JPS61198055A - Insertion type probe for eddy current examination - Google Patents

Insertion type probe for eddy current examination

Info

Publication number
JPS61198055A
JPS61198055A JP60039419A JP3941985A JPS61198055A JP S61198055 A JPS61198055 A JP S61198055A JP 60039419 A JP60039419 A JP 60039419A JP 3941985 A JP3941985 A JP 3941985A JP S61198055 A JPS61198055 A JP S61198055A
Authority
JP
Japan
Prior art keywords
pipe
defect
excitation winding
eddy current
magnetic core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60039419A
Other languages
Japanese (ja)
Inventor
Yoryo Masuko
益子 羊了
Yasuhiro Aikawa
相川 康浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP60039419A priority Critical patent/JPS61198055A/en
Publication of JPS61198055A publication Critical patent/JPS61198055A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/904Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents with two or more sensors

Abstract

PURPOSE:To detect a minute defect in the pipe axial direction of a inner surface of a metallic pipe by placing zigzag plural flat detecting coils extending over the whole area in the peripheral direction, on the surface of excitation winding which has been wound to the surface of a cylindrical high permeability magnetic core material. CONSTITUTION:An excitation winding 4 is wound uniformly to a high permeability magnetic core material 1 such as a cylindrical amorphous core, etc., and many flat detecting coils 5 are placed zigzag on its surface so as to cover the whole. Subsequently, it is formed as one body with a holding body 2 of nylon, etc. and a molding material 6, and an eddy current examination insertion type probe for inspecting a pipe surface defect of a metallic pipe is formed. In this state, it is inserted into the pipe, a high frequency current is made to flow to the excitation winding 4, and a defect signal is obtained by detecting and processing a generated eddy current by the detecting coil 5. Accordingly, by selecting correctly a diameter of the detecting coil 5 and its number, a defect in every direction of the pipe surface can be detected with a high accuracy.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、伝熱管などの金属管の管内表面欠陥を検出
する渦流探傷用内挿型プローブに関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an eddy current insertion type probe for detecting defects on the inner surface of a metal tube such as a heat transfer tube.

(従来の技術) 従来の内挿型プローブは、2個の円形コイル22aおよ
び22bを第4図のように一対として構成し、第5図に
示す回路で使用することが多い。
(Prior Art) A conventional interpolation type probe consists of two circular coils 22a and 22b as a pair as shown in FIG. 4, and is often used in the circuit shown in FIG.

このような構成で内挿型プローブを管内面に挿入し、そ
のプローブを引き抜くときに、管内表面欠陥の検出を行
う。このとき管内表面に欠陥があり、それが検出コイル
22a (または22b)の下になると、検出コイル2
2aのインピーダンスが変化するので、第3図に示すブ
リッジ回路が不平衡になり、その不平衡電圧を増幅・同
期検波・波高弁別を行うことにより、欠陥を検出する。
With such a configuration, an internal probe is inserted into the inner surface of a tube, and when the probe is pulled out, defects on the inner surface of the tube are detected. At this time, if there is a defect on the inner surface of the tube and it is below the detection coil 22a (or 22b), the detection coil 2
Since the impedance of 2a changes, the bridge circuit shown in FIG. 3 becomes unbalanced, and defects are detected by amplifying, synchronously detecting, and discriminating the wave height of the unbalanced voltage.

