JP2798199B2 - Noise Removal Method in Eddy Current Testing - Google Patents

Noise Removal Method in Eddy Current Testing

Info

Publication number
JP2798199B2
JP2798199B2 JP4117047A JP11704792A JP2798199B2 JP 2798199 B2 JP2798199 B2 JP 2798199B2 JP 4117047 A JP4117047 A JP 4117047A JP 11704792 A JP11704792 A JP 11704792A JP 2798199 B2 JP2798199 B2 JP 2798199B2
Authority
JP
Japan
Prior art keywords
noise
waveform
eddy current
axis
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4117047A
Other languages
Japanese (ja)
Other versions
JPH0727744A (en
Inventor
智紀 増田
俊哉 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP4117047A priority Critical patent/JP2798199B2/en
Publication of JPH0727744A publication Critical patent/JPH0727744A/en
Application granted granted Critical
Publication of JP2798199B2 publication Critical patent/JP2798199B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、薄肉銅配管の孔食を発
見したり、寿命予測等を行う際に適用される渦流探傷法
におけるノイズ除去方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing noise in an eddy current flaw detection method used for detecting pitting corrosion of a thin-walled copper pipe, estimating a service life, and the like.

【0002】[0002]

【従来の技術】公知の渦流探傷法を図9〜図13に基づい
て説明する。
2. Description of the Related Art A known eddy current flaw detection method will be described with reference to FIGS.

【0003】図9のように、交流を流したコイルを試験
体(導電体)に近づけると、コイルが発生した磁束の作
用によって、試験体の表面にこの磁束と逆向きの磁束を
生成する渦状の電流(渦電流)が生じる。この現象は電
磁誘導現象と呼ばれている。試験体に欠陥が存在すると
この渦電流に乱れが生じるので、これを逆にコイルでイ
ンピーダンスの変化として検出することにより欠陥の検
査に適用する事が出来る。上記電磁誘導現象を検査に利
用できるように作られた装置を渦流探傷器といい、コイ
ルを交流励磁させると同時に、コイルに生じた微小なイ
ンピーダンス変化をオシロスコープ上に表示させる事が
できる。
As shown in FIG . 9 , when an AC-flowing coil is brought close to a test object (conductor), a vortex that generates a magnetic flux in the opposite direction to the magnetic flux on the surface of the test object by the action of the magnetic flux generated by the coil. Current (eddy current) is generated. This phenomenon is called an electromagnetic induction phenomenon. If a defect exists in the test piece, the eddy current is disturbed. Therefore, by detecting this as a change in impedance with a coil, the eddy current can be applied to defect inspection. An apparatus made so that the above-described electromagnetic induction phenomenon can be used for inspection is called an eddy current flaw detector, which can excite a coil with an alternating current and display a minute impedance change generated in the coil on an oscilloscope.

【0004】図10〜図12にコイルを用いて欠陥を検出す
る場合の渦流探傷例を示す。図10及び図11は検査コイル
の配置方法を示し、渦流探傷器は健全部(校正コイル)
と検査部分(検査コイル)に設置された2つのコイルの
インピーダンスの不平衡分を図12に示すようにオシロス
コープ上に表示させる。一般には、図10に示すように、
検査コイルが試験体から離れる場合の輝点の移動方向
(リフトオフ方向)をX軸に一致するように渦流探傷器
を調整する。これによって検査コイルを欠陥上で走査さ
せる場合には、図12に示す様に、Y軸方向の成分を有す
る輝点の移動が得られるようになる。
FIGS. 10 to 12 show examples of eddy current flaw detection when a defect is detected using a coil. Fig. 10 and Fig. 11 show the method of arranging the inspection coil . The eddy current flaw detector is a healthy part (calibration coil).
Then, the unbalance of the impedance of the two coils installed in the inspection part (inspection coil) is displayed on an oscilloscope as shown in FIG . Generally, as shown in FIG.
The eddy current flaw detector is adjusted so that the moving direction (lift-off direction) of the bright spot when the inspection coil separates from the test object coincides with the X-axis. As a result, when the inspection coil is caused to scan on the defect, as shown in FIG. 12 , the movement of the bright spot having the component in the Y-axis direction can be obtained.

