JPS6314905B2 - - Google Patents

Info

Publication number
JPS6314905B2
JPS6314905B2 JP56091156A JP9115681A JPS6314905B2 JP S6314905 B2 JPS6314905 B2 JP S6314905B2 JP 56091156 A JP56091156 A JP 56091156A JP 9115681 A JP9115681 A JP 9115681A JP S6314905 B2 JPS6314905 B2 JP S6314905B2
Authority
JP
Japan
Prior art keywords
detection
frequency
coil
test
flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56091156A
Other languages
Japanese (ja)
Other versions
JPS5817353A (en
Inventor
Masayoshi Iwasaki
Yoshiro Nishimoto
Kazuhiko Yoshimoto
Yoshinori Yonekura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP56091156A priority Critical patent/JPS5817353A/en
Publication of JPS5817353A publication Critical patent/JPS5817353A/en
Publication of JPS6314905B2 publication Critical patent/JPS6314905B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/904Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents with two or more sensors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【発明の詳細な説明】 本発明は、複数コイル方式による多重周波渦流
探傷法及び多重周波数渦流探傷装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multi-frequency eddy current flaw detection method using a plurality of coils and a multi-frequency eddy current flaw detection device.

多重周波数渦流探傷技術は、渦流探傷におい
て、渦電流の浸透深さが試験周波数に依存するこ
とに着目し、試験周波数を複数にすることによつ
て一度に得る情報量を増やし、それらを組合せる
ことにより各種の雑音要因の低減や重畳した要因
の分離、欠陥位置の推定等を試みるものであり、
原子力プラントの供用期間中の検査等に採用され
ている。この探傷法には、大別してミキシング方
式とスイツチング方式とがある。
Multi-frequency eddy current flaw detection technology focuses on the fact that the penetration depth of eddy current in eddy current flaw detection depends on the test frequency, increases the amount of information obtained at once by using multiple test frequencies, and combines them. This is an attempt to reduce various noise factors, separate superimposed factors, estimate defect locations, etc.
It is used for inspections of nuclear power plants during their service life. This flaw detection method can be broadly classified into a mixing method and a switching method.

ミキシング方式は、第1図に示すように、異な
る試験周波数f1、f2、…fnを持つた発振器11,1
〜1nを備え、その各発振器11,12〜1nか
らの励磁電流をミキサ2で混合して単一の検知コ
イル3を駆動すると共に、検知コイル3に各試験
周波数に対応するバンドパスフイルタ41,42
4nを介して各周波数毎の単一周波数探傷器51
2〜5nを接続し、この各探傷器51,52〜5
nから同時に複数の試験周波数での探傷出力を得
るようにしたものである。スイツチング方式は、
第2図に示すように、切換タイミング発生器6の
タイミングに従つてマルチプレクサ7により各単
一周波探傷器51,52〜5nの試験周波数を切換
えて単一の検知コイル3を時分割にて使用するも
のである。
As shown in Fig. 1, the mixing method uses oscillators 1 1 , 1 with different test frequencies f 1 , f 2 , ...
The mixer 2 mixes excitation currents from the respective oscillators 1 1 , 1 2 - 1n to drive a single detection coil 3, and the detection coil 3 is provided with a band pass corresponding to each test frequency. Filter 4 1 , 4 2 ~
Single frequency flaw detector 5 1 for each frequency via 4n,
5 2 to 5n, and each of these flaw detectors 5 1 , 5 2 to 5
flaw detection outputs at a plurality of test frequencies can be obtained from n at the same time. The switching method is
As shown in FIG. 2, the test frequency of each single frequency flaw detector 5 1 , 5 2 to 5n is switched by the multiplexer 7 according to the timing of the switching timing generator 6, and the single detection coil 3 is time-divided. It is used for

