JPS58135449A - Eddy current flaw detecting probe - Google Patents

Eddy current flaw detecting probe

Info

Publication number
JPS58135449A
JPS58135449A JP57015589A JP1558982A JPS58135449A JP S58135449 A JPS58135449 A JP S58135449A JP 57015589 A JP57015589 A JP 57015589A JP 1558982 A JP1558982 A JP 1558982A JP S58135449 A JPS58135449 A JP S58135449A
Authority
JP
Japan
Prior art keywords
eddy current
coil
electrodes
magnetic flux
ferrite core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57015589A
Other languages
Japanese (ja)
Inventor
Teruhisa Komori
照久 小森
Takao Sugimoto
隆夫 杉本
Mitsuhiro Ota
大田 光廣
Yoshiki Urasawa
浦澤 嘉記
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nittetsu Densetsu Kogyo KK
Original Assignee
Nippon Steel Corp
Nittetsu Densetsu Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nittetsu Densetsu Kogyo KK filed Critical Nippon Steel Corp
Priority to JP57015589A priority Critical patent/JPS58135449A/en
Publication of JPS58135449A publication Critical patent/JPS58135449A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9006Details, e.g. in the structure or functioning of sensors

Abstract

PURPOSE:To obtain a sufficient current for detection of flaws and to improve both sensitivity and S/N, by providing ferrite core electrodes to generate 2 pairs of magnetic fluxes to the surface of a material to be checked. CONSTITUTION:A knife edge is formed at the area where ferrite core electrodes 1 and 1' wound with coil windings 2 and 2' face a material 3 to be checked, and the distance between a pair of knife edges is set equal to the minimum distance between a pair of electrodes. As a result, the magnetic fluxes are easily concentrated between knife edges to increase the efficiency. Therefore two units of electrodes are used to generate 2 pairs of magnetic fluxes, and a differential connection is given between the coils 2 and 2'. Then a current is flowed to the coils, and the material 3 is shifted toward an arrow mark. Thus the balance of coil impedance is lost when surface flaws 6 orthogonal to an eddy current 5 pass through. As a result, flaw signals are detected. In such a constitution, the sensitivity is increased, and at the same time the S/N is improved since the magnetic fields are concentrated at the knife edge part.

Description

【発明の詳細な説明】 杢ヅこ明は、グローブ型渦流探傷グローブに関する 。[Detailed description of the invention] Akira Mokuzuko is concerned with glove-type eddy current flaw detection gloves.

渦流深場は周知の様に金輌表面の疵を探傷プロブから誘
起した磁束を介して金属表面に渦電流を発生せしめて、
金属表面の疵によるインピーダンス笈化から表面疵の検
出を行なうものであシ、この(〉×な原理から明らかな
事は、)”ローブの磁束発生形態は極めて重要な意味を
持つ。すなわち、磁束の発生形態いかん妊よってツーロ
ープの特性、1′1能が決定されると云っても過言では
無い。疵に刈して効率の良いグローブとするためには、
プロー1から発生する磁束が疵に対してほぼ平行となる
か磁束を介して発生する渦電流が疵に対してほぼ直角に
なる様に構成する必要がある。
As is well known, eddy current deep field detects flaws on the metal surface by generating eddy currents on the metal surface through the magnetic flux induced from the flaw detection probe.
Surface flaws are detected from the change in impedance caused by flaws on the metal surface, and it is clear from this (〉× principle) that the form of magnetic flux generation in the lobe has an extremely important meaning. It is no exaggeration to say that the characteristics and performance of the two-rope are determined by the form of occurrence of the defects.
It is necessary to configure the plow so that the magnetic flux generated from the plow 1 is approximately parallel to the flaw, or so that the eddy current generated through the magnetic flux is approximately perpendicular to the flaw.

