えた自己比較方式の渦流探傷装置において、欠陥判定回路として、検波器からの信号の極性に応じて、それぞれを閾値と比較する+側極性判定回路及び−側極性判定回路と、+側極性信号の判定を行ってから該信号に対応する−側極性信号を検出するまでの時間を測定する待ち時間測定回路と、を設けることにより、欠陥の誤検出の発生を抑制する技術が提案されている。   From such a background, Patent Document 1 discloses a self-comparison eddy current flaw detection method that includes two coils connected to each other at a certain distance and having different polarities for detecting an eddy current generated by applying an alternating magnetic field to a subject. In the device, as the defect determination circuit, depending on the polarity of the signal from the detector, a + side polarity determination circuit and a − side polarity determination circuit that compare each with a threshold value, and a signal after performing determination of the + side polarity signal And a waiting time measuring circuit that measures the time until the negative-side polarity signal is detected.

特開2003−4708号公報JP, 2003-4708, A

しかしながら、特許文献1に記載の技術では、被検体の搬送時の振動や表面粗さ等に起因したノイズの影響を完全に無くすことができないために、依然として欠陥の誤検出が発生するという問題がある。   However, in the technique described in Patent Document 1, it is impossible to completely eliminate the influence of noise caused by the vibration during transportation of the subject, the surface roughness, and the like, and therefore, there is still a problem that erroneous detection of defects occurs. is there.

本発明は、上記課題に鑑みてなされたものであって、その目的は、欠陥を誤検出することを抑制可能な欠陥判定方法及び欠陥判定装置を提供することにある。また、本発明の他の目的は、欠陥を精度よく検出して鋼板を歩留まりよく製造可能な鋼板の製造方法を提供することにある。さらに、本発明の他の目的は、欠陥の有無を精度よく判定可能な欠陥判定モデルの学習方法及び欠陥判定モデルを提供することにある。   The present invention has been made in view of the above problems, and an object thereof is to provide a defect determination method and a defect determination device capable of suppressing erroneous detection of defects. Another object of the present invention is to provide a method for manufacturing a steel sheet, which is capable of accurately detecting defects and manufacturing steel sheets with a high yield. Further, another object of the present invention is to provide a defect determination model learning method and a defect determination model capable of accurately determining the presence or absence of a defect.

本発明に係る欠陥判定方法は、導体からなる被検体に誘導電流を与えて渦電流を発生させ、渦電流の変化によって得られる信号波形に基づいて被検体の表面における欠陥の有無を判定する欠陥判定方法において、前記信号波形における極性反転の状態の評価結果を特徴量として該信号波形が前記欠陥に由来する信号波形であるか否かを判定するよう機械学習させた欠陥判定モデルに対して前記被検体からの信号波形を入力することにより、前記被検体の表面における欠陥の有無を判定するステップを含むことを特徴とする。   The defect determination method according to the present invention is a defect for determining the presence or absence of a defect on the surface of a subject based on a signal waveform obtained by applying an induced current to a subject made of a conductor to generate an eddy current and changing the eddy current. In the determination method, with respect to the defect determination model machine-learned to determine whether or not the signal waveform is a signal waveform derived from the defect using the evaluation result of the state of polarity inversion in the signal waveform as a feature amount The method further comprises the step of determining the presence or absence of a defect on the surface of the subject by inputting a signal waveform from the subject.

本発明に係る欠陥判定方法は、上記発明において、前記欠陥判定モデルは、前記信号波形における振幅の評価結果も特徴量として機械学習させたものであることを特徴とする。   The defect determination method according to the present invention is characterized in that, in the above-mentioned invention, the defect determination model is machine-learned as an evaluation result of an amplitude of the signal waveform.

本発明に係る欠陥判定方法は、上記発明において、前記機械学習は、ロジスティック回帰分析、決定木、ニューラルネットワーク、及びディープラーニングのうちのいずれかであることを特徴とする。   In the defect determination method according to the present invention, in the above invention, the machine learning is any one of logistic regression analysis, a decision tree, a neural network, and deep learning.

本発明に係る欠陥判定装置は、導体からなる被検体に誘導電流を与えて渦電流を発生させ、渦電流の変化によって得られる信号波形に基づいて被検体の表面における欠陥の有無を判定する欠陥判定装置において、前記信号波形における極性反転の状態の評価結果を特徴量として該信号波形が前記欠陥に由来する信号波形であるか否かを判定するよう機械学習させた欠陥判定モデルに対して前記被検体からの信号波形を入力することにより、前記被検体の表面における欠陥の有無を判定する手段を備えることを特徴とする。   The defect determining apparatus according to the present invention is a defect that determines the presence or absence of a defect on the surface of the subject based on a signal waveform obtained by applying an induced current to the subject made of a conductor to generate an eddy current and changing the eddy current. In the determination device, the evaluation result of the state of polarity reversal in the signal waveform is used as a feature value for the defect determination model machine-learned so as to determine whether the signal waveform is a signal waveform derived from the defect. It is characterized by comprising a means for determining the presence or absence of a defect on the surface of the subject by inputting a signal waveform from the subject.

本発明に係る鋼板の製造方法は、本発明に係る欠陥判定方法を用いて鋼板の表面に存在する欠陥を検出し、検出された欠陥を除去するステップを含むことを特徴とする。   A method of manufacturing a steel sheet according to the present invention is characterized by including a step of detecting a defect existing on the surface of the steel sheet by using the defect determination method according to the present invention and removing the detected defect.

本発明に係る欠陥判定モデルの学習方法は、導体からなる被検体に誘導電流を与えて渦電流を発生させ、渦電流の変化によって得られる信号波形における極性反転の状態の評価結果と、前記信号波形が欠陥に由来する信号波形であるか否かの判定結果と、を学習データとして用いて、前記信号波形を入力値、該入力値に対応する信号波形が前記欠陥に由来する信号波形であるか否かの判定値を出力値とする欠陥判定モデルを機械学習により学習させるステップを含むことを特徴とする。   The learning method of the defect determination model according to the present invention is an evaluation result of the state of polarity reversal in a signal waveform obtained by applying an induced current to an object made of a conductor to generate an eddy current, and the signal. A determination result of whether or not the waveform is a signal waveform derived from a defect is used as learning data, the signal waveform is an input value, and a signal waveform corresponding to the input value is a signal waveform derived from the defect. It is characterized by including a step of learning a defect judgment model having a judgment value of whether or not as an output value by machine learning.