【0005】ここでは、渦流探傷器オシロスコープの輝
点の位置をX軸(リフトオフ方向に調整=V)、Y軸
信号電圧(=V)で表現し、原点と輝点間の距離を振
れ幅(=V)、原点と輝点を結ぶ線とX軸の成す角度を
位相角(=θ)と呼ぶ。
Here, the position of the bright spot of the eddy current flaw detector oscilloscope is expressed by the X-axis (adjusted in the lift-off direction = V X ) and the Y-axis signal voltage (= V Y ), and the distance between the origin and the bright spot is deflected. The angle between the width (= V), the line connecting the origin and the bright spot, and the X axis is called the phase angle (= θ).

【0006】この時銅配管内面の孔食の寸法は図13に示
す様に、位相角から残存内厚を評価し、次に振れ幅から
欠陥口径を評価する手法が公知である。しかし、プロー
ブコイルは、微小欠陥の検出には優れているが、生じる
磁束の方向と試験体とが直交しているために、コイルと
試験体の距離や位置関係に非常に敏感で、コイルの振動
や配管の変形・偏心によりノイズが生じ、検査結果に大
きな誤差を及ぼす可能性が指摘されていた。
At this time, as shown in FIG. 13, there is known a method for evaluating the size of the pits on the inner surface of the copper pipe by evaluating the residual inner thickness from the phase angle and then evaluating the diameter of the defect from the deflection width. However, the probe coil is excellent for detecting minute defects, but is very sensitive to the distance and positional relationship between the coil and the test object because the direction of the generated magnetic flux is orthogonal to the test object. It has been pointed out that noise may be generated due to vibration or deformation or eccentricity of the pipe, which may cause a large error in the inspection result.

【0007】このため、上記欠陥寸法評価手法でも示し
た通り、X・Y軸信号電圧が精度良く測定できない場合
には残存肉厚や欠陥口径の評価結果にも大きな誤差が含
まれる事になる。
For this reason, as shown in the above defect size evaluation method, when the X and Y axis signal voltages cannot be measured with high accuracy, a large error is also included in the evaluation results of the residual wall thickness and the defect diameter.

【0008】[0008]

【発明が解決しようとする課題】銅配管は、薄肉でその
口径も小さく、更に孔食の大きさ、深さも微小なことが
多いことから、高い感度で検査を行うことが必要で、検
査時に発生する各種外乱要因によってノイズが発生す
る。したがって、高精度探傷のためにはこのノイズの除
去対策は極めて重要である。
Copper pipes are thin and small in diameter, and often have a small pitting corrosion depth and depth. Therefore, it is necessary to conduct inspections with high sensitivity. Noise is generated by various disturbance factors that occur. Therefore, measures for removing this noise are extremely important for high-precision flaw detection.

【0009】本発明は、斯る点に鑑みて提案されるもの
で、その目的とするところは、渦流探傷法を薄肉、小口
径銅配管に適用した際に、高精度で探傷するために必須
なノイズ除去手段(方法)を提供することである。
[0009] The present invention is proposed in view of the above point, and an object thereof is indispensable for performing high-accuracy flaw detection when the eddy current flaw detection method is applied to a thin-walled, small-diameter copper pipe. It is to provide a simple noise removing means (method).

【0010】[0010]

【課題を解決するための手段】本発明に係る渦流探傷法
におけるノイズ除去方法の構成は次のとおりである。
The configuration of the noise removing method in the eddy current flaw detection method according to the present invention is as follows.

【0011】a.検査コイルを配管の軸方向に走査させ
てX軸(リフトオフ方向)とY軸信号を取り出す、 b.取り出した信号の中でY軸信号が一定のレベル以下
を示す部分のX軸信号を選別する、 c.bで選別したX軸信号を例えば4次曲線式で近似さ
せてノイズ近似波形を作る、 d.aで取り出したX軸信号に基づく初期波形からcの
ノイズ近似波形を差し引くことにより、欠陥指示波形の
みを取り出す、 ことを特徴とする渦流探傷法におけるノイズ除去方法。
A. Scan the inspection coil in the axial direction of the pipe to extract the X-axis (lift-off direction) and Y-axis signals, b. Selecting an X-axis signal in a portion of the extracted signal in which the Y-axis signal is below a certain level, c. b. A noise approximation waveform is created by approximating the X-axis signal selected in b with, for example, a quartic curve equation. d. A noise removal method in the eddy current flaw detection method, wherein only a defect indication waveform is extracted by subtracting a noise approximate waveform of c from an initial waveform based on the X-axis signal extracted in a.