このため従来の方法においては、コイルを角形又は円形
形状とし、該コイルの一辺を被検材表面に平行に配置す
る方式によシ実現していた。この場合コイルターン数を
多くしても、被検材表面に有効な磁束は、コイル巻層厚
が増加するため等価的に被検材表面との距離が大となる
ため効率は良くならず、コイルインピーダンスのみ大と
なり、結果として探傷に必要な十分な電流が流れず十分
な探傷が出来ない事になる。
Therefore, in the conventional method, the coil is made into a rectangular or circular shape, and one side of the coil is arranged parallel to the surface of the material to be inspected. In this case, even if the number of coil turns is increased, the efficiency of the magnetic flux effective on the surface of the material to be tested will not improve because the distance from the surface of the material to be tested will equivalently increase as the coil winding layer thickness increases. Only the coil impedance becomes large, and as a result, sufficient current necessary for flaw detection does not flow, and sufficient flaw detection cannot be performed.

この様な問題点を解決し、効率の高い方法を兄い出すべ
〈発明者等は種々検討をした結果、フェライトコアを積
極的に使用する方法に至った。従来フェライトコアな応
用すると云った考えがすでに有ったのは周知の事実であ
るが、従来の考え方は、いずれもコイルの磁束密度を単
に上げると云う発想で6C1十分な効果を出せず実用に
至ってはいない。本発明はフェライトコアを使用し感電
、S/Nいずれも向上させたプローグを提供せんとrる
ものでるる。以下本発明を具体的な一実施例LCつき詳
細に説明する。
In order to solve these problems and develop a highly efficient method, the inventors conducted various studies and came up with a method that actively uses ferrite cores. It is a well-known fact that there was already an idea of applying 6C1 to ferrite cores, but the previous idea was to simply increase the magnetic flux density of the coil, and 6C1 was not able to produce sufficient effects and was not put into practical use. Not quite yet. The present invention aims to provide a prong that uses a ferrite core and has improved both electric shock and S/N. Hereinafter, the present invention will be explained in detail with reference to a specific example LC.

まず、本発明の説明に先立ら従来方式の例を第1図にて
説明する。第1図(a)は円形渦流型プローブでるり、
第1図6)は角形で直線渦流型プローブ”ごるる。円形
プローブにおいて被検材3面に生じる磁束4によシ第1
図(a′)に示すように、円形の渦電流5が生じる。こ
のような渦流コイルに対し被検側3が移動することによ
り疵6が該渦流領域内Vこ入り、コイルインピーダンス
が変わることから疵が検出されることしでなる。しかし
本コイルV)場合渦電流の内庭と直交する成分が少なく
なく、ir?’+電流使用効果が悪く、S/N比も一般
的に良くない。
First, before explaining the present invention, an example of a conventional system will be explained with reference to FIG. Figure 1(a) shows a circular eddy current probe.
Figure 1 6) is a rectangular linear eddy current probe.
As shown in Figure (a'), a circular eddy current 5 is generated. When the side 3 to be inspected moves with respect to such an eddy current coil, the flaw 6 enters the eddy current region, and the coil impedance changes, so that the flaw is not detected. However, in the case of this coil V), there are quite a few components of eddy current that are perpendicular to the inner court, and ir? '+ The effect of using current is poor, and the S/N ratio is generally not good.

父、第1図(b) K示すグローブコイルで、被検材:
3に生じる渦電流5と磁束4の状態を第1図(b・)に
ボす。第1図(b′)において、被検側3が移動すると
、疵6が渦電流5をさえ゛:1切シ、インピーダンス変
化を生じて疵が検出される。本方式の場合疵()に直交
する渦電流成分が前述の円形コイルに比し大でl)、渦
電流使用効率が高(S/Nも円形コイルよシも良好でる
るか、いずれの場合も従来性なわれている方式は1,1
′のコア一部は、一般ニエポキシ樹脂製のボビンを使用
している。
Father, Figure 1 (b) In the globe coil shown in K, the material to be tested:
The state of the eddy current 5 and magnetic flux 4 occurring in the magnetic flux 3 is shown in Fig. 1(b). In FIG. 1(b'), when the side to be inspected 3 moves, the flaw 6 crosses the eddy current 5 by 1:1, causing an impedance change and detecting the flaw. In the case of this method, the eddy current component perpendicular to the flaw () is larger than that of the circular coil described above, and the eddy current usage efficiency is high (S/N is also good for the circular coil. The conventional method is 1,1
A part of the core uses a bobbin made of general pepoxy resin.