本発明に係る欠陥判定モデルは、本発明に係る欠陥判定モデルの学習方法により学習させたことを特徴とする。   The defect determination model according to the present invention is characterized by being learned by the defect determination model learning method according to the present invention.

本発明に係る欠陥判定方法及び欠陥判定装置によれば、欠陥を誤検出することを抑制できる。また、本発明に係る鋼板の製造方法によれば、欠陥を精度よく検出して鋼板を歩留まりよく製造することができる。さらに、本発明に係る欠陥判定モデルの学習方法及び欠陥判定モデルによれば、欠陥の有無を精度よく判定することができる。   According to the defect determination method and the defect determination device of the present invention, it is possible to suppress erroneous detection of defects. Further, according to the method for manufacturing a steel sheet according to the present invention, it is possible to accurately detect defects and manufacture the steel sheet with a high yield. Furthermore, according to the defect determination model learning method and the defect determination model according to the present invention, the presence or absence of a defect can be accurately determined.

図1は、欠陥に由来する渦流探傷信号と誤検出時の渦流探傷信号の一例を示す図である。FIG. 1 is a diagram showing an example of an eddy current flaw detection signal derived from a defect and an eddy current flaw detection signal at the time of erroneous detection. 図2は、欠陥に由来する渦流探傷信号と誤検出時の渦流探傷信号から求められた評価関数の値の一例を示す図である。FIG. 2 is a diagram showing an example of the value of the evaluation function obtained from the eddy current flaw detection signal derived from the defect and the eddy current flaw detection signal at the time of erroneous detection. 図3は、欠陥に由来する渦流探傷信号と誤検出時の渦流探傷信号から求められた評価関数の値の他の例を示す図である。FIG. 3 is a diagram showing another example of the value of the evaluation function obtained from the eddy current flaw detection signal derived from the defect and the eddy current flaw detection signal at the time of erroneous detection. 図4は、モデル出力値に基づく欠陥判定処理の一例を示す図である。FIG. 4 is a diagram illustrating an example of the defect determination process based on the model output value. 図5は、本発明の一実施形態である欠陥検出装置の構成を示すブロック図である。FIG. 5 is a block diagram showing the configuration of the defect detecting apparatus which is an embodiment of the present invention. 図6は、図5に示す渦流探傷装置の構成を示す模式図である。FIG. 6 is a schematic diagram showing the configuration of the eddy current flaw detector shown in FIG. 図7は、本発明の一実施形態である欠陥判定処理の流れを示すフローチャートである。FIG. 7 is a flowchart showing the flow of the defect determination processing which is an embodiment of the present invention.

本発明の発明者らは、被検体の搬送時の振動や表面粗さ等に起因したノイズがある場合、閾値との比較によって渦流探傷装置2から出力された渦流探傷信号が欠陥に由来する信号であるか否かを精度よく判定することは困難であることを知見した。そして、鋭意研究を重ねてきた結果、図1(a)及び図1(b)に示すように欠陥に由来する渦流探傷信号(図1(a))と誤検出時の渦流探傷信号(図1(b))とでは渦流探傷信号の形状(波形形状)に違いがあることから、渦流探傷信号の波形形状の違いを機械学習によって学習し、機械学習により得られた機械学習モデルを用いて渦流探傷信号が欠陥に由来する信号であるか否かを判定することにより欠陥の誤検出を抑制することを想到した。   The inventors of the present invention have found that, when there is noise due to vibration or surface roughness during transportation of the subject, the eddy current flaw detection signal output from the eddy current flaw detection device 2 by comparison with a threshold value is a signal derived from a defect. It was found that it is difficult to accurately determine whether or not As a result of repeated intensive research, as shown in FIGS. 1A and 1B, an eddy current flaw detection signal (FIG. 1A) derived from a defect and an eddy current flaw detection signal at the time of erroneous detection (FIG. 1A) are obtained. Since there is a difference in the shape (waveform shape) of the eddy current flaw detection signal from (b)), the difference in the waveform shape of the eddy current flaw detection signal is learned by machine learning, and the eddy current is obtained using the machine learning model obtained by machine learning. It has been conceived to suppress erroneous detection of defects by determining whether the flaw detection signal is a signal derived from a defect.

次に、本発明の発明者らは、機械学習の手法を選定した。具体的には、機械学習手法としては、ロジスティック回帰分析、決定木、ニューラルネットワーク、ディープラーニング等の手法があるが、本発明では、入力データと予測結果との関係がわかりやすいロジスティック回帰分析を機械学習手法として選定した。但し、本発明では、機械学習手法としてロジスティック回帰分析を用いたが、決定木、ニューラルネットワーク、ディープラーニング等の他の機械学習手法を用いてもよい。   Next, the inventors of the present invention have selected a machine learning method. Specifically, as a machine learning method, there are methods such as logistic regression analysis, decision tree, neural network, deep learning, etc., but in the present invention, logistic regression analysis in which the relationship between input data and prediction results is easy to understand is machine learning. It was selected as the method. However, in the present invention, the logistic regression analysis is used as the machine learning method, but other machine learning methods such as decision tree, neural network, and deep learning may be used.

ところが、渦流探傷信号の波形形状の違いを機械学習するにあたっては、非線形データである渦流探傷信号の波形データをそのまま用いることは困難である。このため、本発明の発明者らは、渦流探傷信号の波形形状を数値化したものを機械学習モデルの特徴量(入力値)として用いることを想到した。具体的には、以下の数式(1)に示すように、渦流探傷信号の振幅及び対称性を数値化した評価関数E(x)の値を機械学習モデルの特徴量とした。   However, in machine learning of the difference in the waveform shape of the eddy current flaw detection signal, it is difficult to use the waveform data of the eddy current flaw detection signal, which is non-linear data, as it is. Therefore, the inventors of the present invention have conceived to use the digitized waveform shape of the eddy current flaw detection signal as a feature amount (input value) of the machine learning model. Specifically, as shown in the following mathematical expression (1), the value of the evaluation function E (x), which is the numerical value of the amplitude and symmetry of the eddy current flaw detection signal, is set as the feature amount of the machine learning model.