【0012】[0012]

【実施例】以下に、提案するノイズ除去手法の実施例を
詳記する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the proposed noise elimination method will be described below in detail.

【0013】a.ノイズ波形の特徴図1 に示すようなノイズの波形を調べてみると、以下の
事が判明した。 生じるノイズは欠陥指示と同じ周波数帯で生じている
ので電気的ないわゆるバンドパスフィルターは適用でき
ない。 Y軸信号成分にはノイズの混入がないのでX軸信号成
分からのみのノイズを除去すれば良い。 Y軸信号成分の波形を調べてみると、 (1)検査コイルの1回の走査(300mm)中に孔食
は5〜6個程度である。:F個 (2)モーターの振動や検査コイルのガタによるノイズ
は1回の走査中に2〜3個のピークを有している。:N
1個 (3)配管の変形・変芯によるノイズは1回の走査中に
5〜8個のピークを有している。 :N2個 b.ノイズ除去手法の考え方 欠陥信号が1〜2個だけ入るように40mm(=L)
の区間のデータを取り出す。:L=300/(F+1)
上記a.(1)より 取りだしたデータの中でY軸信号が一定レベル以下を
示すいわゆる健全部のX軸信号を選別する。:上記a.
より 選別したX軸信号を4(=n)次曲線で近似する。:
n=(N1+N2)/300*L+1 上記a.
(1)(2)(3)より 元のX軸信号から4次近似した健全部のノイズ波形を
差し引く事により欠陥波形のみを取り出す事が出来る。
A. Characteristics of the noise waveform When the noise waveform as shown in FIG. 1 was examined, the following was found. Since the generated noise occurs in the same frequency band as the defect indication, an electrical so-called band-pass filter cannot be applied. Since there is no noise in the Y-axis signal component, it is sufficient to remove noise only from the X-axis signal component. When examining the waveform of the Y-axis signal component, (1) about 5 to 6 pits occur during one scan (300 mm) of the inspection coil. : F (2) Noise caused by vibration of the motor or play of the inspection coil has a few peaks during one scan. : N
1 piece (3) Noise due to deformation and eccentricity of the pipe has 5 to 8 peaks during one scan. : N2 b. 40mm (= L) so that only one or two defect signals enter
The data of the section of is extracted. : L = 300 / (F + 1)
The above a. From the data extracted from (1), a so-called X-axis signal of a sound part in which the Y-axis signal is below a certain level is selected. : A.
The selected X-axis signal is approximated by a 4 (= n) order curve. :
n = (N1 + N2) / 300 * L + 1 a.
(1) From (2) and (3) Only the defect waveform can be extracted by subtracting the noise waveform of the sound part approximated by the fourth order from the original X-axis signal.

【0014】c.提案するノイズ除去手法の実施例 ノイズ除去手法を図3〜図6に示す。図3に示す区間L
中の元の波形には、ノイズの中に欠陥信号が埋もれてい
る。まず、図4に示すようにY軸信号の出力が得られて
いない部分すなわち健全部のX信号を取り出す。次に
に示すように欠損部分も含めてこの信号をn次曲線式
で近似する。これは、本来欠陥がある部分も無欠陥であ
るものとして取り扱われているので純粋にノイズ信号と
なる。最後に、初期の波形からこのノイズ信号を引き算
する事により、図6に示すように欠陥指示波形のみが得
られることになる。
C. Embodiment of Proposed Noise Removal Technique FIGS. 3 to 6 show the noise removal technique. Section L shown in FIG.
In the original waveform, the defect signal is buried in the noise. First, as shown in FIG. 4 , an X signal of a portion where the output of the Y-axis signal is not obtained, that is, a healthy portion is extracted. Next figure
As shown in FIG. 5 , this signal including the missing portion is approximated by an nth order curve equation. This is a pure noise signal because the originally defective portion is treated as non-defective. Finally, by subtracting this noise signal from the initial waveform, only the defect indication waveform is obtained as shown in FIG .

