JPS61223550A - Electromagnetic induction flaw detection - Google Patents

Electromagnetic induction flaw detection

Info

Publication number
JPS61223550A
JPS61223550A JP60066140A JP6614085A JPS61223550A JP S61223550 A JPS61223550 A JP S61223550A JP 60066140 A JP60066140 A JP 60066140A JP 6614085 A JP6614085 A JP 6614085A JP S61223550 A JPS61223550 A JP S61223550A
Authority
JP
Japan
Prior art keywords
inspected
defect
magnetic
detection
magnetic circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60066140A
Other languages
Japanese (ja)
Inventor
Yoshikazu Toda
戸田 義和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP60066140A priority Critical patent/JPS61223550A/en
Publication of JPS61223550A publication Critical patent/JPS61223550A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9046Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents by analysing electrical signals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To enable a flaw detection regardless of the shape in the a defect, by simultaneously detecting changes in the magnetic resistance of a magnetic circuit and changes in the impedance of a detection coil based on variations in eddy current. CONSTITUTION:As a high frequency current is supplied to detection coils 12 and 13 from a high frequency power source 15, an alternating magnetic flux is formed perpendicular to the direction of a defect 14. This alternating magnetic flux runs around a core 11 passing through a part of the surface of material S to be inspected to form a magnetic circuit containing a part of the material S being inspected. Therefore, as any defect 14 intercepting the magnetic circuit will increase the magnetic resistance of the magnetic circuit, an induction voltage is generated in the detection coils 12 and 13 to identify flaws. With the application of an alternating magnetic field to the materials S being inspected, an eddy current flowing over the surface of the material being inspected in the direction roughly perpendicular to the core 11. When a defect exists with the width extending along the orientation of the core 1 such as drill hole in the material S being inspected, the distribution of the eddy current is disturbed due to the defect and thus, the defect is detected as changes in the impedance of the detection coils 12 and 13.

Description

【発明の詳細な説明】 産業上皇且■分立 この発明は、鋼材等の表面に発生する欠陥を探傷する電
磁誘導探傷方法に係り、特に欠陥の形状にかかわりな(
これらを探傷することができる電磁誘導探傷方法に関す
る。
[Detailed description of the invention] This invention relates to an electromagnetic induction flaw detection method for detecting defects occurring on the surface of steel materials, etc.
This invention relates to an electromagnetic induction flaw detection method that can detect these flaws.

垢来夏肢逝 一般にこの種の電磁誘導探傷方法として、渦流探傷方法
及び漏洩磁束法が知られている。
In general, as this type of electromagnetic induction flaw detection method, the eddy current flaw detection method and the magnetic flux leakage method are known.

前者は被検査材に高周波磁界を与えることにより、その
表面に渦電流を発生させ、欠陥によってその渦電流が乱
されることを検出コイルのインピーダンス変化としてと
らえるものである。
The former method generates eddy currents on the surface of the inspected material by applying a high-frequency magnetic field, and detects the disturbance of the eddy currents due to defects as changes in the impedance of the detection coil.

また、後者は、被検査材表面に磁束を発生させ、欠陥部
からの漏洩磁束を感磁センサーを用いて検出するもので
ある。
The latter method generates magnetic flux on the surface of the material to be inspected, and detects leakage magnetic flux from defective parts using a magnetic sensor.

前記渦流探傷方法をプローブコイルの形態によって分類
すると、第5図に示すように、2種類に大別される。叩
ち、同図(a)は被検査材Sの代表的な欠陥3に対して
平行に2個のプローブコイル1.2を配置し、これらを
差動結合したものである。
When the eddy current flaw detection method is classified according to the form of the probe coil, it is roughly divided into two types, as shown in FIG. In Fig. 3(a), two probe coils 1.2 are arranged in parallel to a typical defect 3 of a material S to be inspected, and these are differentially coupled.

一方、同図(b)は、各プローブコイル4.5のコアを
コの字形状として、被検査材Sを介して閉ループの磁気
回路を形成している。そして、各プローブコイル4.5
が代表的な欠陥3に対し直交するような位置関係に配設
され、それぞれを差動結合したものである。
On the other hand, in FIG. 4B, the core of each probe coil 4.5 is U-shaped to form a closed loop magnetic circuit via the material S to be inspected. And each probe coil 4.5
are disposed in a positional relationship perpendicular to the representative defect 3, and are differentially coupled.