Figure 2020071125
Figure 2020071125

ここで、数式(1)において、xは渦流探傷装置による被検体の走査方向(長手長さ)位置、kは渦流探傷装置の走査方向の寸法(図6に示す検出コイルS1,S2間の距離)及び被検体の走査速度に応じて定められる定数(図2参照)、f(x)は被検体の走査方向位置xにおける渦流探傷信号の出力レベル値を示す。また、{|f(x)−f(x+k)|}は渦流探傷信号の波形形状の振幅を示す指標であり、exp{−|f(x)+f(x+k)|}は渦流探傷信号の波形形状の対称性を示す指標である。   Here, in the mathematical expression (1), x is the scanning direction (longitudinal length) position of the object by the eddy current flaw detector, and k is the dimension in the scanning direction of the eddy current flaw detector (the distance between the detection coils S1 and S2 shown in FIG. 6). ) And a constant determined according to the scanning speed of the subject (see FIG. 2), f (x) indicates the output level value of the eddy current flaw detection signal at the position x in the scanning direction of the subject. Further, {| f (x) -f (x + k) |} is an index indicating the amplitude of the waveform shape of the eddy current flaw detection signal, and exp {-| f (x) + f (x + k) |} is the waveform of the eddy current flaw detection signal. It is an index showing the symmetry of the shape.

図2は、欠陥に由来する渦流探傷信号及び誤検出時の渦流探傷信号の出力レベル値から求められた評価関数E(x)の一例を示す図である。図2に示すように、本例では、欠陥に由来する渦流探傷信号と誤検出時の渦流探傷信号とでは波形形状の振幅値は同じ(共に2)であるが波形形状の対称性が異なるために、評価関数E(x)の値に違いが出ていることがわかる。図3は、欠陥に由来する渦流探傷信号及び誤検出時の渦流探傷信号の出力レベル値から求められた評価関数E(x)の他の例を示す図である。図3に示すように、本例では、欠陥に由来する渦流探傷信号と誤検出時の渦流探傷信号とでは波形形状の振幅及び対称性の両方が異なるために、評価関数E(x)の値に違いが出ていることがわかる。従って、欠陥に由来する渦流探傷信号と誤検出時の渦流探傷信号とを区別する上で評価関数E(x)の値を機械学習モデルの特徴量として用いることができることが確認された。また、本発明の発明者らは、欠陥検出時又は誤検出時の渦流探傷信号の出力レベル値を機械学習モデルのもう一つの特徴量として用いた。   FIG. 2 is a diagram showing an example of the evaluation function E (x) obtained from the output level value of the eddy current flaw detection signal derived from the defect and the eddy current flaw detection signal at the time of erroneous detection. As shown in FIG. 2, in this example, the eddy current flaw detection signal derived from the defect and the eddy current flaw detection signal at the time of false detection have the same waveform shape amplitude value (both are 2), but the symmetry of the waveform shape is different. It can be seen that there is a difference in the value of the evaluation function E (x). FIG. 3 is a diagram showing another example of the evaluation function E (x) obtained from the output level value of the eddy current flaw detection signal derived from the defect and the eddy current flaw detection signal at the time of erroneous detection. As shown in FIG. 3, in this example, the eddy current flaw detection signal derived from the defect and the eddy current flaw detection signal at the time of erroneous detection have different waveform shape amplitudes and symmetries, and thus the value of the evaluation function E (x) is You can see that there is a difference in. Therefore, it was confirmed that the value of the evaluation function E (x) can be used as the feature amount of the machine learning model in distinguishing the eddy current flaw detection signal derived from the defect and the eddy current flaw detection signal at the time of erroneous detection. Further, the inventors of the present invention used the output level value of the eddy current flaw detection signal at the time of defect detection or erroneous detection as another feature amount of the machine learning model.

そして、複数の渦流探傷信号から求められた評価関数E(x)の値、欠陥検出時又は誤検出時の渦流探傷信号の出力レベル値の最大値、及び欠陥の有無の判定値(例えば欠陥と判定された場合は判定値=1、ノイズと判定された場合は判定値=0)の組み合わせのデータを学習データとして用いてロジスティック回帰分析を行うことにより、評価関数E(x)の値及び渦流探傷信号の出力レベル値の最大値を入力値、入力値に対応する渦流探傷信号が欠陥に由来する信号である確率(欠陥確率)を出力値とする以下の数式(2)に示す機械学習モデルを欠陥判定モデルとして作成した。換言すれば、複数の渦流探傷信号から求められた評価関数E(x)の値、欠陥検出時又は誤検出時の渦流探傷信号の出力レベル値の最大値、及び欠陥の有無の判定値の組み合わせのデータを学習データとして用いてロジスティック回帰分析を行うことにより、数式(2)に示す機械学習モデルの係数a,a,aを算出した。 Then, the value of the evaluation function E (x) obtained from the plurality of eddy current flaw detection signals, the maximum value of the output level value of the eddy current flaw detection signal at the time of defect detection or erroneous detection, and the determination value of the presence or absence of a defect (for example, defect The value of the evaluation function E (x) and the eddy current are obtained by performing logistic regression analysis using the data of the combination of the judgment value = 1 when the judgment is made and the judgment value = 0 when the judgment is noise. A machine learning model shown in the following mathematical expression (2) in which the maximum value of the output level value of the flaw detection signal is an input value, and the probability that the eddy current flaw detection signal corresponding to the input value is a signal derived from a defect (defect probability) is an output value. Was created as a defect judgment model. In other words, a combination of the value of the evaluation function E (x) obtained from a plurality of eddy current flaw detection signals, the maximum output level value of the eddy current flaw detection signal at the time of defect detection or erroneous detection, and the determination value of the presence or absence of a defect. By performing logistic regression analysis using the data of 1 as learning data, the coefficients a 1 , a 2 , and a 3 of the machine learning model shown in Formula (2) were calculated.