【0015】区間L及び次数nは前記bに示す手法によ
り決定する。
The section L and the order n are determined by the method shown in b.

【0016】ノイズ除去後の波形を図7に示し、オシロ
スコープ波形を図8に示す。
FIG. 7 shows a waveform after noise removal, and FIG. 8 shows an oscilloscope waveform.

【0017】上記実施例により、探傷した具体的なデー
タの一例を示すと次のとおりである。
An example of specific data detected by the above embodiment is as follows.

【0018】元肉厚0.81mm V=−1.19(V) V=2.43(V) θ=tan−1(V)=116.1° 残肉率=44.6%(0.36mm残) なお、実測孔食深さ0.51mmであったので残肉率=
37.0%(0.30mm残)であった。
[0018] MotonikuAtsu 0.81mm V X = -1.19 (V) V Y = 2.43 (V) θ = tan -1 (V Y N X) = 116.1 ° residual meat ratio = 44. 6% (0.36 mm remaining) In addition, since the actually measured pit depth was 0.51 mm, the remaining meat ratio =
It was 37.0% (0.30 mm remaining).

【0019】[0019]

【発明の効果】本発明は以上のように、渦流探傷法にお
いて、初期波形から、Y軸信号が一定レベル以下を示す
部分のX軸信号を選別し、この信号をn次曲線式で近似
させてノイズ近似波形をつくり、初期波形からこのノイ
ズ近似波形を差し引いて欠陥指示波形、すなわち孔食波
形のみを取り出すようにした。この結果、ノイズに影響
されないで、薄肉、小口径の銅配管の探傷を高精度で行
うことができる。
As described above, according to the present invention, in the eddy current flaw detection method, the X-axis signal of the portion where the Y-axis signal is below a certain level is selected from the initial waveform, and this signal is approximated by the n-th order curve equation. A noise approximation waveform is created by subtracting the noise approximation waveform from the initial waveform to extract only a defect indication waveform, that is, a pitting corrosion waveform. As a result, flaw detection of a thin-walled, small-diameter copper pipe can be performed with high accuracy without being affected by noise.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ノイズ波形の説明図。FIG. 1 is an explanatory diagram of a noise waveform.

【図2】ノイズ波形の説明図。FIG. 2 is an explanatory diagram of a noise waveform.

【図3】ノイズ除去手法の説明図。FIG. 3 is an explanatory diagram of a noise removal method.

【図4】ノイズ除去手法の説明図。FIG. 4 is an explanatory diagram of a noise removal method.

【図5】ノイズ除去手法の説明図。FIG. 5 is an explanatory diagram of a noise removal method.

【図6】ノイズ除去手法の説明図。FIG. 6 is an explanatory diagram of a noise removal method.

【図7】ノイズ除去後の波形の説明図。FIG. 7 is an explanatory diagram of a waveform after noise removal.

【図8】ノイズ除去後の波形の説明図。FIG. 8 is an explanatory diagram of a waveform after noise removal.

【図9】電磁誘導現象の説明図。FIG. 9 is an explanatory diagram of an electromagnetic induction phenomenon.

【図10】渦流探傷法の説明図。FIG. 10 is an explanatory diagram of an eddy current flaw detection method.

【図11】渦流探傷法の説明図。FIG. 11 is an explanatory diagram of an eddy current flaw detection method.

【図12】渦流探傷法の説明図。FIG. 12 is an explanatory diagram of an eddy current flaw detection method.