しかしこのような方法で管内面を探傷すると、軸方向に
伸びた欠陥(以下「線状欠陥」という。)は、その先端
および後端しか検出されない、という欠点がある。なぜ
ならば、検出コイル22aおよび検出コイル22bも欠
陥により同じようにインピーダンスが変化し、その差が
ほとんどなく、事実上欠陥は検出されなくなってしまう
。しかも実際には管内面に発生する線状欠陥はしだいに
深さを増し、そして浅くなっていく型のものが多く、し
たがって先後端部においても検出コイル2aおよび2b
のインピーダンスの差はわずかであり、検出されないこ
とが多い。第6図のように励磁巻線4と検出コイル22
aおよび22bとを設けた方式〔相互誘導方式〕も用い
られるが、上記欠点については同様である。
However, when testing the inner surface of a tube using this method, there is a drawback in that defects extending in the axial direction (hereinafter referred to as "linear defects") can only be detected at their leading and trailing ends. This is because the impedances of the detection coils 22a and 22b change in the same way due to defects, and there is almost no difference between them, so that defects are virtually not detected. Moreover, in reality, many of the linear defects that occur on the inner surface of the tube gradually increase in depth and then become shallower, so that the detection coils 2a and 2b are
The difference in impedance is small and often goes undetected. As shown in Fig. 6, the excitation winding 4 and the detection coil 22
A system (mutual induction system) in which a and 22b are provided is also used, but the drawbacks described above are the same.

さらに、この欠点を補うために、1つの検出コイル22
aと定常分をキャンセルするダミー・コイルを組合せて
、その差の出力を増幅・検波して欠陥を検出することも
行なわれている。しかしながら、この方法では管内径の
変化、管材質の変化、温度変動などの影響を除くことが
困難であり、大きい線状欠陥は検出することができても
、微小な線状欠陥は検出することは困難である。
Furthermore, in order to compensate for this drawback, one detection coil 22
Defects have also been detected by combining a with a dummy coil that cancels the stationary component and amplifying and detecting the difference in output. However, with this method, it is difficult to eliminate the effects of changes in pipe inner diameter, changes in pipe material, temperature fluctuations, etc., and even if large linear defects can be detected, it is difficult to detect minute linear defects. It is difficult.

更に、この方式では、被検体の内径が大きくなるにつれ
、円形コイルの径も大きくなる。そのため被検体の内径
が大きくなるにつれて、欠陥検出能力を低下するという
欠点がある。
Furthermore, in this method, as the inner diameter of the subject increases, the diameter of the circular coil also increases. Therefore, there is a drawback that as the inner diameter of the object becomes larger, the defect detection ability decreases.

以上のような欠点を解決するために、内挿型回転プロー
ブがすでに開発され、使用されている。
In order to solve the above-mentioned drawbacks, an interpolation type rotary probe has already been developed and used.

例えば、P、  Neumaierは、Br1tish
  Journal  ofNDT  (Sept、 
1983) p、 235に小さいプローブを6000
 rpn+で回転させ、最大試験速度1.2m/分で探
傷できる装置について報告している。この方法によれば
、線状欠陥の検出は可能であるが、精密な回転機構が必
要であり、管内面全体を走査させるために、試験速度が
押えられる。プローブ・コイルは、一般にリフトオフ変
動のtVが大きいため、プローブが管内面へよく倣うよ
うにする必要がある。またプローブが複雑・高価になる
だけでなく、回転モータ用の電源もプローブに供給しな
ければならないという欠点がある。
For example, P, Neumaier, Br1tish
Journal of NDT (Sept.
1983) p, 6000 small probes on 235
They report on a device that can rotate at RPN+ and perform flaw detection at a maximum test speed of 1.2 m/min. According to this method, it is possible to detect linear defects, but a precise rotation mechanism is required, and the test speed is reduced because the entire inner surface of the tube is scanned. Since the probe coil generally has a large lift-off fluctuation tV, it is necessary to make the probe closely follow the inner surface of the tube. Moreover, not only is the probe complicated and expensive, but also the probe must be supplied with power for the rotating motor.

(発明が解決しようとする問題点) 本発明は、以上のような問題点に鑑みてなされたもので
、金属管内面の管軸方向の微小欠陥を、比較的簡単な構
造で、高速かつ高精度で検出することを目的としている
(Problems to be Solved by the Invention) The present invention has been made in view of the above-mentioned problems. The purpose is to detect with precision.