Figure 2020071125
Figure 2020071125

ここで、数式(2)において、qは欠陥確率、xi1は評価関数E(x)の値、xi2は取込んだ波形の範囲における渦流探傷信号の出力レベル値の最大値、a,a,aは係数を示している。 Here, in Expression (2), q i is the defect probability, x i1 is the value of the evaluation function E (x), x i2 is the maximum output level value of the eddy current flaw detection signal in the range of the captured waveform, and a 1 , A 2 and a 3 indicate coefficients.

これにより、渦流探傷装置によって検出された渦流探傷信号について、その評価関数E(x)の値及び出力レベル値の最大値を欠陥判定モデルに入力して欠陥確率を算出し、算出された欠陥確率を閾値と比較することにより、渦流探傷信号が欠陥に由来する信号であるのか否かを精度よく判定することができる。なお、閾値は、欠陥判定モデル作成時のサンプル数(データ点数)を増やしていくことによって欠陥と誤検出とを明確に識別できる欠陥確率の値に設定するとよい。また、例えば被検体がSi含有量が高い鋼板である場合には、鋼板に欠陥が存在するとその後の圧延時に破断が発生しやすいので、欠陥を確実に検出するために閾値を安全よりに設定することが望ましい。   Thus, with respect to the eddy current flaw detection signal detected by the eddy current flaw detection device, the value of the evaluation function E (x) and the maximum value of the output level value are input to the defect determination model to calculate the defect probability, and the calculated defect probability. By comparing with the threshold value, it is possible to accurately determine whether or not the eddy current flaw detection signal is a signal derived from a defect. It should be noted that the threshold value may be set to a value of the defect probability that allows the defect and the false detection to be clearly distinguished by increasing the number of samples (the number of data points) at the time of creating the defect determination model. Further, for example, when the test object is a steel sheet having a high Si content, if there is a defect in the steel sheet, fracture is likely to occur during subsequent rolling, so the threshold value is set to be safe in order to reliably detect the defect. Is desirable.

なお、機械学習手法としてディープランニングやニューラルネットワークを用いる場合にも、上記と同様に、評価関数E(x)の値及び欠陥検出時又は誤検出時の渦流探傷信号の出力レベル値の最大値を入力とし、欠陥の有無の判定値を出力とした学習データとすることも可能である。しかしながら、ディープラーニング等の場合、欠陥判定モデルへの入力値の選定により自由度がある。従って、ディープラーニング等の場合には、評価関数E(x)の値そのものを用いなくとも、何らかの形で波形形状の対称性(信号の極性反転の度合い)が評価され、その評価結果に欠陥の有無の判定値が対応した学習データであればよい。評価結果としては、信号の極性反転の状態を数値化したものや信号の振幅の状態を数値化したものを例示できる。   Even when deep running or a neural network is used as the machine learning method, similarly to the above, the value of the evaluation function E (x) and the maximum value of the output level value of the eddy current flaw detection signal at the time of defect detection or error detection are set. It is also possible to use the learning data as an input and using the determination value of the presence or absence of a defect as an output. However, in the case of deep learning or the like, there is a degree of freedom by selecting the input value to the defect judgment model. Therefore, in the case of deep learning or the like, the symmetry of the waveform shape (the degree of signal polarity reversal) is evaluated in some form without using the value itself of the evaluation function E (x), and the evaluation result shows a defect. The learning data may be any learning data corresponding to the presence / absence determination value. Examples of the evaluation result include a digitized state of signal polarity reversal and a digitized state of signal amplitude.

図4は、数式(2)に示す欠陥判定モデルを用いた欠陥及び誤検出の判定結果の一例を示す図である。本例では、欠陥:60サンプル、誤検出:20サンプルを用いてロジスティック回帰分析によって欠陥判定モデルを作成した後、未知データ(欠陥:115サンプル、誤検出:20サンプル)の渦流探傷信号について欠陥及び誤検出の判定を行った。また、本例では、欠陥判定モデルは、入力データが欠陥である確率(欠陥である場合は1、誤検出である場合は0に近づく値)を出力するものとした。図6に示すように、本例では、欠陥である場合の出力値と誤検出である場合の出力値とが重なることなく明確に分離できており、閾値を0.4とすることによって誤検出の発生を抑制できる良好な結果が得られた。   FIG. 4 is a diagram showing an example of determination results of defects and erroneous detections using the defect determination model shown in Expression (2). In this example, after a defect determination model is created by logistic regression analysis using 60 samples of defects and 20 samples of erroneous detection, eddy current flaw detection signals of unknown data (defects: 115 samples, erroneous detection: 20 samples) are detected as defects and False detection was determined. Further, in this example, the defect determination model outputs the probability that the input data is a defect (a value of 1 if the data is a defect, and a value that approaches 0 if the data is an erroneous detection). As shown in FIG. 6, in this example, the output value in the case of a defect and the output value in the case of a false detection can be clearly separated without overlapping, and by setting the threshold value to 0.4, the false detection can be performed. Good results were obtained that could suppress the occurrence of.

以下、図面を参照して、上述した概念に基づき想倒された、本発明の一実施形態である欠陥検出装置及び欠陥判定方法について説明する。   Hereinafter, a defect detection apparatus and a defect determination method according to an embodiment of the present invention, which are conceived based on the above concept, will be described with reference to the drawings.

〔構成〕
まず、図5,図6を参照して、本発明の一実施形態である欠陥検出装置の構成について説明する。
〔Constitution〕
First, with reference to FIG. 5 and FIG. 6, the configuration of a defect detection apparatus according to an embodiment of the present invention will be described.

図5は、本発明の一実施形態である欠陥検出装置の構成を示すブロック図である。図6は、図5に示す渦流探傷装置2の構成を示す模式図である。図5に示すように、本発明の一実施形態である欠陥検出装置1は、渦流探傷装置2、欠陥判定装置3、及びデータベース4を主な構成要素として備えている。   FIG. 5 is a block diagram showing the configuration of the defect detecting apparatus which is an embodiment of the present invention. FIG. 6 is a schematic diagram showing the configuration of the eddy current flaw detector 2 shown in FIG. As shown in FIG. 5, the defect detection device 1 according to the embodiment of the present invention includes an eddy current flaw detection device 2, a defect determination device 3, and a database 4 as main components.