以上のように従来の探傷法では、単一の検知コ
イル3を使用し、この検知コイル3を複数の試験
周波数にて駆動する方式が採用されている。しか
し、従来の多重周波数渦流探傷法によれば、欠陥
位置の識別の場合に次のような問題点があつた。
例えば第3図に示すように、表裏に人工欠陥8,
9が存在する厚さ4mmのステンレス鋼板のサンプ
ル10について試験周波数10KHz、100KHzの2
周波渦流探傷を行なう。ただし、ここではミキシ
ング方式を用い、検知コイル3には単一の標準比
較型でコイル長2mmのものを使用する。検知コイ
ル3を矢印方向に移動させた場合、10KHz、
100KHzの位相検波出力は第4図A,Bのように
なる。10KHzでは電磁場の表皮効果による浸透深
さδが約4mmのため、欠陥9のみならず欠陥8に
ついても検出している。一方、100KHzでは浸透
深さδが約1.3mmで欠陥9のみを検出している。
従つて、検知コイル3と同一側の裏面の欠陥9の
みの検出であれば100KHz単一で十分であり、ま
た表面の欠陥8のみを検出する場合には、予め同
一の標準欠陥に対する10KHzと100KHzの感度比
kを求めておき、V10×k―V100とすることによ
つて裏面にある欠陥9分を消去すれば、表面の欠
陥8のみを検出することが可能となる。ところ
が、第4図の波形からも明らかなように、試験周
波数が異なると、同一の要因からの信号が単に感
度のみならず、信号巾まで変化させて終う。一般
に、周波数が低くなる程、信号巾は広くなる傾向
にあるが、これは、検知コイル3が導体に近接し
た場合の導体内での電磁場の広がり方が表皮効果
のため、周波数によつて異なることに起因してい
る。従つて、V10×k―V100(この場合k=1.3)
を求めても、第4図cの波形のように差が残つて
終い、表面のみの欠陥8を検出することは不可能
となる。端的に云えば、同一の検知コイル3で
は、同一要因からの感じ方が周波数によつて異な
るため、それらを組合せても完全に消去しきれな
いと云うことである。
As described above, in the conventional flaw detection method, a method is adopted in which a single detection coil 3 is used and this detection coil 3 is driven at a plurality of test frequencies. However, the conventional multi-frequency eddy current flaw detection method has the following problems when identifying defect positions.
For example, as shown in Fig. 3, artificial defects 8,
Sample 10 of 4 mm thick stainless steel plate with test frequency 10KHz and 100KHz 2
Perform frequency eddy current flaw detection. However, a mixing method is used here, and a single standard comparison type with a coil length of 2 mm is used for the detection coil 3. When the detection coil 3 is moved in the direction of the arrow, 10KHz,
The phase detection output at 100KHz is as shown in Figure 4 A and B. At 10 KHz, the penetration depth δ due to the skin effect of the electromagnetic field is about 4 mm, so not only defect 9 but also defect 8 is detected. On the other hand, at 100 KHz, only defect 9 was detected at a penetration depth δ of approximately 1.3 mm.
Therefore, if only the defect 9 on the back side on the same side as the detection coil 3 is to be detected, a single 100KHz is sufficient, and if only the defect 8 on the front side is to be detected, 10KHz and 100KHz for the same standard defect should be detected in advance. By calculating the sensitivity ratio k and setting it as V 10 ×k−V 100 to eliminate the defect 9 on the back surface, it becomes possible to detect only the defect 8 on the front surface. However, as is clear from the waveforms in FIG. 4, when the test frequencies are different, signals from the same factor end up changing not only the sensitivity but also the signal width. Generally, the lower the frequency, the wider the signal width, but this differs depending on the frequency due to the skin effect, which spreads the electromagnetic field within the conductor when the detection coil 3 is close to the conductor. This is due to this. Therefore, V 10 ×k−V 100 (k=1.3 in this case)
Even if the difference is determined, a difference remains as shown in the waveform of FIG. 4c, and it becomes impossible to detect the defect 8 only on the surface. To put it simply, with the same detection coil 3, the same factors are perceived differently depending on the frequency, so even if they are combined, it cannot be completely eliminated.

以上では、欠陥位置の識別の例について述べた
が、雑音要因の除去、低減等においても、単一コ
イルである限り同様な問題点があつた。また、単
一コイルの場合、平衡用のブリツジ回路も単一で
あり、従つて、バランスは或る一つの試験周波数
でしかとれず、他の試験周波数ではバランスしな
いままで行なうことになつている。試験周波数が
比較的近い場合はアンバランスでも増幅器等のダ
イナミツクレンジ内に入り得るが、試験周波数の
比が大きくなつてくると、一方の試験周波数でバ
ランスした時、他方の試験周波数では飽和して終
う恐れがあつた。以上の理由により従来の多重周
波数渦流探傷法では精々2〜3倍の周波数比しか
とれなかつた。このため浸透深さ比は1.4〜1.7倍
が限度であり、判別範囲を広くとれないと云う問
題もあつた。また単一コイルであるため、巻数も
一律であり、試験周波数によつて感度に大きな差
が生じ、探傷の高感度が不可能であつた。
The above has described an example of defect position identification, but similar problems arise in removing and reducing noise factors as long as a single coil is used. In addition, in the case of a single coil, the bridge circuit for balancing is also single, so balance can only be achieved at one test frequency, and other test frequencies are left unbalanced. . If the test frequencies are relatively close, an unbalanced amplifier can still fall within the dynamic range of the amplifier, but as the ratio of the test frequencies increases, when one test frequency is balanced, the other test frequency will become saturated. There was a fear that it would end. For the above reasons, the conventional multi-frequency eddy current flaw detection method can only obtain a frequency ratio of 2 to 3 times. For this reason, the penetration depth ratio is limited to 1.4 to 1.7 times, and there is also the problem that a wide discrimination range cannot be achieved. Furthermore, since it is a single coil, the number of turns is the same, and there is a large difference in sensitivity depending on the test frequency, making it impossible to achieve high sensitivity in flaw detection.