一方、漏洩磁束探傷方法は、第6図(alに示すように
、被検査材Sを回転させないで、プローブを矢印方向に
回転させるプローブ回転形と、同図(blに示すように
プローブ7を固定して、被検査材Sを回転するプローブ
固定形に大別される。そして、何れの形式の場合にも、
欠陥9の存在によって被検査材Sの表面に漏洩した磁束
を検出するために、感磁センサ8が被検査材Sに近接し
て別途設けられている。
On the other hand, the leakage magnetic flux testing method includes a probe rotation type in which the probe is rotated in the direction of the arrow without rotating the material S to be inspected, as shown in Figure 6 (al), and a probe rotation type in which the probe is rotated in the direction of the arrow as shown in Figure 6 (bl). The probe is roughly divided into a fixed type, in which the probe is fixed and rotates the inspected material S.In both types,
In order to detect magnetic flux leaked to the surface of the material S to be inspected due to the presence of the defect 9, a magnetic sensor 8 is separately provided close to the material S to be inspected.

<η°ゝ占 しかしながら第5図(a)に示した渦流探傷方法の場合
、各コイルが閉ループとなっているために電力利用の効
率が悪いという欠点がある。また、同図(b)に示した
渦流探傷方法にあっては、コの形状のコアを並設する関
係上、形状的に大きくなり、最小検出傷長さが比較的大
きくなるという欠点がある。
<η°ゝ However, in the case of the eddy current flaw detection method shown in FIG. 5(a), each coil is in a closed loop, so there is a drawback that the efficiency of electric power usage is low. In addition, the eddy current flaw detection method shown in Figure (b) has the drawback that the shape is large due to the U-shaped cores being arranged side by side, and the minimum detectable flaw length is relatively large. .

一方、第6図に示した漏洩磁束方法の場合、感磁センサ
を設置する必要があるから、装置がおおがかりになると
いう欠点を有している。 また、この方法は、磁束が直
交する方向に存在する欠陥に対して検出能力は高いが、
漏洩磁束の発生が少ない、例えばドリルホールやへこみ
状の欠陥等に対しては検出能力が低いという欠点がある
On the other hand, in the case of the leakage magnetic flux method shown in FIG. 6, it is necessary to install a magnetic sensor, which has the disadvantage that the apparatus becomes bulky. In addition, although this method has a high detection ability for defects that exist in the direction perpendicular to the magnetic flux,
The drawback is that the detection ability is low for defects such as drill holes and dents that generate little leakage magnetic flux.

この発明はこのような事情に鑑みてなされたもので、比
較的簡単な構成で、欠陥の形状に影響されることなく探
傷できる電磁誘導探傷方法を提供することを目的として
いる。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide an electromagnetic induction flaw detection method that has a relatively simple configuration and is capable of flaw detection without being affected by the shape of the defect.

ロ 占 7″  るための 前記目的を達成するために、この発明は以下のような特
徴を有している。
In order to achieve the above-mentioned object of 7'' reading, the present invention has the following features.

被検査材の代表的な欠陥方向に対して直交する方向に、
交番磁界を被検査材に与えて、前記被検査材の一部を含
む磁気面−路を形成している。前記被検査材に前記磁気
回路を遮断するような欠陥が存在すると、この磁気回路
内の磁気抵抗が変化する。この磁気抵抗の変化を検出す
ることにより前記欠陥の存在を知ることができる。また
、前記交番磁界によって被検査材の表面に渦電流が発生
する。しかして被検査材表面にドリルホール等の欠陥が
あると渦電流の分布が乱れる。この電流分布の乱れを検
出コイルのインピーダンスの変化として検出することに
よって、前記磁気抵抗の変化を検出することによっては
捉えることができないドリルホール等の欠陥を検出して
いる。
In the direction perpendicular to the typical defect direction of the inspected material,
An alternating magnetic field is applied to the material to be inspected to form a magnetic surface path that includes a portion of the material to be inspected. If there is a defect in the inspected material that interrupts the magnetic circuit, the magnetic resistance within the magnetic circuit changes. By detecting this change in magnetic resistance, the presence of the defect can be known. Furthermore, the alternating magnetic field generates eddy currents on the surface of the material to be inspected. However, if there are defects such as drill holes on the surface of the material to be inspected, the distribution of eddy currents will be disturbed. By detecting this disturbance in current distribution as a change in the impedance of the detection coil, defects such as drill holes that cannot be detected by detecting changes in the magnetic resistance are detected.