【図13】欠陥寸法評価法の説明図。FIG. 13 is an explanatory diagram of a defect size evaluation method.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 a.検査コイルを配管の軸方向に走査さ
せてX軸とY軸信号を取り出す、 b.取り出した信号の中でY軸信号が一定のレベル以下
を示す部分のX軸信号を選別する、 c.bで選別したX軸信号をn次曲線式で近似させてノ
イズ近似波形を作る、 d.aで取り出したX軸信号に基づく初期波形からcの
ノイズ近似波形を差し引くことにより、欠陥指示波形の
みを取り出す、 ことを特徴とする渦流探傷法におけるノイズ除去方法。
1. A method comprising: a. Scan the inspection coil in the axial direction of the pipe to extract X-axis and Y-axis signals, b. Selecting an X-axis signal in a portion of the extracted signal in which the Y-axis signal is below a certain level, c. b. Create an approximate noise waveform by approximating the X-axis signal selected in b with an n-th order curve equation. d. A noise removal method in the eddy current flaw detection method, wherein only a defect indication waveform is extracted by subtracting a noise approximate waveform of c from an initial waveform based on the X-axis signal extracted in a.
JP4117047A 1992-05-11 1992-05-11 Noise Removal Method in Eddy Current Testing Expired - Lifetime JP2798199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4117047A JP2798199B2 (en) 1992-05-11 1992-05-11 Noise Removal Method in Eddy Current Testing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4117047A JP2798199B2 (en) 1992-05-11 1992-05-11 Noise Removal Method in Eddy Current Testing

Publications (2)

Publication Number Publication Date
JPH0727744A JPH0727744A (en) 1995-01-31
JP2798199B2 true JP2798199B2 (en) 1998-09-17

Family

ID=14702115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4117047A Expired - Lifetime JP2798199B2 (en) 1992-05-11 1992-05-11 Noise Removal Method in Eddy Current Testing

Country Status (1)

Country Link
JP (1) JP2798199B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5013363B2 (en) * 2005-10-11 2012-08-29 国立大学法人大阪大学 Nondestructive inspection equipment
JP4646835B2 (en) * 2006-03-07 2011-03-09 株式会社日立製作所 Evaluation method and apparatus for residual thickness by eddy current flaw detection
JP5224183B2 (en) * 2009-03-23 2013-07-03 新日鐵住金株式会社 Tube defect detection method and apparatus
JP2011075439A (en) * 2009-09-30 2011-04-14 Glory Ltd Printed matter inspection apparatus
JP5462576B2 (en) * 2009-10-09 2014-04-02 日立Geニュークリア・エナジー株式会社 Eddy current flaw detector and signal processing method thereof
JP5569529B2 (en) 2010-08-09 2014-08-13 新東工業株式会社 Blasting equipment

Also Published As

Publication number Publication date
JPH0727744A (en) 1995-01-31

Similar Documents

Publication Publication Date Title
US4107605A (en) Eddy current flaw detector utilizing plural sets of four planar coils, with the plural sets disposed in a common bridge
US5565771A (en) Apparatus for increasing linear resolution of electromagnetic wire rope testing
US6239593B1 (en) Method and system for detecting and characterizing mechanical damage in pipelines using nonlinear harmonics techniques
JP2639264B2 (en) Steel body inspection equipment
JP2008309573A (en) Eddy current flaw detector and eddy current flaw detection method
JP2798199B2 (en) Noise Removal Method in Eddy Current Testing
Kacprzak et al. Novel eddy current testing sensor for the inspection of printed circuit boards
JPS6314905B2 (en)
JP4715034B2 (en) Eddy current flaw detector
JP3266899B2 (en) Method and apparatus for flaw detection of magnetic metal body
JP2000314728A (en) Pulsed eddy current flaw detecting device
JPH102883A (en) Eddy current flaw detection apparatus
JP2011012985A (en) Pulse excitation type eddy current flaw detection method and pulse excitation type eddy current flaw detector using the same
JP2005164516A (en) Method for detecting defect
JP2959395B2 (en) Metal residue detection method in metal tube
JP3426748B2 (en) Eddy current detection test method
JPS612065A (en) Flaw detector using eddy current
KR102283396B1 (en) Sensor Probe tesing System for Eddy Current Nondestructive Testing
JPS60125560A (en) Method for inspecting metal surface
JP2003294711A (en) Eddy-current test probe and eddy-current test method using the probe
JP3343828B2 (en) Metal residue detection method in metal tube
KR100592635B1 (en) Eddy Current Testing Apparatus
JP4674416B2 (en) Self-comparing eddy current flaw detector
JP2000065801A (en) Inspecting mehtod for damage inside metal tube
JPH075408Y2 (en) Metal flaw detection probe