本発明は、このような従来の問題点に鑑み、試
験周波数の相違による同一要因からの寄与の相違
感度の相違を低減し、信号解析の精度向上と高感
度化を図ることを目的として提供されたものであ
つて、その第1の特徴とする処は、検知コイルに
複数種類の異なる試験周波数の励磁電流を印加
し、被検材に渦電流を夫々発生させて欠陥を検出
する多重周波数渦流探傷法において、異なる試験
周波数の励磁電流が印加される検知コイルを該各
励磁電流に対応して複数個用い、該各励磁電流に
よつて被検材の表面に発生する各渦電流の応答範
囲が略等しくなるように、各試験周波数に応じて
各検知コイルのコイル長、コイル径、巻数等の条
件を定めておき、探傷時に、各検知コイルに該各
検知コイルに対応する励磁電流を夫々印加し、該
各検知コイルに接続された単一周波数探傷器から
の出力の差を求め、異なる試験周波数間での雑音
要因を除去する。点にあり、第2の特徴とする処
は、検知コイルに複数種類の異なる試験周波数の
励磁電流を印加し、被検材に渦電流を夫々発生さ
せて欠陥を検出する多重周波数渦流探傷装置にお
いて、異なる試験周波数の励磁電流が別々に印加
され、かつ該励磁電流によつて被検材の表面に発
生する渦電流の応答範囲が略等しくなるように、
各試験周波数に応じてコイル長、コイル径、巻数
等の条件が定められた検知コイルを各励磁電流に
対応して複数個設けると共に、各検知コイルに接
続された複数個の単一周波数探傷器と、該各探傷
器からの位相検波出力の差を求める解析手段と、
該解析手段からの解析結果を表示する表示手段と
を備え、前記各探傷器には各検知コイルに対応す
る特定の試験周波数のみ通過させるバンドパスフ
イルタ又は試験周波数毎の相関器を設けた点にあ
る。
In view of these conventional problems, the present invention is provided for the purpose of reducing differences in sensitivity due to differences in contributions from the same factor due to differences in test frequencies, and improving accuracy and sensitivity of signal analysis. The first feature is the multi-frequency eddy current, which applies excitation currents of multiple different test frequencies to the detection coil, generates eddy currents in the test material, and detects defects. In the flaw detection method, a plurality of detection coils to which excitation currents of different test frequencies are applied are used corresponding to each excitation current, and the response range of each eddy current generated on the surface of the test material by each excitation current is determined. Conditions such as the coil length, coil diameter, and number of turns of each detection coil are determined according to each test frequency so that the values are approximately equal, and the excitation current corresponding to each detection coil is applied to each detection coil during flaw detection. The difference in output from a single frequency flaw detector connected to each sensing coil is determined to eliminate noise factors between different test frequencies. The second feature is that the multi-frequency eddy current flaw detection device applies excitation currents of multiple different test frequencies to the detection coil, generates eddy currents in the test material, and detects defects. , excitation currents of different test frequencies are applied separately, and the response ranges of eddy currents generated on the surface of the test material by the excitation currents are approximately equal,
A plurality of detection coils with conditions such as coil length, coil diameter, number of turns, etc. determined according to each test frequency are provided corresponding to each excitation current, and a plurality of single frequency flaw detectors are connected to each detection coil. and analysis means for determining the difference in phase detection output from each of the flaw detectors,
and display means for displaying the analysis results from the analysis means, and each of the flaw detectors is provided with a bandpass filter or a correlator for each test frequency that passes only a specific test frequency corresponding to each detection coil. be.