上記の従来方式に対して、発明者等は第1図(a)。In contrast to the conventional method described above, the inventors proposed the method shown in FIG. 1(a).

(b)の1,1′をフェライトコアとしたところ、磁束
密度が高まる事によシ予想通シ、絶対的な感度はエポキ
シ樹脂に比べ約5〜7倍程度改善出来た。
When 1 and 1' of (b) were used as ferrite cores, the absolute sensitivity was improved by about 5 to 7 times compared to epoxy resin, as expected, by increasing the magnetic flux density.

従来フェライトコアを使用する発想は、第1図(a)の
構成については周知の事実とは云え予想以上の効果であ
ったし、又第1図(b)の構成でフェライトを使用した
例は、発明者等が最初でロシ、他では見受けられない。
Conventionally, the idea of using a ferrite core was more effective than expected in the configuration shown in Figure 1(a), although it is a well-known fact, and the example of using ferrite in the configuration shown in Figure 1(b) was , the inventors were the first to do so, and it cannot be found anywhere else.

コイル巻線2,2′は通常差動結合されるが、コイル部
で直接差動とする場合と、コイルインピーダンスを検出
するブリッジ又はアンプ内で差動結合される場合とがあ
る。前述した様に効果としては予想以上の効果を得る事
が出来たが、発明者等はさらに絶対感度の向上のみでな
くS/N比の向上を計るべく種々研究を進め、第2図、
第3図で示す構成の探傷プローブを製作し、探鶴実験を
行なったところ、感度的にも、S/N的にも従来の方式
に比し、格段の飛躍を見る事が出来た。
The coil windings 2 and 2' are normally coupled differentially, but there are cases where the coil is directly differentially coupled, and where the differentially coupled is carried out within a bridge or amplifier that detects the coil impedance. As mentioned above, we were able to obtain more effects than expected, but the inventors continued various studies to improve not only the absolute sensitivity but also the S/N ratio, as shown in Figure 2.
When a flaw detection probe with the configuration shown in Fig. 3 was manufactured and a crane experiment was conducted, it was possible to see a significant improvement in both sensitivity and S/N compared to the conventional method.

以1:本発明について詳細に説明を進める。第2図<a
> 、 (b) vcおいて1.1′はフェライトコア
、2゜2′はコイル巻線、3は平板状被検材でるる。又
第2図(b)は、該探傷グローブを下面よシ見た図で、
1.1′はフェライトコアで6D、2,2′はコイル巻
線を示す。又4の点線は磁束の発生状態を示゛fo図に
小す様に被検面に対向するフェライトコア電極はナイフ
ェツジとなっており、又該ナイフェツジ部間の1対の距
離が1対の電極間距離の内最小となる様に構成されてい
るため、ナイフエラ/部間に磁束が集中しやすく効率を
高める事が出来る。本グローブは、この1対となった電
極を2個便用して、2対の磁束を発生する構造となって
おり、コイル2,2′は一般的に差動結合をするか父は
1/ビ一ダンス検出用ブリツジ回路又は信号検出ア′ン
プ内で差動結合する。第2図(c)に該プローブを配置
した時、被検材の表面に生じる磁束4と渦電流5の分布
形態を記しである。6は表面疵でロシ、□渦電流5が表
面疵6に直交する様になっておシ、矢印の方向に被検材
1が移動すると疵6がプローブの下を通過し、疵通過に
ともなってコイルインピーダンスのバランスがくずれて
、疵信号として検出される事になる。
1: The present invention will be explained in detail. Figure 2<a
> , (b) In VC, 1.1' is a ferrite core, 2°2' is a coil winding, and 3 is a flat plate-shaped specimen. Fig. 2(b) is a view of the flaw detection glove seen from the bottom.
1.1' is a ferrite core, 6D, and 2, 2' are coil windings. In addition, the dotted line 4 shows the state of magnetic flux generation.As shown in the figure, the ferrite core electrode facing the surface to be measured is a knife edge, and the distance between the pair of knife edges is equal to the distance between the pair of electrodes. Since it is configured so that the distance between the blades is the minimum, magnetic flux is easily concentrated between the knife gills/parts, and efficiency can be increased. This glove uses two of these pair of electrodes to generate two pairs of magnetic flux, and the coils 2 and 2' are generally differentially coupled or / differentially coupled within the bridge circuit for bias detection or signal detection amplifier. FIG. 2(c) shows the distribution form of the magnetic flux 4 and eddy current 5 generated on the surface of the test material when the probe is placed. 6 is a surface flaw, and the eddy current 5 is perpendicular to the surface flaw 6. When the specimen 1 moves in the direction of the arrow, the flaw 6 passes under the probe, and as it passes through the flaw. This causes the coil impedance to become unbalanced, which is detected as a flaw signal.