このように磁気回路の磁気抵抗の変化と、渦電流の変化
に基づく検出コイルのインピーダンスの変化とを同時に
検出することにより、欠陥の形状にかかわりなく探傷す
ることができる。
In this way, by simultaneously detecting changes in the magnetic resistance of the magnetic circuit and changes in the impedance of the detection coil based on changes in eddy current, it is possible to detect defects regardless of their shape.

実施±1 第1図は、この発明の一実施例に使用されるプローブの
説明図であり、同図(a)はその平面図、同図(b)は
側面図、同図(C)はその電気接続図を示している。
Implementation ±1 Figure 1 is an explanatory diagram of a probe used in an embodiment of the present invention, in which (a) is a plan view, (b) is a side view, and (C) is a side view. It shows its electrical connection diagram.

11は、例えばフェライト等の高透磁率材料からなるコ
の字形状のコアである。コア11の両側部下端には検出
コイル12および13が巻回されている。
Reference numeral 11 denotes a U-shaped core made of a high magnetic permeability material such as ferrite. Detection coils 12 and 13 are wound around the lower ends of both sides of the core 11 .

この検出コイル12及び13は互いに差動結合されて、
同図(b)に示すように抵抗R1、R2とともに、ブリ
ッジ回路を形成している。そして、このブリッジ回路の
中点電位が検出信号として取り出される。このようにし
て形成されるプローブは、コア11が被検査材Sの欠陥
14に直交する方向に、被検査材Sの表面に近接して配
設される。次に第1図に示した装置の作用について説明
する。
The detection coils 12 and 13 are differentially coupled to each other,
As shown in FIG. 2(b), together with resistors R1 and R2, a bridge circuit is formed. Then, the midpoint potential of this bridge circuit is taken out as a detection signal. In the probe formed in this manner, the core 11 is disposed close to the surface of the material S to be inspected in a direction perpendicular to the defect 14 of the material S to be inspected. Next, the operation of the apparatus shown in FIG. 1 will be explained.