以下、図示の実施例について本発明を詳述する
と、第5図において、11は被検材、121,1
2〜12nは各試験周波数毎に設けられた複数
個の検知コイルであり、この各検知コイル121
122〜12nには単一周波渦流探傷器131,1
2〜13nが夫々接続されている。各検知コイ
ル121,122〜12nは同一ボビンに巻付けら
れており、何れも各試験周波数f1、f2、〜fnにお
いて被検材11表面での夫々の応答範囲が略等し
くなり、かつ各試験周波数f1、f2、〜fnに対して
最適の感度が得られるように、そのコイル長、コ
イル径及び巻数が決められている。即ち、内挿形
及び貫通形コイルでは、コイル長により欠陥の応
答する範囲が定まるが、試験周波数によつてもそ
の範囲が変化し、一般に高周波になるほど浸透深
さが小さくなり、応答範囲も狭くなるので、高周
波用の検知コイルの長さを、上記影響を補正する
ように予め若干長くすることにより、各試験周波
数の応答範囲を合わせる。またプローブ形コイル
では、コイル径により欠陥の応答する範囲が定ま
ると共に、試験周波数によつてもその範囲が変化
するため、内挿形や貫通形コイルと同様、各試験
周波数に応じて予めコイル径を調整することによ
り、各試験周波数の応答範囲を合わせる。従つ
て、被検材11中の雑音要因からの寄与が各検知
コイル121,122〜12nとも等しくなり、試
験周波数の差異に伴なう信号巾の変化を防止で
き、信号処理過程において雑音要因を除去するこ
とができる。
Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments. In FIG. 5, 11 is a test material;
2 2 to 12n are a plurality of detection coils provided for each test frequency, and each of the detection coils 12 1 ,
12 2 to 12n are single frequency eddy current flaw detectors 13 1 , 1
3 2 to 13n are connected to each other. Each of the detection coils 12 1 , 12 2 to 12n is wound around the same bobbin, and their respective response ranges on the surface of the test material 11 are approximately equal at each test frequency f 1 , f 2 , to fn. In addition, the coil length, coil diameter, and number of turns are determined so that optimal sensitivity can be obtained for each test frequency f 1 , f 2 , ~fn. In other words, for interpolated and through-type coils, the range in which the defect responds is determined by the coil length, but that range also changes depending on the test frequency, and in general, the higher the frequency, the smaller the penetration depth and the narrower the response range. Therefore, by making the length of the high-frequency detection coil slightly longer in advance to compensate for the above-mentioned influence, the response range of each test frequency is matched. In addition, with probe-type coils, the range in which defects respond is determined by the coil diameter, and that range also changes depending on the test frequency. Match the response range of each test frequency by adjusting . Therefore, the contribution from the noise factor in the test material 11 is equal to each detection coil 12 1 , 12 2 to 12n, and it is possible to prevent changes in signal width due to differences in test frequencies, and to eliminate noise in the signal processing process. factors can be removed.

各単一周波渦流探傷器131,132〜13n
は、各試験周波数f1、f2〜fnの発振器141,14
〜14n、その各試験周波数f1、f2、〜fn毎に検
知コイル121,122〜12nのバランスをとる
ブリツジ回路151,152〜15n、各試験周波
数f1、f2、〜fnのみを通すバンドパスフイルタ1
1,162〜16n、及び位相検波器171,1
2〜17nを備えて成る。各検知コイル121
122,12nを同一ボビンに巻付けておけば、
コイルを移動させた際にも、被検材11と各検知
コイル121,122〜12nとの間の距離の変化
等の配置パラメータを同一にできるが、各試験周
波数の励磁電流で同時に各検知コイル121,1
2〜12nを駆動した時に、検知コイル121
122〜12n間で相互インダクタンスが生じ、
i番目の検知コイル12iには1〜(i−1)、
(i+1)〜n番目の検知コイルに流れる各試験
周波数の励磁電流による誘導電圧が生じる。これ
をバンドパスフイルタ16iによつて取除くこと
により、試験周波数fiの成分についての位相検波
を行なうことが可能となり、検波出力Xi、Yi(i
=1、2、…n)を得る。これを各々増幅器18
X1,18Y1〜18Xo,18Yoにより予め求めら
れた比例定数倍してKiXi、liYiを得た後、加減
算器19により線形演算を行ないA=oi=1 (kiXi
+liYi)を求める。なお、 ki、liは標準サンプルより予め求めた比例定数
である。加減算器19で求めた演算結果は、ペン
レコーダ等の表示器20に波形表示される。
Each single frequency eddy current flaw detector 13 1 , 13 2 ~ 13n
are the oscillators 14 1 , 14 of each test frequency f 1 , f 2 to fn
Bridge circuits 15 1 , 15 2 -15n that balance the detection coils 12 1 , 12 2 -12n for each test frequency f 1 , f 2 , -fn, each test frequency f 1 , f 2 , Bandpass filter 1 that passes only ~fn
6 1 , 16 2 to 16n, and phase detector 17 1 , 1
7 2 to 17n. Each detection coil 12 1 ,
If 12 2 and 12n are wound on the same bobbin,
Even when the coils are moved, the arrangement parameters such as changes in the distance between the test material 11 and each of the detection coils 12 1 , 12 2 to 12n can be made the same, but the excitation current of each test frequency can be used to simultaneously Detection coil 12 1 , 1
When 2 2 to 12n are driven, the detection coils 12 1 ,
Mutual inductance occurs between 12 2 and 12n,
The i-th sensing coil 12i has 1 to (i-1),
An induced voltage is generated by the excitation current of each test frequency flowing through the (i+1) to n-th detection coils. By removing this with the bandpass filter 16i, it becomes possible to perform phase detection on the component of the test frequency fi, and the detection outputs Xi, Yi(i
=1, 2,...n). These are each connected to an amplifier 18.
After multiplying X 1 , 18Y 1 to 18X o , 18Y o by a proportional constant determined in advance to obtain KiXi, liYi, the adder/subtractor 19 performs a linear operation to obtain A= oi=1 (kiXi
+liYi). Note that ki and li are proportionality constants determined in advance from standard samples. The calculation result obtained by the adder/subtracter 19 is displayed in waveform on a display 20 such as a pen recorder.