第3図は1巻のコイルで2対の差動磁界をつくる方式を
示す。磁極は被検材表面に対向する部分をナイフェツジ
にして6’)、中央部磁極を中心にした、2対の磁極間
距離が該部分で最小となる様に構成されているため、ナ
イフェツジに集中的に磁束が発生することになシ、極め
て効率の良い構成となる。第3図(、)において、3極
フエライトコアlの中央ボールにコイル巻線2が巻かれ
ているタイプのプローブでめシ、平板状被検材3上に配
置した図を示す。第3図(b)は該プローブを裏面よシ
見た時の図で6D、1は3極フエライトコア、2はコイ
ル巻線、40点線は極間磁束の分布を示している。以上
説明した様に第2図、第3図の構成とした事によシ、発
明者等が実験した結、果、絶λ、J感度は5〜7倍程度
従来の場合に比し向上し、磁界をナイフェツジに集中せ
しめる構成とした事からS/N的にも従来のものに比し
、3〜5倍程度の改善をする事が出来た。
Figure 3 shows a method for creating two pairs of differential magnetic fields with one coil. The magnetic poles are configured so that the part facing the surface of the material to be tested is a knife (6'), and the distance between the two pairs of magnetic poles centered on the central magnetic pole is minimized in that part, so that the part facing the surface of the material being tested is the knife. This is an extremely efficient configuration since no magnetic flux is generated. FIG. 3(,) shows a probe of the type in which a coil winding 2 is wound around the central ball of a three-pole ferrite core l, and is placed on a flat plate-shaped specimen 3. FIG. 3(b) is a view of the probe when viewed from the back side, 6D, 1 is a three-pole ferrite core, 2 is a coil winding, and the 40-dot line shows the distribution of magnetic flux between poles. As explained above, by using the configurations shown in Figures 2 and 3, the inventors conducted experiments and found that the absolute λ and J sensitivities were improved by about 5 to 7 times compared to the conventional case. Since the magnetic field is concentrated on the knife edge, the S/N ratio can be improved by about 3 to 5 times compared to the conventional one.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来方式の例を示し、(a)及び(a′)は円
形渦流グローブと磁束、渦電流及び疵の関係を示す図、
(b)及び(b′)は角形直線渦流型プローブとその磁
束、渦電流及び疵の関係を示す図である。第2図は本発
明グローブの一実施例で、(、)は全体斜視図、(b)
はプローブを下面から見た図、(C)は磁束、渦電流及
び疵の関係を示す図、第3図は本発明の池の例を小し、
(a)は全体斜視図、(b)はプローブを1・面から見
た図でろる。 1、ド・・・フェライトコア、  2,2′・・・コイ
ル巻線、:3・・・核検材、 4,4′・・・磁束、 
5,5′・・・渦電流、fi、li’−・衣面疵 特許出願人代理人 弁理士 矢 葺 知 之 (ほか1名)
FIG. 1 shows an example of a conventional method, and (a) and (a') are diagrams showing the relationship between a circular eddy current globe, magnetic flux, eddy current, and flaws,
(b) and (b') are diagrams showing the relationship between a rectangular linear eddy current probe and its magnetic flux, eddy current, and flaws. Figure 2 shows an embodiment of the glove of the present invention, (,) is an overall perspective view, and (b)
(C) is a diagram showing the relationship between magnetic flux, eddy current and flaws, and Figure 3 is a diagram showing a small example of the pond of the present invention.
(a) is an overall perspective view, and (b) is a view of the probe viewed from the first side. 1. Ferrite core, 2, 2'... Coil winding, 3... Nuclear inspection, 4, 4'... Magnetic flux,
5,5'...Eddy current, fi, li'--Patent attorney representing the patent applicant for clothing defects Tomoyuki Yafuki (and one other person)