上述の探傷装置は、いわゆる自己誘導タイプの探傷装置
であり、第1図(C)に示したように高周波電源15か
ら検出コイル12及び13に高周波電流が供給されるこ
とにより、前記欠陥14の方向に直交する方向の交番磁
束が形成される。この交番磁束は被検査材Sの表面の一
部を通ってコア11を巡回することにより、被検査材S
の一部を含む磁気回路を形成する。従って検出コイル1
2及び13の間に、前記磁気回路を遮断するような欠陥
14が存在すると、前記磁気回路の磁気抵抗が増大する
ために、検出コイル12及び13に誘導電圧が発生する
。この誘導電圧は前記ブリッジ回路に接続される増幅器
16によって増幅された後、図示しない公知の同期検°
波回路やレベル弁別器に与えられることにより傷の判別
が行われる。さらに前記被検査材Sに加えられた交番磁
界によって、コア11と略直交する方向に渦電流が被検
査材表面を流れる。この方向に流れる渦電流は欠陥14
によってその分布を乱されることがほとんどない。従っ
て、この欠陥14によっては検出コイル12.13のイ
ンピーダンスの変化は発生しない。しかし、被検査材S
にドリルホール等のコア11の配列方向に沿って幅のあ
る欠陥がある場合、この欠陥によって渦電流の分布が乱
されて検出コイル12.13のインピーダンスの変化が
生じる。検出コイル12及び13のインピーダンスの変
化は前記ブリッジ回路の中点電位差として取り出される
。この中点電位差は前述したと同様に増幅された後、同
期検波さらにはレベル弁別されて探傷すべき傷信号の判
別が行われる。このように被検査材Sの軸方向に沿った
欠陥14は、前述した磁気回路における磁気抵抗の変化
として検出さ・れ、また前記磁気抵抗の変化としては検
出されにくいドリルホール等の欠陥は渦電流の変化に基
づく検出コイル12及び13のインピーダンスの変化と
して検出される。
The above-mentioned flaw detection device is a so-called self-induction type flaw detection device, and as shown in FIG. An alternating magnetic flux in a direction perpendicular to the direction is formed. This alternating magnetic flux passes through a part of the surface of the material S to be inspected and circulates around the core 11.
form a magnetic circuit including part of the Therefore, detection coil 1
If a defect 14 that interrupts the magnetic circuit exists between the detection coils 12 and 13, an induced voltage is generated in the detection coils 12 and 13 because the magnetic resistance of the magnetic circuit increases. After this induced voltage is amplified by an amplifier 16 connected to the bridge circuit, a well-known synchronous detection (not shown) is performed.
Flaws are determined by applying the signal to a wave circuit or a level discriminator. Further, due to the alternating magnetic field applied to the material S to be inspected, an eddy current flows on the surface of the material to be inspected in a direction substantially perpendicular to the core 11. The eddy current flowing in this direction is the defect 14
The distribution is hardly disturbed by Therefore, this defect 14 does not cause a change in the impedance of the detection coil 12.13. However, the material to be inspected S
If there is a wide defect such as a drill hole in the direction in which the cores 11 are arranged, this defect disturbs the distribution of eddy currents and causes a change in the impedance of the detection coils 12,13. Changes in impedance of the detection coils 12 and 13 are taken out as a midpoint potential difference of the bridge circuit. After this midpoint potential difference is amplified in the same manner as described above, it is subjected to synchronous detection and level discrimination to determine the flaw signal to be detected. In this way, defects 14 along the axis of the inspected material S are detected as changes in magnetic resistance in the magnetic circuit described above, and defects such as drill holes, which are difficult to detect as changes in magnetic resistance, are detected by vortices. It is detected as a change in impedance of the detection coils 12 and 13 based on a change in current.

ス】■連i この発明は実施例1のような自己誘導タイプのものに限
られず、相互誘導タイプの磁気探傷方法においても用い
られる。即ち第2図に示すようにコの字形状のコア11
中央連結部分に励振コイル17を巻回するものであって
もよい。この場合差動結合された検出コイル12及び1
3の差動出力が増幅器16に与えられる。このような相
互誘導タイプのプローブを、実施例1と同様に被検査材
Sの代表的な欠陥14に直交するように配設することに
より前記実施例と同様の効果を得ることができる。
This invention is not limited to the self-induction type as in Embodiment 1, but can also be used in a mutual induction type magnetic flaw detection method. That is, as shown in FIG. 2, the U-shaped core 11
The excitation coil 17 may be wound around the central connecting portion. In this case differentially coupled detection coils 12 and 1
3 differential outputs are provided to amplifier 16. By arranging such a mutual guidance type probe so as to be orthogonal to the typical defect 14 of the inspected material S as in the first embodiment, the same effects as in the previous embodiment can be obtained.

裏胤桝1 この発明は実施例1及び実施例2で述べたように、単体
のプローブのみによって形成されるものに限られること
はない。例えば第3図に示したように両側部に検出コイ
ル(al、a2、・・・、a5)、(bl、b2、・・
・、b5)の巻回された複数個のコア11を被検査材S
の欠陥方向に沿って一列に配設してプローブを形成する
ものであってもよい。そして、同図(C)に示すように
、一方側の検出コイルa1〜a5の組と、他方側の検出
コイルb1〜b5の組とをそれぞれ差動結合してブリッ
ジ回路が形成される。このようにしてプローブを形成す
ることにより前述した実施例と同様に、欠陥の形状にか
かわりなく探傷することができるとともに、最小検出傷
長さの感度を保ちつつ、探傷領域の拡大を図ることがで
きる。
Back Seed Box 1 As described in Embodiments 1 and 2, the present invention is not limited to one formed only by a single probe. For example, as shown in Fig. 3, there are detection coils (al, a2, ..., a5), (bl, b2, ...) on both sides.
・, b5) The plurality of wound cores 11 are inspected as the material S.
The probes may be formed by arranging them in a line along the direction of the defect. As shown in FIG. 2C, a bridge circuit is formed by differentially coupling a set of detection coils a1 to a5 on one side and a set of detection coils b1 to b5 on the other side. By forming the probe in this way, it is possible to detect flaws regardless of the shape of the defect, as in the embodiment described above, and it is possible to expand the flaw detection area while maintaining the sensitivity of the minimum detectable flaw length. can.