上記実施例において、各ブリツジ回路15iの
出力は、バンドパスフイルタ16i、位相検波器
17iを通す代わりに、第6図に示すように発振
器14iが出力する正弦波信号sin2πfit、余弦波
信号cos2πfitと共に相関器21に入力することに
より、同様の機能を得ることができる。なお相関
器21は乗算器22Xi,22Yi及び積分器23
Xi,23Yiを有する。
In the above embodiment, the output of each bridge circuit 15i is correlated with the sine wave signal sin2πfit and cosine wave signal cos2πfit output from the oscillator 14i, as shown in FIG. 6, instead of passing through the bandpass filter 16i and the phase detector 17i. A similar function can be obtained by inputting the data into the device 21. Note that the correlator 21 includes multipliers 22Xi, 22Yi and an integrator 23.
Xi, 23Yi.

次に本発明方法を実現する他の実施例を第7図
に示す。これは、各試験周波数f1、f2…fn毎に設
けられた複数個の検知コイル121,122〜12
nに対して1台の周波数可変型の渦流探傷器24
を備え、切換タイミング発生器25からのタイミ
ングパルスによつて周波数可変発振器14の発振
周波数を順次切換えて行き、それに従つて信号切
換器26により所定の検知コイル121,122
12nにそれに対応する試験周波数f1、f2、…fn
を振り分けるようにしたものである。従つて、一
定時間間隔毎に順次異なる試験周波数f1、f2、…
fnに関しての位相検波出力が得られ、これを順次
サンプルホールド器27X1,27Y1,27X2
27Y2〜27Xo,27Yoでサンプルホールドす
ることにより、各試験周波数の検波出力X1、Y1
…Xo、Yoを得る。このサンプルホールド以降は
前述と同様である。なお渦流探傷器24は発振器
14、ブリツジ回路15及び位相検波器16を備
えて成る。
Next, another embodiment for realizing the method of the present invention is shown in FIG. This includes a plurality of detection coils 12 1 , 12 2 to 12 provided for each test frequency f 1 , f 2 . . . fn.
One variable frequency eddy current flaw detector 24 for n
The oscillation frequency of the variable frequency oscillator 14 is sequentially switched by the timing pulse from the switching timing generator 25, and the signal switching unit 26 accordingly switches between the predetermined detection coils 12 1 , 12 2 -
12n and the corresponding test frequencies f 1 , f 2 ,...fn
It is designed to distribute the . Therefore, different test frequencies f 1 , f 2 ,...
A phase detection output with respect to fn is obtained, which is sequentially passed through sample and hold units 27X 1 , 27Y 1 , 27X 2 ,
By sampling and holding at 27Y 2 to 27X o and 27Y o , the detection outputs of each test frequency X 1 , Y 1 ,
…Obtain X o and Y o . The process after this sample hold is the same as described above. The eddy current flaw detector 24 includes an oscillator 14, a bridge circuit 15, and a phase detector 16.

次に本発明を熱交換器単材の供用期間中検査に
適用した例について述べる。
Next, an example will be described in which the present invention is applied to the inspection of a single heat exchanger material during its service life.

被検材 …熱交換器 銅合金管 外径25.4mm
肉厚1.5mm 検出対象 …対面縦疵(人工欠陥、幅0.1mm
深さ0.3mm 長さ100mm) 雑音要因 …内面腐食 試験周波数…20KHz 100KHz 検知コイル…内挿形 自己比較 複数コイル
100KHzコイル(長さ54mm)の
外周に20KHzコイル(長さ50
mm)を同心状に巻回する。
Test material: Heat exchanger copper alloy tube outer diameter 25.4mm
Wall thickness: 1.5mm Detection target: vertical flaw (artificial defect, width: 0.1mm)
(Depth 0.3mm Length 100mm) Noise factor…Internal corrosion Test frequency…20KHz 100KHz Detection coil…Interpolation type Self-comparison Multiple coils
A 20KHz coil (length 50mm) is placed around the outer circumference of a 100KHz coil (length 54mm).
mm) concentrically.