(問題点を解決するための手段) 本発明に係る内挿型プローブ・コイルは、円筒形の高透
磁率磁芯材料に励磁巻線を円周方向に巻き、その表面に
円周方向全域にわたり偏平な検出コイルを千鳥に分布し
て配置し且つ、該コイルを保持体で覆って構成したこと
を特徴とする内挿型プローブ・コイルである。更に詳細
に1実施例である第1図に基づき、本発明を説明する。
(Means for Solving the Problems) The interpolated probe coil according to the present invention has an excitation winding wound circumferentially around a cylindrical high-permeability magnetic core material, and extends over the entire circumferential direction on the surface of the excitation winding. This is an interpolation type probe coil characterized in that flat detection coils are arranged in a staggered manner and the coils are covered with a holder. The present invention will be described in more detail with reference to FIG. 1, which is one embodiment.

円筒形のアモルファス・コア、フェライト・コアなどの
高透磁率磁芯材料1に励磁巻線4が均一に巻かれている
。それに偏平な検出コイル(以下「パンケーキ・コイル
」という)5を管全体を覆うように、多数個千鳥状に配
置する。このパンケー−1−・コイルの有効探傷領域は
その直径のほぼ70%であるから、各コイルがコイル両
側にほぼ直径の15%ずつラップさせる。ここで、検出
すべき欠陥の大きさによりパンケーキ・コイルの直径が
決まり、試験すべき管の内径により、その数が決まる。
An excitation winding 4 is uniformly wound around a high permeability magnetic core material 1 such as a cylindrical amorphous core or ferrite core. A large number of flat detection coils (hereinafter referred to as "pancake coils") 5 are arranged in a staggered manner so as to cover the entire tube. Since the effective detection area of this Pankey-1 coil is approximately 70% of its diameter, each coil wraps approximately 15% of its diameter on both sides of the coil. Here, the size of the defect to be detected determines the diameter of the pancake coils, and the inner diameter of the tube to be tested determines their number.

これはナイロン、ベークライトなどの非磁性体からなる
円筒形の保持体2で両側からがん入・保持する。励磁巻
線4およびパンケーキ・コイル5を保護するために、円
筒保持体2と同一面になるようにモールド材6で固める
。励磁巻線4およびパンケーキ・コイル5のリード線8
は円筒形保持体2の中央に設けられた貫通孔7を通して
取り出され、コネクタ9により外部ケーブル10に接続
される。本発明に係る渦流探傷用内挿型プローブに使用
する電気回路の実施例を第3図に示す。それは発振器1
1、電力増幅器12、前置増幅器13、バッファ増幅器
14、差動増幅器15、移相器16、同期検波回路17
、波高弁別回路18より構成される。
This is inserted and held from both sides by a cylindrical holding body 2 made of a non-magnetic material such as nylon or Bakelite. In order to protect the excitation winding 4 and the pancake coil 5, they are hardened with a molding material 6 so as to be flush with the cylindrical holder 2. Lead wire 8 of excitation winding 4 and pancake coil 5
is taken out through a through hole 7 provided in the center of the cylindrical holder 2 and connected to an external cable 10 by a connector 9. FIG. 3 shows an embodiment of an electric circuit used in an interpolation type probe for eddy current flaw detection according to the present invention. It is oscillator 1
1, power amplifier 12, preamplifier 13, buffer amplifier 14, differential amplifier 15, phase shifter 16, synchronous detection circuit 17
, a pulse height discrimination circuit 18.