災施皿土 前記実施例3によれば、上述の効果を得られるが、欠陥
長さによって検出感度が変化する。そこで、第4図に示
すように、各コアに巻回されている一対の検出コイルご
とにブリフジ回路を構成し、各回路の中点電位差を増幅
器161〜165でそれぞれ増幅した後、統合回路20
に与えて重畳することによって検出信号を得るように構
成してもよい。
According to the third embodiment, the above-mentioned effects can be obtained, but the detection sensitivity changes depending on the length of the defect. Therefore, as shown in FIG. 4, a bridge circuit is configured for each pair of detection coils wound around each core, and after amplifying the midpoint potential difference of each circuit with amplifiers 161 to 165, the integrated circuit 2
The detection signal may be obtained by superimposing the detected signal.

このように構成することにより、欠陥長さに関係なく一
定の検出感度を得ることができる。
With this configuration, constant detection sensitivity can be obtained regardless of the defect length.

溌皿皇苅来 以上説明したように、この発明に係る電磁誘導探傷方法
は、被検査材に交番磁界を与えて、被検査材の一部を含
む磁気回路を形成し、この磁気回路の磁気抵抗の変化に
よって、磁気回路を遮断する方向の傷を検出すると共に
、前記交番磁界によって生じる渦電流の変化に基づく検
出コイルのインピーダンス変化によって被検査材に存在
するドリルホール等の欠陥を検出している。従ってこの
発明によれば、比較的簡単な構成で、欠陥の形状にかか
わりなくこれらを探傷することができる。
As explained above, in the electromagnetic induction flaw detection method according to the present invention, an alternating magnetic field is applied to a material to be inspected to form a magnetic circuit including a part of the material to be inspected, and the magnetic field of this magnetic circuit is It detects flaws in the direction of interrupting the magnetic circuit by changes in resistance, and detects defects such as drill holes in the inspected material by changes in impedance of the detection coil based on changes in eddy current caused by the alternating magnetic field. There is. Therefore, according to the present invention, it is possible to detect defects regardless of their shape with a relatively simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例にかかわる自己誘導タイプ
の電磁誘導探傷方法の説明図、第2図はこの発明の他の
実施例に係る相互誘導タイプの探傷方法の説明図、第3
図はこの発明の他の実施例に係る複数の検出コイルを一
列に配設して用いた場合の説明図、第4図はこの発明の
その他の実施例の説明図、第5図は従来の渦流探傷方法
の説明図、第6図は従来の漏洩磁束探傷方法の説明図で
ある。 11・・・コア二12.13・・・検出コイル、14・
・・欠陥、S・・・被検査材。 第1図 (a)         (b) (C) 第2図 (a) 第3図 第4図 第5図
FIG. 1 is an explanatory diagram of a self-induction type electromagnetic induction flaw detection method according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of a mutual induction type flaw detection method according to another embodiment of the invention, and FIG.
The figure is an explanatory diagram of a case where a plurality of detection coils according to another embodiment of the present invention are arranged in a row, FIG. 4 is an explanatory diagram of another embodiment of the present invention, and FIG. 5 is an explanatory diagram of a conventional An explanatory diagram of the eddy current flaw detection method, FIG. 6 is an explanatory diagram of the conventional leakage magnetic flux flaw detection method. 11...Core two 12.13...Detection coil, 14.
... Defect, S... Material to be inspected. Figure 1 (a) (b) (C) Figure 2 (a) Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)欠陥方向に対して直交する方向に、交番磁界を被
検査材に与えることによって、前記被検査材の一部を含
む磁気回路を形成し、この磁気回路の磁気抵抗の変化を
検出すると共に、前記交番磁界によって被検査材の表面
に発生した渦電流の変化を磁気的に検出することによっ
て、被検査材の欠陥を検出することを特徴とする電磁誘
導探傷方法。
(1) By applying an alternating magnetic field to the material to be inspected in a direction perpendicular to the defect direction, a magnetic circuit including a part of the material to be inspected is formed, and a change in magnetic resistance of this magnetic circuit is detected. Additionally, an electromagnetic induction flaw detection method characterized in that defects in the material to be inspected are detected by magnetically detecting changes in eddy currents generated on the surface of the material to be inspected by the alternating magnetic field.
JP60066140A 1985-03-28 1985-03-28 Electromagnetic induction flaw detection Pending JPS61223550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60066140A JPS61223550A (en) 1985-03-28 1985-03-28 Electromagnetic induction flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60066140A JPS61223550A (en) 1985-03-28 1985-03-28 Electromagnetic induction flaw detection