渦流探傷装置2は、導体からなる被検体に誘導電流を与えて渦電流を発生させ、渦電流の変化によって被検体の表面に存在する欠陥を検知する自己比較方式の渦流探傷装置によって構成され、冷間圧延ライン等の圧延ラインの入側に配置されている。より具体的には、図6に示すように、渦流探傷装置2は、E型形状の強磁性体の中央脚部に巻き付けられた励磁コイル(1次コイル)P及び中央脚部の外側の両脚部に巻き付けられた検出コイル(2次コイル)S1,S2を備えている。そして、励磁コイルPの端子には図示しない交流電源が接続され、励磁コイルPに発生する磁力により被検体Sには渦電流が発生する。一方、検出コイルS1,S2は直列に差動接続されている。すなわち、検出コイルS1の一方の端子と検出コイルS2の一方の端子とが連結され、検出コイルS1,S2に誘導される誘導電圧の差分が他方の端子間に検出される。   The eddy current flaw detection device 2 is configured by a self-comparison eddy current flaw detection device that applies an induced current to a subject made of a conductor to generate an eddy current and detects a defect existing on the surface of the subject by a change in the eddy current. It is arranged on the inlet side of a rolling line such as a cold rolling line. More specifically, as shown in FIG. 6, the eddy current flaw detector 2 includes an exciting coil (primary coil) P wound around a central leg of an E-shaped ferromagnetic body and both legs outside the central leg. Detection coils (secondary coils) S1 and S2 wound around the section are provided. An AC power supply (not shown) is connected to the terminals of the exciting coil P, and an eddy current is generated in the subject S by the magnetic force generated in the exciting coil P. On the other hand, the detection coils S1 and S2 are differentially connected in series. That is, one terminal of the detection coil S1 and one terminal of the detection coil S2 are connected, and the difference between the induced voltages induced in the detection coils S1 and S2 is detected between the other terminals.

従って、被検体の表層が正常である場合、検出コイルS1,S2の他方の端子間に誘起される起電力は0となる。これは、被検体の表層が正常である場合、検出コイルS1,S2に発生する誘導電圧は同じとなり、差動接続された2つの検出コイルS1,S2の誘導電圧が打ち消しあうためである。これに対して、検出コイルS1,S2の一方の近傍に欠陥が存在する場合、被検体上の渦電流の変化によって検出コイルS1と検出コイルS2とに発生する誘導電圧に差異が生じる。結果、検出コイルS1,S2の誘導電圧の差分がゼロでなくなり、差動接統された検出コイルS1,S2の両端には出力を生じる。このため、欠陥を有する被検体を渦流探傷装置2によって走査することにより、E型形状の強磁性体の中心軸を中心としたサインカーブ状の渦流探傷信号が検出される。   Therefore, when the surface layer of the subject is normal, the electromotive force induced between the other terminals of the detection coils S1 and S2 is zero. This is because when the surface layer of the subject is normal, the induced voltages generated in the detection coils S1 and S2 are the same and the induced voltages of the two differentially connected detection coils S1 and S2 cancel each other out. On the other hand, when there is a defect near one of the detection coils S1 and S2, the induced voltage generated between the detection coil S1 and the detection coil S2 differs due to the change of the eddy current on the subject. As a result, the difference between the induced voltages of the detection coils S1 and S2 is not zero, and an output is generated at both ends of the differentially connected detection coils S1 and S2. Therefore, by scanning the defective object with the eddy current flaw detection device 2, a sine curve eddy current flaw detection signal centered on the central axis of the E-shaped ferromagnetic material is detected.

図5に戻る。欠陥判定装置3は、CPU(Central Processing Unit),DSP(Digital Signal Processor),FPGA(Field Programmable Gate Array)等のプロセッサ及びRAM(Random Access Memory),ROM(Read Only Memory)等の記憶部を含む、ワークステーション等の汎用の情報処理装置によって構成されている。欠陥判定装置3は、プロセッサが記憶部に記憶されているコンピュータプログラムを実行することによって、データ抽出部3a、予測モデル作成部3b、及び欠陥判定部3cとして機能する。   Returning to FIG. The defect determination device 3 includes a processor such as a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and an FPGA (Field Programmable Gate Array), and a storage unit such as a RAM (Random Access Memory) and a ROM (Read Only Memory). , A workstation, or other general-purpose information processing device. The defect determination device 3 functions as the data extraction unit 3a, the prediction model creation unit 3b, and the defect determination unit 3c by the processor executing the computer program stored in the storage unit.

データ抽出部3aは、渦流探傷装置2から出力された渦流探傷信号の出力レベル値を抽出し、抽出された渦流探傷信号の出力レベル値のデータを検出データとしてデータベース4に記憶させる。   The data extraction unit 3a extracts the output level value of the eddy current flaw detection signal output from the eddy current flaw detection device 2, and stores the data of the output level value of the extracted eddy current flaw detection signal in the database 4 as detection data.

予測モデル作成部3bは、データベース4に記憶されている検出データと各検出データについての欠陥又は誤検出の判定結果に関する情報を用いた機械学習によって上述した欠陥判定モデルを学習させる。なお、欠陥判定モデルの学習はオフラインで実施するが、新たに蓄積されたデータを用いて適宜再学習することで欠陥判定モデルを更新することができる。   The prediction model creation unit 3b learns the above-described defect determination model by machine learning using the detection data stored in the database 4 and the information regarding the determination result of the defect or erroneous detection for each detection data. Although the learning of the defect determination model is performed offline, the defect determination model can be updated by appropriately relearning using newly accumulated data.

欠陥判定部3cは、予測モデル作成部3bによって作成された欠陥判定モデルを用いて、渦流探傷装置2から出力された渦流探傷信号が欠陥に由来する信号であるか否かを判定することによって被検体の表面に欠陥が存在するか否かを判定する。   The defect determination unit 3c uses the defect determination model created by the prediction model creation unit 3b to determine whether or not the eddy current flaw detection signal output from the eddy current flaw detection device 2 is a signal derived from a defect. It is determined whether or not there is a defect on the surface of the sample.