Claims (1)

【特許請求の範囲】[Claims] 1@ (At 探Vゾロープにおいて、被検材表面に対
しく=4スjO)磁束を生じる様に、フェライトコア電
極4配置+& した事を特徴とする渦流深場グローブ。
An eddy current deep field globe characterized by 4 ferrite core electrodes arranged so as to generate magnetic flux of 1@(=4sjO) to the surface of the material to be tested in the At probe.
JP57015589A 1982-02-04 1982-02-04 Eddy current flaw detecting probe Pending JPS58135449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57015589A JPS58135449A (en) 1982-02-04 1982-02-04 Eddy current flaw detecting probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57015589A JPS58135449A (en) 1982-02-04 1982-02-04 Eddy current flaw detecting probe

Publications (1)

Publication Number Publication Date
JPS58135449A true JPS58135449A (en) 1983-08-12

Family

ID=11892906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57015589A Pending JPS58135449A (en) 1982-02-04 1982-02-04 Eddy current flaw detecting probe

Country Status (1)

Country Link
JP (1) JPS58135449A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994018575A1 (en) * 1993-02-03 1994-08-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Horizontal eddy current sensor
JP2014025704A (en) * 2012-07-24 2014-02-06 Toshiba Corp Eddy current flaw detection device
TWI773660B (en) * 2016-02-23 2022-08-11 日商荏原製作所股份有限公司 Polishing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994018575A1 (en) * 1993-02-03 1994-08-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Horizontal eddy current sensor
JP2014025704A (en) * 2012-07-24 2014-02-06 Toshiba Corp Eddy current flaw detection device
TWI773660B (en) * 2016-02-23 2022-08-11 日商荏原製作所股份有限公司 Polishing apparatus

Similar Documents

Publication Publication Date Title
US2829338A (en) Test transformer for ring-type magnetic cores
JP2001281270A (en) Split type current detector
JPH07270507A (en) Terrestrial magnetism azimuth sensor
RU2436200C1 (en) Magnetoresistive sensor
US2964699A (en) Probe device for flaw detection
JPS58135449A (en) Eddy current flaw detecting probe
US4331919A (en) Apparatus for magnetic testing ferromagnetic sheet or strip material using rectangular coils
US5564194A (en) Geomagnetic direction sensor
JP5721475B2 (en) Interpolation probe for eddy current testing of ferromagnetic steel tubes
JPS62225947A (en) Probe for measuring vortex
JPH0430553Y2 (en)
JPS58139053A (en) Measuring device for nuclear magnetic resonance
US20240142404A1 (en) Detection device
JPS60104252A (en) Eddy current flaw detecting probe
JPH07113788A (en) Probe coil for eddy current flaw detection
JPH0143265B2 (en)
JPS61201404A (en) Gapped input transformer for static protective relay
CN116953325A (en) Magnetic collecting type optical current sensor
JPS61223550A (en) Electromagnetic induction flaw detection
SU763773A1 (en) Eddy current transducer
RU2085931C1 (en) Flaw detector electromagnetic transducer
JPS58223743A (en) Orthogonal probe coil
JPH0843102A (en) Three-dimensional geomagnetic azimuth sensor
JPH08233576A (en) Magnetic sensor
CN113777154A (en) Method for enhancing sensitivity of eddy current sensor coil