探傷器は、第8図に示すように20KHz用と
100KHz用との単一周波渦流探傷器13a,13
bを夫々使用する。この場合、例えば20KHz側の
検知コイル12aには、同居する100KHz側の検
知コイル12bから相互インダクタンスによつて
100KHz成分が誘導されるので、ブリツジ出力信
号を20KHzバンドパスフイルタ16aに通して
100KHz成分を除去し、20KHz成分の変化した振
幅、位相を各々増幅器28a及び移相器29aに
より調整し、位相検波器16aに入力する。
100KHz側も同様である。位相検波出力の内、こ
こではY20、Y100を用いて、k20Y20+k100Y100
演算を加減算器19により行ない、その結果をペ
ンレコーダ等の表示器20に入力して演算波形を
表示する。
The flaw detector is for 20KHz as shown in Figure 8.
Single frequency eddy current flaw detector 13a, 13 for 100KHz
Use b respectively. In this case, for example, the detection coil 12a on the 20KHz side is connected to the detection coil 12b on the 100KHz side due to mutual inductance.
Since a 100KHz component is induced, the bridge output signal is passed through a 20KHz bandpass filter 16a.
The 100 KHz component is removed, and the changed amplitude and phase of the 20 KHz component are adjusted by the amplifier 28a and phase shifter 29a, respectively, and input to the phase detector 16a.
The same goes for the 100KHz side. Of the phase detection outputs, Y 20 and Y 100 are used here to calculate k 20 Y 20 +k 100 Y 100 using an adder/subtractor 19, and the result is input to a display 20 such as a pen recorder to display the calculated waveform. Display.

20KHz、100KHzの各々の探傷器13a,13
bの位相を検知コイル12a,12bのガタ成分
が水平になるように調整することによつて、各々
のY信号にはガタ成分は含まれなくなる。そこ
で、各々のY信号(Y20、Y100)を観察すると、
第9図にも示すように20KHzのY信号aにも
100KHzのY信号bにも内面腐食による大きな変
動が見られ、外面の人工欠陥は20KHzのY信号a
中にも埋もれている。従つて、k20Y20+K100Y100
(k20、k100は予め求める定数)を演算すると、一
番上の信号cのように人工欠陥部dが現出する。
20KHz and 100KHz flaw detectors 13a and 13, respectively
By adjusting the phase of b so that the backlash component of the detection coils 12a and 12b becomes horizontal, each Y signal no longer contains the backlash component. Therefore, when observing each Y signal (Y 20 , Y 100 ),
As shown in Figure 9, the 20KHz Y signal a also
Large fluctuations due to internal corrosion are also seen in the 100 KHz Y signal b, and artificial defects on the external surface are caused by the 20 KHz Y signal a.
It's also buried inside. Therefore, k 20 Y 20 +K 100 Y 100
When (k 20 and k 100 are constants determined in advance), an artificial defect portion d appears as shown in the top signal c.

一方、従来の2周波渦流法のようにミキシング
方式等にて単一コイルにより同様の解析を行なつ
た場合、本発明のように100KHzの検知コイル1
2bを20KHzの検知コイル12aより若干長くす
ることが原理的にできないため、第10図に示す
ように100KHzのY信号bは腐食成分の感じ方が
20KHzのY信号aと異なつている。腐食成分によ
る寄与は、本来、非常に大きいため、信号波形の
傾きの大きい部分での信号幅の若干の差が、演算
の結果、大きな疑似信号を生じて終うことにな
る。
On the other hand, when a similar analysis is performed using a single coil using a mixing method as in the conventional two-frequency eddy current method, the 100KHz sensing coil 1
2b cannot be made slightly longer than the 20KHz detection coil 12a, so as shown in Figure 10, the 100KHz Y signal b is sensitive to corrosion components.
It is different from the 20KHz Y signal a. Since the contribution of corrosion components is originally very large, a slight difference in signal width in a portion where the slope of the signal waveform is large will result in a large spurious signal as a result of calculation.

第11図は本発明による別の解析例を示す。こ
の例は、幅0.1mm、深さ0.5mm、長さ100mmの人工
欠陥を含むサンプルについてのものである。
FIG. 11 shows another example of analysis according to the present invention. This example is for a sample containing an artificial defect with a width of 0.1 mm, a depth of 0.5 mm, and a length of 100 mm.