データベース4は、複数の検出データと各検出データについての欠陥判定結果の実績値とを関連付けして記憶する。   The database 4 stores a plurality of pieces of detection data and the actual value of the defect determination result for each piece of detection data in association with each other.

〔欠陥判定処理〕
次に、図7を参照して、本発明の一実施形態である欠陥判定処理の流れについて説明する。
[Defect determination processing]
Next, with reference to FIG. 7, a flow of the defect determination processing according to the embodiment of the present invention will be described.

図7は、本発明の一実施形態である欠陥判定処理の流れを示すフローチャートである。図7に示すフローチャートは、渦流探傷装置2による被検体の走査が開始されたタイミングで開始となり、欠陥判定処理はステップS1の処理に進む。なお、本実施形態では、製造ラインを搬送される被検体からの渦流探傷信号を固定配置された渦流探傷装置2で測定することにより、渦流探傷装置2によって被検体を走査するものとする。   FIG. 7 is a flowchart showing the flow of the defect determination processing which is an embodiment of the present invention. The flowchart shown in FIG. 7 is started at the timing when the scanning of the subject by the eddy current flaw detection apparatus 2 is started, and the defect determination processing proceeds to the processing of step S1. In the present embodiment, it is assumed that the eddy current flaw detection apparatus 2 scans the subject by measuring the eddy current flaw detection signal from the subject conveyed on the manufacturing line with the eddy current flaw detection apparatus 2 fixedly arranged.

ステップS1の処理では、渦流探傷装置2が、渦流探傷信号を測定し、測定された渦流探傷信号の出力レベル値のデータを検出データとして欠陥判定装置3に出力する。これにより、ステップS1の処理は完了し、欠陥判定処理はステップS2の処理に進む。   In the process of step S1, the eddy current flaw detection device 2 measures the eddy current flaw detection signal and outputs the data of the output level value of the measured eddy current flaw detection signal to the defect determination device 3 as detection data. As a result, the process of step S1 is completed, and the defect determination process proceeds to step S2.

ステップS2の処理では、データ抽出部3aが、ステップS1の処理において渦流探傷装置2によって測定された渦流探傷信号について、検出データを用いて評価関数E(x)の値xi1及び出力レベル値の最大値xi2を算出する。これにより、ステップS2の処理は完了し、欠陥判定処理はステップS3の処理に進む。 In the process of step S2, the data extraction unit 3a uses the detection data to detect the value x i1 of the evaluation function E (x) and the output level value of the eddy current flaw detection signal measured by the eddy current flaw detector 2 in the process of step S1. The maximum value x i2 is calculated. As a result, the process of step S2 is completed, and the defect determination process proceeds to the process of step S3.

ステップS3の処理では、欠陥判定部3cが、ステップS2の処理において算出された評価関数E(x)の値xi1及び出力レベル値の最大値xi2を数式(2)に示す欠陥判定モデルに入力することによって、欠陥確率qを算出する。これにより、ステップS3の処理は完了し、欠陥判定処理はステップS4の処理に進む。 In the process of step S3, the defect determination unit 3c converts the value x i1 of the evaluation function E (x) and the maximum value x i2 of the output level values calculated in the process of step S2 into the defect determination model shown in Expression (2). The defect probability q i is calculated by inputting. As a result, the process of step S3 is completed, and the defect determination process proceeds to step S4.

ステップS4の処理では、欠陥判定部3cが、ステップS3の処理において算出された欠陥確率qが所定の閾値以上であるか否かを判別することによって、ステップS1の処理において測定された渦流探傷信号が欠陥に由来する信号であるのか否かを判別する。そして、判別の結果、欠陥確率qが所定の閾値以上である場合(ステップS4:Yes)、欠陥判定部3cは、渦流探傷信号が欠陥に由来する信号であると判定し、欠陥判定処理をステップS5の処理に進める。一方、欠陥確率qが所定の閾値未満である場合には(ステップS4:No)、欠陥判定部3cは、渦流探傷信号がノイズに由来する信号(誤検出)であると判定し、一連の欠陥判定処理を終了する。 In the process of step S4, the defect determination unit 3c determines whether or not the defect probability q i calculated in the process of step S3 is equal to or more than a predetermined threshold, and thus the eddy current flaw detection measured in the process of step S1. It is determined whether or not the signal is derived from a defect. Then, as a result of the determination, when the defect probability q i is equal to or more than the predetermined threshold value (step S4: Yes), the defect determination unit 3c determines that the eddy current flaw detection signal is a signal derived from the defect, and performs the defect determination process. The process proceeds to step S5. On the other hand, when the defect probability q i is less than the predetermined threshold value (step S4: No), the defect determination unit 3c determines that the eddy current flaw detection signal is a signal derived from noise (erroneous detection), and a series of The defect determination process ends.

ステップS5の処理にでは、欠陥判定部3cが、被検体の表面に欠陥がある旨をオペレータに報知する。そして、オペレータは、被検体の表面に欠陥がある旨の報知に応じて被検体の搬送ラインを停止する。これにより、ステップS5の処理は完了し、欠陥判定処理はステップS6の処理に進む。   In the process of step S5, the defect determination unit 3c notifies the operator that the surface of the subject is defective. Then, the operator stops the transport line for the subject in response to the notification that the surface of the subject is defective. As a result, the process of step S5 is completed, and the defect determination process proceeds to step S6.

ステップS6の処理では、オペレータが、被検体の表面に形成されている欠陥を除去し、欠陥の除去が完了した後、被検体の搬送を再開する。このステップS5及びステップS6の処理によれば、欠陥を有する被検体が圧延されることによって被検体が破断することを抑制できるので、被検体を歩留まりよく製造できる。これにより、ステップS6の処理は完了し、一連の欠陥判定処理は終了する。   In the process of step S6, the operator removes the defects formed on the surface of the subject, and restarts the transport of the subject after the removal of the defects is completed. According to the processes of steps S5 and S6, it is possible to prevent the test object from breaking due to rolling of the test object having a defect, so that the test object can be manufactured with high yield. As a result, the process of step S6 is completed, and the series of defect determination processes is completed.