〔作用〕[Effect]

発振器11で発生した高周波正弦波は電力増幅′器12
により高周波正弦波電流となり、励磁巻線4に供給され
る。その結果磁気回路が円筒形磁芯材料1、磁芯材料1
と被検体内面とのギヤツブおよび被検体20で形成され
る。このとき、アモルファス・コアなどの高周波特性の
よい高透磁率磁芯を用いているため、管内面に沿って管
軸方向に強い磁束が生じる。それにより、被検体2oの
内表面の円周方向に、励磁巻線4に流れる電流の反対向
きに、強い誘導電流が流れる。被検体20の内表面に欠
陥があると、誘導電流の流れが乱され、誘導電流の大き
さ・方向・向きが位置的に不均一になるため、パンケー
キ・コイル5には電圧が誘起される。このとき前述した
ように磁芯材料を用いたことにより、磁芯材料を用いな
いときより、同一欠陥に対しはるかに大きな電圧が誘起
されることが理解されよう。さて、この出力は前置増幅
器13により増幅され、さらにバッファ増幅器14を通
り、隣接するパンケーキ・コイルからの同様の信号に対
して差動増幅器15により差動増幅される。この出力は
発振器11の信号に対し同期検波回路17により同期検
波される。このときガタなどのノイズを抑制し、できる
だけS/Nよく欠陥が検出できるように、移相器16に
より基準信号の位相が調整される。同期検波された信号
は波高弁別回路17により波高弁別され、欠陥信号が取
り出される。
The high frequency sine wave generated by the oscillator 11 is transmitted to the power amplifier 12.
This turns into a high-frequency sinusoidal current, which is supplied to the excitation winding 4. As a result, the magnetic circuit has a cylindrical magnetic core material 1, a magnetic core material 1
It is formed by a gear between the inner surface of the test object and the test object 20. At this time, since a high permeability magnetic core with good high frequency characteristics, such as an amorphous core, is used, a strong magnetic flux is generated along the inner surface of the tube in the tube axis direction. As a result, a strong induced current flows in the circumferential direction of the inner surface of the subject 2o in the opposite direction to the current flowing through the excitation winding 4. If there is a defect on the inner surface of the test object 20, the flow of the induced current is disturbed, and the magnitude, direction, and orientation of the induced current become non-uniform in position, so that a voltage is induced in the pancake coil 5. Ru. At this time, it will be understood that by using the magnetic core material as described above, a much larger voltage is induced for the same defect than when no magnetic core material is used. This output is then amplified by a preamplifier 13, further passed through a buffer amplifier 14, and differentially amplified by a differential amplifier 15 with respect to a similar signal from an adjacent pancake coil. This output is synchronously detected with respect to the signal of the oscillator 11 by a synchronous detection circuit 17. At this time, the phase of the reference signal is adjusted by the phase shifter 16 so that noise such as backlash can be suppressed and defects can be detected with as high an S/N ratio as possible. The synchronously detected signal is subjected to wave height discrimination by a wave height discrimination circuit 17, and a defective signal is extracted.

以上において、欠陥が完全に管口周方向のみの成分しか
もたないような欠陥であれば、誘導電流の流れは乱され
ないので、原理的に欠陥は検出されない。しかし、実際
の自然欠陥ではそのようなことはあり得ず、かならず軸
方向成分を有する。
In the above, if the defect is a defect that has a component only in the circumferential direction of the pipe opening, the flow of the induced current will not be disturbed, and therefore, in principle, the defect will not be detected. However, this cannot happen with actual natural defects, and they always have an axial component.

また大部分の欠陥は軸方向であるため、実際上は、この
パンケーキ・コイルであらゆる方向の欠陥が検出できる
ことになる。
Also, most defects are axial, so in practice this pancake coil can detect defects in any direction.

〔発明の効果〕〔Effect of the invention〕

比較的簡単な構成で、管内面のあらゆる方向の微細な表
面欠陥を高速に検出することができる。
With a relatively simple configuration, minute surface defects in all directions on the inner surface of a tube can be detected at high speed.