例えば、第12図に示すように無欠陥のステン
レス製管材30の内周面に深さ0.5mmのスリツト
31を形成し、これを、除去すべき内面腐食とし
て内挿型標準比較法で探傷する場合、ステンレス
は比抵抗70μΩ・cmの非磁性体であるため、その
時の渦電流の浸透深さδは、次のようになる。
For example, as shown in Fig. 12, a slit 31 with a depth of 0.5 mm is formed on the inner circumferential surface of a defect-free stainless steel pipe material 30, and this is detected by the interpolation type standard comparison method as internal corrosion to be removed. In this case, since stainless steel is a non-magnetic material with a specific resistance of 70 μΩ·cm, the penetration depth δ of the eddy current at that time is as follows.

f=5KHzの時 δ=6.0mm f=10KHzの時 δ=4.2mm f=100KHzの時 δ=1.3mm 従つて、外面疵を検出するために5KHzを採用
し、内面雑音を除去するために100KHzを採用し
て、これらを組合せれば良い。
When f=5KHz δ=6.0mm When f=10KHz δ=4.2mm When f=100KHz δ=1.3mm Therefore, 5KHz is adopted to detect external flaws, and 100KHz is adopted to remove internal noise. You can use these and combine them.

試験周波数5KHzと100KHzでスリツト31を探
傷した時の信号波形は、第13図A,Bに示す通
りである。但し、コイル長は30mmで同一である。
これより判るように、周波数比が大きくなつてく
ると、信号巾がかなり異なり、高周波側で狭くな
る。そこで、高周波側のコイル長を低周波側に比
べて若干長くすると、同図cに示すようになり、
低周波側の信号巾と合わせることができる。この
場合、100KHz側を5mm長くすれば良い。
The signal waveforms when the slit 31 was inspected at test frequencies of 5 KHz and 100 KHz are as shown in FIGS. 13A and 13B. However, the coil length is the same at 30mm.
As can be seen from this, as the frequency ratio increases, the signal width varies considerably and becomes narrower on the high frequency side. Therefore, by making the coil length on the high frequency side slightly longer than that on the low frequency side, the result will be as shown in Figure c.
It can be matched with the signal width on the low frequency side. In this case, just lengthen the 100KHz side by 5mm.

以上実施例に詳述したように本発明方法では、
異なる試験周波数の励磁電流が印加される検知コ
イルを該各励磁電流に対応して複数個用い、該各
励磁電流によつて被検材の表面に発生する各渦電
流の応答範囲が略等しくなるように、各試験周波
数に応じて各検知コイルのコイル長、コイル径、
巻数等の条件を定めておき、探傷時に、各検知コ
イルに該検知コイルに対応する各励磁電流を夫々
印加し、該各検知コイルに接続された単一周波数
探傷器からの出力の差を求め、この異なる試験周
波数間での雑音要因を除去するので、本来、S/
Nの改善等の効果をもたらすべき演算によつて疑
似信号が発生することはなく、探傷精度の向上が
可能である。
As detailed in the examples above, in the method of the present invention,
A plurality of sensing coils to which excitation currents of different test frequencies are applied are used corresponding to each excitation current, and the response ranges of each eddy current generated on the surface of the test material are approximately equal due to each excitation current. According to each test frequency, the coil length, coil diameter,
Conditions such as the number of turns are determined, and during flaw detection, each excitation current corresponding to the detection coil is applied to each detection coil, and the difference in output from the single frequency flaw detector connected to each detection coil is determined. , since this noise factor between different test frequencies is removed, S/
Pseudo signals are not generated due to calculations that should bring about effects such as improvement of N, and flaw detection accuracy can be improved.