以上、本発明者らによってなされた発明を適用した実施形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例、及び運用技術等は全て本発明の範疇に含まれる。   Although the embodiment to which the invention made by the present inventors has been described has been described above, the present invention is not limited by the description and the drawings forming part of the disclosure of the present invention according to the present embodiment. That is, all other embodiments, examples, operation techniques and the like made by those skilled in the art based on the present embodiment are included in the scope of the present invention.

1 欠陥検出装置
2 渦流探傷装置
3 欠陥判定装置
3a データ抽出部
3b 予測モデル作成部
3c 欠陥判定部
4 データベース
DESCRIPTION OF SYMBOLS 1 Defect detection device 2 Eddy current flaw detection device 3 Defect determination device 3a Data extraction unit 3b Prediction model creation unit 3c Defect determination unit 4 Database

Claims (7)

導体からなる被検体に誘導電流を与えて渦電流を発生させ、渦電流の変化によって得られる信号波形に基づいて被検体の表面における欠陥の有無を判定する欠陥判定方法において、
前記信号波形における極性反転の状態の評価結果を特徴量として該信号波形が前記欠陥に由来する信号波形であるか否かを判定するよう機械学習させた欠陥判定モデルに対して前記被検体からの信号波形を入力することにより、前記被検体の表面における欠陥の有無を判定するステップを含むことを特徴とする欠陥判定方法。
In the defect determination method for determining the presence or absence of a defect on the surface of the subject based on the signal waveform obtained by changing the eddy current by giving an induced current to the subject made of a conductor,
From the subject with respect to the defect determination model machine-learned to determine whether the signal waveform is a signal waveform derived from the defect with the evaluation result of the state of polarity reversal in the signal waveform as a feature amount. A defect determination method comprising the step of determining the presence or absence of a defect on the surface of the subject by inputting a signal waveform.
前記欠陥判定モデルは、前記信号波形における振幅の評価結果も特徴量として機械学習させたものであることを特徴とする請求項1に記載の欠陥判定方法。   The defect determination method according to claim 1, wherein the defect determination model is obtained by machine learning the evaluation result of the amplitude of the signal waveform as a feature amount. 前記機械学習は、ロジスティック回帰分析、決定木、ニューラルネットワーク、及びディープラーニングのうちのいずれかであることを特徴とする請求項1又は2に記載の欠陥判定方法。   The defect determination method according to claim 1, wherein the machine learning is any one of a logistic regression analysis, a decision tree, a neural network, and deep learning. 導体からなる被検体に誘導電流を与えて渦電流を発生させ、渦電流の変化によって得られる信号波形に基づいて被検体の表面における欠陥の有無を判定する欠陥判定装置において、
前記信号波形における極性反転の状態の評価結果を特徴量として該信号波形が前記欠陥に由来する信号波形であるか否かを判定するよう機械学習させた欠陥判定モデルに対して前記被検体からの信号波形を入力することにより、前記被検体の表面における欠陥の有無を判定する手段を備えることを特徴とする欠陥判定装置。
In a defect determination device that determines the presence or absence of a defect on the surface of the subject based on the signal waveform obtained by changing the eddy current by giving an induced current to the subject made of a conductor,
From the subject with respect to a defect determination model machine-learned to determine whether or not the signal waveform is a signal waveform derived from the defect using the evaluation result of the state of polarity reversal in the signal waveform as a feature amount. A defect determination apparatus comprising means for determining the presence or absence of a defect on the surface of the subject by inputting a signal waveform.
請求項1〜3のうち、いずれか1項に記載の欠陥判定方法を用いて鋼板の表面に存在する欠陥を検出し、検出された欠陥を除去するステップを含むことを特徴とする鋼板の製造方法。   A method of manufacturing a steel sheet, comprising: detecting a defect existing on the surface of the steel sheet using the defect determination method according to claim 1; and removing the detected defect. Method. 導体からなる被検体に誘導電流を与えて渦電流を発生させ、渦電流の変化によって得られる信号波形における極性反転の状態の評価結果と、前記信号波形が欠陥に由来する信号波形であるか否かの判定結果と、を学習データとして用いて、前記信号波形を入力値、該入力値に対応する信号波形が前記欠陥に由来する信号波形であるか否かの判定値を出力値とする欠陥判定モデルを機械学習により学習させるステップを含むことを特徴とする欠陥判定モデルの学習方法。   An induced current is applied to an object made of a conductor to generate an eddy current, and the evaluation result of the state of polarity reversal in the signal waveform obtained by the change of the eddy current and whether the signal waveform is a signal waveform derived from a defect or not. Defect as a learning data, using the signal waveform as an input value, and a signal value corresponding to the input value as a defect, the defect value is an output value. A method for learning a defect judgment model, comprising the step of learning the judgment model by machine learning. 請求項6に記載の欠陥判定モデルの学習方法により学習させたことを特徴とする欠陥判定モデル。   A defect determination model, which is learned by the defect determination model learning method according to claim 6.
JP2018205117A 2018-10-31 2018-10-31 Defect judgment method, defect judgment device, steel sheet manufacturing method, defect judgment model learning method, and defect judgment model Active JP6950664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018205117A JP6950664B2 (en) 2018-10-31 2018-10-31 Defect judgment method, defect judgment device, steel sheet manufacturing method, defect judgment model learning method, and defect judgment model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018205117A JP6950664B2 (en) 2018-10-31 2018-10-31 Defect judgment method, defect judgment device, steel sheet manufacturing method, defect judgment model learning method, and defect judgment model

Publications (2)

Publication Number Publication Date
JP2020071125A true JP2020071125A (en) 2020-05-07
JP6950664B2 JP6950664B2 (en) 2021-10-13

Family

ID=70547580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018205117A Active JP6950664B2 (en) 2018-10-31 2018-10-31 Defect judgment method, defect judgment device, steel sheet manufacturing method, defect judgment model learning method, and defect judgment model