Publications (1)

Publication Number Publication Date
JPS61223550A true JPS61223550A (en) 1986-10-04

Family

ID=13307255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60066140A Pending JPS61223550A (en) 1985-03-28 1985-03-28 Electromagnetic induction flaw detection

Country Status (1)

Country Link
JP (1) JPS61223550A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943771A (en) * 1989-05-19 1990-07-24 The United States Of America As Represented By The Secretary Of The Air Force Differential eddy current sensor measuring apparatus for use with movable mirror segments
JP2010164483A (en) * 2009-01-16 2010-07-29 Idemitsu Eng Co Ltd Nondestructive inspection apparatus and nondestructive inspection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943771A (en) * 1989-05-19 1990-07-24 The United States Of America As Represented By The Secretary Of The Air Force Differential eddy current sensor measuring apparatus for use with movable mirror segments
JP2010164483A (en) * 2009-01-16 2010-07-29 Idemitsu Eng Co Ltd Nondestructive inspection apparatus and nondestructive inspection method

Similar Documents

Publication Publication Date Title
US4495465A (en) Method and apparatus for non-destructive testing of magnetically permeable bodies using a first flux to saturate the body and a second flux opposing the first flux to produce a measurable flux
JPH06331602A (en) Method and equipment for checking structural defect of long magnetic material nondestructively
JP6189870B2 (en) Penetration coil configuration, test apparatus having penetration coil configuration, and test method
JPH09145810A (en) Superconducting quantum interference device fluxmeter and non-destructive inspection device
EP1674861A1 (en) Eddy current probe and inspection method comprising a pair of sense coils
US3443211A (en) Magnetometer inspection apparatus for ferromagnetic objects
JP3764834B2 (en) Current sensor and current detection device
US4675605A (en) Eddy current probe and method for flaw detection in metals
JPH10197493A (en) Eddy-current flow detecting probe
JPH0989843A (en) Method and apparatus for eddy current flaw detection
JPS61223550A (en) Electromagnetic induction flaw detection
WO2015196932A1 (en) Coin detection system
CA1182172A (en) Method and apparatus for non-destructive testing of magnetical permeable bodies
JPS61198055A (en) Insertion type probe for eddy current examination
JPH0815229A (en) High resolution eddy current flaw detector
JPH07113788A (en) Probe coil for eddy current flaw detection
JPS5910499B2 (en) Magnetic flaw detection equipment for steel cables using magnetically sensitive elements
JPH06242076A (en) Electromagnetic flaw detecting equipment
US5831424A (en) Isolated current sensor
JPH046489A (en) Verifying and testing method for operation of search coil of metal detector
JP3530472B2 (en) Bar detection system
JPS6011493Y2 (en) Electromagnetic induction detection device
JPS58135449A (en) Eddy current flaw detecting probe
JPH06123732A (en) Eddy current-type flaw detection probe
JPH0843358A (en) Eddy-current flaw detecting method for steel pipe