さらに高透磁率磁芯を用いているため、S/Nよく欠陥
を検出することができる。探傷感度はパンケーキ・コイ
ルの直径で制御でき、通常の内挿型プローブのように被
検体の内径が大きくなったからといって、感度が悪くな
るということはない。
Furthermore, since a high permeability magnetic core is used, defects can be detected with a good S/N ratio. The flaw detection sensitivity can be controlled by the diameter of the pancake coil, and the sensitivity does not deteriorate even if the inner diameter of the object becomes larger, unlike with normal interpolation probes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す一部断面正面図、第2
図は第1図A−A断面図、第3図は本発明の電気的動作
を示す説明図、第4図は従来技術の説明図、第5図は自
己誘導方式のブリフジ回路の説明図、第6図は相互誘導
方式のブリッジ回路の説明図である。 図中の記号は次の通りである。1は高透磁率磁芯円筒、
2は非導電性・非磁性の保持体、4は励磁巻線、5は検
出コイル(パンケーキ・コイル)、6はモールド材、7
は保持体中心に穿孔された穴、8はリード線、9はコネ
クタ、10はケーブル、11は正弦波発振器、12は電
力増幅器、13は前置増幅器、14はバッファ増幅器、
■5は差動増幅器、17は同期検波回路、1Bは波高弁
別回路、20は被検体、21は検出コイル保持体、22
aおよび22bは検出コイル、27および28はブリッ
ジ回路の可変抵抗体である。 出 願 人  新日本製鐵株式会社 代理人弁理士  青 柳    稔 第4図 第5m 第6図
FIG. 1 is a partially sectional front view showing one embodiment of the present invention, and FIG.
The figures are a sectional view taken along line A-A in FIG. 1, FIG. 3 is an explanatory diagram showing the electrical operation of the present invention, FIG. 4 is an explanatory diagram of the prior art, and FIG. 5 is an explanatory diagram of a self-induction type Brifuji circuit. FIG. 6 is an explanatory diagram of a mutual induction type bridge circuit. The symbols in the figure are as follows. 1 is a high permeability magnetic core cylinder,
2 is a non-conductive/non-magnetic holding body, 4 is an excitation winding, 5 is a detection coil (pancake coil), 6 is a molding material, 7
is a hole drilled in the center of the holder, 8 is a lead wire, 9 is a connector, 10 is a cable, 11 is a sine wave oscillator, 12 is a power amplifier, 13 is a preamplifier, 14 is a buffer amplifier,
■5 is a differential amplifier, 17 is a synchronous detection circuit, 1B is a pulse height discrimination circuit, 20 is a subject, 21 is a detection coil holder, 22
a and 22b are detection coils, and 27 and 28 are variable resistors of the bridge circuit. Applicant Nippon Steel Corporation Patent Attorney Minoru Aoyagi Figure 4 Figure 5m Figure 6

Claims (1)

【特許請求の範囲】[Claims] 円筒形高透磁率磁芯材料の表面に巻いた励磁巻線の表面
に、その円周方向全域にわたり複数個の偏平な検出コイ
ルを千鳥状に配置し且つ、外部を保持体で覆って構成し
たことを特徴とする渦流探傷用内挿型プローブ。
A plurality of flat detection coils are arranged in a staggered manner over the entire circumferential direction on the surface of an excitation winding wound on the surface of a cylindrical high permeability magnetic core material, and the outside is covered with a holder. An interpolation type probe for eddy current flaw detection.
JP60039419A 1985-02-28 1985-02-28 Insertion type probe for eddy current examination Pending JPS61198055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60039419A JPS61198055A (en) 1985-02-28 1985-02-28 Insertion type probe for eddy current examination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60039419A JPS61198055A (en) 1985-02-28 1985-02-28 Insertion type probe for eddy current examination

Publications (1)

Publication Number Publication Date
JPS61198055A true JPS61198055A (en) 1986-09-02

Family

ID=12552461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60039419A Pending JPS61198055A (en) 1985-02-28 1985-02-28 Insertion type probe for eddy current examination

Country Status (1)