Country Status (1)

Country Link
JP (1) JP6950664B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102178721B1 (en) * 2020-08-24 2020-11-13 한국건설기술연구원 Apparatus and Method for Detecting Damage of Tendon with Measuring Induced-voltage
KR102275062B1 (en) * 2020-10-20 2021-07-08 한국건설기술연구원 Apparatus for Monitoring Status of Tendon, System and Method for Detecting Damage of Tendon using such Apparatus
WO2023228632A1 (en) * 2022-05-23 2023-11-30 山中産業株式会社 Ai-based defect detection device for cage rotor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05101164A (en) * 1991-09-13 1993-04-23 Fujitsu Ltd Flaw inspection device
JPH05280960A (en) * 1992-03-30 1993-10-29 Fuji Photo Film Co Ltd Defect inspection device
JPH05281199A (en) * 1992-03-31 1993-10-29 Nuclear Fuel Ind Ltd Flaw-detection data evaluation device and method
JPH112626A (en) * 1997-06-13 1999-01-06 Hitachi Cable Ltd Automatic judging method for flaw kind of flaw detection
JP2002022708A (en) * 2000-07-06 2002-01-23 Mitsubishi Heavy Ind Ltd Eddy current flaw detection signal evaluating method and its device
JP2003004708A (en) * 2001-06-25 2003-01-08 Kawasaki Steel Corp Self-comparing type eddy current flaw detector
JP2007225564A (en) * 2006-02-27 2007-09-06 Mitsubishi Heavy Ind Ltd Method and apparatus for evaluating eddy-current flaw detecting signal
US20160161448A1 (en) * 2014-12-08 2016-06-09 Tsinghua University Imaging method and apparatus based on magnetic fulx leakage testing
JP2016180684A (en) * 2015-03-24 2016-10-13 Jfeスチール株式会社 Method and device for correcting sensibility of eddy current flaw detector

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05101164A (en) * 1991-09-13 1993-04-23 Fujitsu Ltd Flaw inspection device
JPH05280960A (en) * 1992-03-30 1993-10-29 Fuji Photo Film Co Ltd Defect inspection device
JPH05281199A (en) * 1992-03-31 1993-10-29 Nuclear Fuel Ind Ltd Flaw-detection data evaluation device and method
JPH112626A (en) * 1997-06-13 1999-01-06 Hitachi Cable Ltd Automatic judging method for flaw kind of flaw detection
JP2002022708A (en) * 2000-07-06 2002-01-23 Mitsubishi Heavy Ind Ltd Eddy current flaw detection signal evaluating method and its device
JP2003004708A (en) * 2001-06-25 2003-01-08 Kawasaki Steel Corp Self-comparing type eddy current flaw detector
JP2007225564A (en) * 2006-02-27 2007-09-06 Mitsubishi Heavy Ind Ltd Method and apparatus for evaluating eddy-current flaw detecting signal
US20160161448A1 (en) * 2014-12-08 2016-06-09 Tsinghua University Imaging method and apparatus based on magnetic fulx leakage testing
JP2016180684A (en) * 2015-03-24 2016-10-13 Jfeスチール株式会社 Method and device for correcting sensibility of eddy current flaw detector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102178721B1 (en) * 2020-08-24 2020-11-13 한국건설기술연구원 Apparatus and Method for Detecting Damage of Tendon with Measuring Induced-voltage
KR102275062B1 (en) * 2020-10-20 2021-07-08 한국건설기술연구원 Apparatus for Monitoring Status of Tendon, System and Method for Detecting Damage of Tendon using such Apparatus
WO2023228632A1 (en) * 2022-05-23 2023-11-30 山中産業株式会社 Ai-based defect detection device for cage rotor
JP2023172330A (en) * 2022-05-23 2023-12-06 山中産業株式会社 Defect detection device of formed cage-type rotor using ai

Also Published As

Publication number Publication date
JP6950664B2 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
JP6950664B2 (en) Defect judgment method, defect judgment device, steel sheet manufacturing method, defect judgment model learning method, and defect judgment model
CN109444257B (en) Pulse eddy current detection device and method based on frequency domain lift-off intersection point
Noroozi et al. A fuzzy learning approach for identification of arbitrary crack profiles using ACFM technique
Cao et al. Nondestructive and quantitative evaluation of wire rope based on radial basis function neural network using eddy current inspection
JP2002022708A (en) Eddy current flaw detection signal evaluating method and its device
Hasanzadeh et al. A fuzzy alignment approach to sizing surface cracks by the AC field measurement technique
RU2622355C2 (en) Method of intra-tube defectoscopy of pipeline walls
CN102128880A (en) Crack shape inversion method
CN111044606B (en) Method for improving accuracy of natural crack eddy current depth measurement
CN117235433B (en) Metal surface crack quantitative evaluation method based on alternating current magnetic field
JP2009036682A (en) Eddy current sensor, and device and method for inspecting depth of hardened layer
KR20230010709A (en) Mechanical property measurement device, mechanical property measurement method, material manufacturing facility, material management method, and material manufacturing method
CN113311064A (en) Pulse eddy current detection method and system for lead sealing part of cable joint
JP2004037216A (en) Leakage flux flaw detecting method
JP2009085832A (en) Eddy current inspection method of steel wire material
CN113784907A (en) Wire rope inspection system and wire rope inspection method
JP2013224916A (en) Grinding burn determination device and grinding burn determination method
JP2007121050A (en) Flaw detector
Yu et al. Investigation on conductivity invariance in eddy current NDT and its application on magnetic permeability measurement
Bernieri et al. An SVM approach to crack shape reconstruction in eddy current testing
JP6170005B2 (en) Eddy current flaw detection method and eddy current flaw detection apparatus
JP2007085873A (en) Flaw detector
JP4657154B2 (en) Electromagnetic induction type inspection method and electromagnetic induction type inspection device
CN108169323A (en) A kind of processing method of polymorphic structure workpiece eddy current signal
Mukherjee et al. Enhanced Defect Detection in NDE Using Pixel Level Data Fusion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210906

R150 Certificate of patent or registration of utility model

Ref document number: 6950664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150