Country Link
JP (1) JPS61198055A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2611276A1 (en) * 1987-02-19 1988-08-26 Ca Atomic Energy Ltd FOURCAULT CURRENT PROBE WITH CIRCUMFERENTIAL COMPENSATION
JPS63177749U (en) * 1987-05-08 1988-11-17
JPS63177748U (en) * 1987-05-08 1988-11-17
JPS6421349A (en) * 1987-05-06 1989-01-24 Ca Atomic Energy Ltd Overcurrent probe and defect detection overcurrent method
US5256966A (en) * 1991-04-19 1993-10-26 Combustion Engineering, Inc. Method for detecting flaws in a steam generator tube using a flexible eddy current probe having coil bank switching
JP2005351890A (en) * 2004-05-27 2005-12-22 General Electric Co <Ge> Omnidirectional eddy current probe and inspection system
JP6452880B1 (en) * 2018-06-13 2019-01-16 東亜非破壊検査株式会社 Method and apparatus for inspecting flaws or defects in tubular body

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2611276A1 (en) * 1987-02-19 1988-08-26 Ca Atomic Energy Ltd FOURCAULT CURRENT PROBE WITH CIRCUMFERENTIAL COMPENSATION
JPS63298052A (en) * 1987-02-19 1988-12-05 アトミック エナジー オブ カナダ リミテツド Eddy current probe
JPS6421349A (en) * 1987-05-06 1989-01-24 Ca Atomic Energy Ltd Overcurrent probe and defect detection overcurrent method
JPS63177749U (en) * 1987-05-08 1988-11-17
JPS63177748U (en) * 1987-05-08 1988-11-17
US5256966A (en) * 1991-04-19 1993-10-26 Combustion Engineering, Inc. Method for detecting flaws in a steam generator tube using a flexible eddy current probe having coil bank switching
JP2005351890A (en) * 2004-05-27 2005-12-22 General Electric Co <Ge> Omnidirectional eddy current probe and inspection system
JP6452880B1 (en) * 2018-06-13 2019-01-16 東亜非破壊検査株式会社 Method and apparatus for inspecting flaws or defects in tubular body

Similar Documents

Publication Publication Date Title
US4088953A (en) Eddy-current test probe utilizing a combination of high and low reluctance materials to optimize probe sensitivity
AU595748B2 (en) Magnetic flux leakage probe with radially offset coils for use in nondestructives testing of pipes and tubes
US4808927A (en) Circumferentially compensating eddy current probe with alternately polarized receiver coil
EP2406623B1 (en) Eddy current flaw detection probe
US5414353A (en) Method and device for nondestructively inspecting elongated objects for structural defects using longitudinally arranged magnet means and sensor means disposed immediately downstream therefrom
JP6189870B2 (en) Penetration coil configuration, test apparatus having penetration coil configuration, and test method
JPS63298053A (en) Circumferential compensation eddy current probe
US4608534A (en) Eddy current probe for detecting localized defects in cylindrical components
JP4003975B2 (en) Metal inspection method and metal inspection apparatus
JP2639264B2 (en) Steel body inspection equipment
JPS63109367A (en) Flaw detecting sensor for conductive body
JPH06130040A (en) Eddy current probe for detecting internal defect of tube
US3443211A (en) Magnetometer inspection apparatus for ferromagnetic objects
JPH04233452A (en) Eddy current probe
JPS61198055A (en) Insertion type probe for eddy current examination
GB881495A (en) Probe device for flaw detection
JPS6232355A (en) Eddy current flaw inspector
EP0186964A1 (en) Eddy current probes for detecting faults in structures and methods of detecting such faults
JP2000227420A (en) Multi-probe type eddy current examination and eddy current test equipment
US3185923A (en) Magnetic inspection device having variable intensity audible alarm means responsive to spacing between device and test piece
KR102283396B1 (en) Sensor Probe tesing System for Eddy Current Nondestructive Testing
JPS6011493Y2 (en) Electromagnetic induction detection device
JPH0125019B2 (en)
JPH03118465A (en) Detecting apparatus for defect inside tube
JPS61243356A (en) Eddy current flaw detection tester