本発明装置では、異なる試験周波数の励磁電流
が別々に印加され、かつ該励磁電流によつて被検
材の表面に発生する渦電流の応答範囲が略等しく
なるように、各試験周波数に応じてコイル長、コ
イル径、巻数等の条件が定められた検知コイルを
各励磁電流に対応して複数個設けると共に、各検
知コイルに接続された複数個の単一周波数探傷器
と、該各探傷器からの位相検波出力の差を求める
解析手段と、該解析手段からの解析結果を表示す
る表示手段とを備え、前記各探傷器には各検知コ
イルに対応する特定の試験周波数のみ通過させる
バンドパスフイルタ又は試験周波数毎の相関器を
設け異なる各試験周波数に対応して複数個の検知
コイルを備えているので、各試験周波数毎に最適
のコイル設計が可能であり、高感度の探傷が可能
である。また検知コイルが複数固であるため、ブ
リツジ回路も独立して複数個設けることができ、
各試験周波数毎に独立してバランスをとることが
できる。しかも、任意の試験周波数を組合せても
バランスが可能であるから、任意深さでの探傷が
可能である。
In the apparatus of the present invention, excitation currents of different test frequencies are applied separately, and the excitation currents are applied according to each test frequency so that the response ranges of eddy currents generated on the surface of the test material by the excitation currents are approximately equal. A plurality of detection coils with fixed conditions such as coil length, coil diameter, number of turns, etc. are provided corresponding to each excitation current, and a plurality of single frequency flaw detectors connected to each detection coil, and each of the flaw detectors. and a display means for displaying the analysis results from the analysis means. Since it is equipped with a filter or correlator for each test frequency and multiple detection coils corresponding to each different test frequency, it is possible to design the optimum coil for each test frequency, and high-sensitivity flaw detection is possible. be. In addition, since multiple detection coils are installed, multiple bridge circuits can be installed independently.
Each test frequency can be balanced independently. Furthermore, since balance is possible by combining arbitrary test frequencies, flaw detection can be performed at arbitrary depths.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来例を示すブロツク図、
第3図は同説明図、第4図は同波形図、第5図は
本発明の一実施例を示すブロツク図、第6図及び
第7図は他の実施例を示すブロツク図、第8図は
本発明の適用例を示すブロツク図、第9図及び第
11図は本発明の信号解析例を示す図、第10図
は従来の信号解析例を示す図、第12図は実験用
の説明図、第13図はその波形図である。 11…被検材、12…検知コイル、13…単一
周波渦流探傷器、14…発振器、15…ブリツジ
回路、16…位相検波器、19…加減算器、20
…表示器、21…相関器、26…信号切換器。
Figures 1 and 2 are block diagrams showing conventional examples;
3 is an explanatory diagram of the same, FIG. 4 is a waveform diagram of the same, FIG. 5 is a block diagram showing one embodiment of the present invention, FIGS. 6 and 7 are block diagrams showing other embodiments, and FIG. The figure is a block diagram showing an example of application of the present invention, Figures 9 and 11 are diagrams showing an example of signal analysis of the present invention, Figure 10 is a diagram showing an example of conventional signal analysis, and Figure 12 is a diagram showing an example of signal analysis of the present invention. The explanatory diagram, FIG. 13, is a waveform diagram thereof. DESCRIPTION OF SYMBOLS 11... Test material, 12... Detection coil, 13... Single frequency eddy current flaw detector, 14... Oscillator, 15... Bridge circuit, 16... Phase detector, 19... Adder/subtractor, 20
...Indicator, 21...Correlator, 26...Signal switch.

Claims (1)

【特許請求の範囲】 1 検知コイルに複数種類の異なる試験周波数の
励磁電流を印加し、被検材に渦電流を夫々発生さ
せて欠陥を検出する多重周波数渦流探傷法におい
て、異なる試験周波数の励磁電流が印加される検
知コイルを該各励磁電流に対応して複数個用い、
該各励磁電流によつて被検材の表面に発生する各
渦電流の応答範囲が略等しくなるように、各試験
周波数に応じて各検知コイルのコイル長、コイル
径、巻数等の条件を定めておき、探傷時に、各検
知コイルに該各検知コイルに対応する励磁電流を
夫々印加し、該各検知コイルに接続された単一周
波数探傷器からの出力の差を求め、異なる試験周
波数間での雑音要因を除去することを特徴とする
複数コイル方式による多重周波数渦流探傷法。 2 検知コイルに複数種類の異なる試験周波数の
励磁電流を印加し、被検材に渦電流を夫々発生さ
せて欠陥を検出する多重周波数渦流探傷装置にお
いて、異なる試験周波数の励磁電流が別々に印加
され、かつ該励磁電流によつて被検材の表面に発
生する渦電流の応答範囲が略等しくなるように、
各試験周波数に応じてコイル長、コイル径、巻数
等の条件が定められた検知コイルを各励磁電流に
対応して複数個設けると共に、各検知コイルに接
続された複数個の単一周波数探傷器と、該各探傷
器からの位相検波出力の差を求める解析手段と、
該解析手段からの解析結果を表示する表示手段と
を備え、前記各探傷器には各検知コイルに対応す
る特定の試験周波数のみ通過させるバンドパスフ
イルタ又は試験周波数毎の相関器を設けたことを
特徴とする多重周波数渦流探傷装置。
[Scope of Claims] 1 In the multi-frequency eddy current flaw detection method in which a plurality of excitation currents with different test frequencies are applied to a detection coil and eddy currents are generated in the test material to detect defects, excitation currents with different test frequencies are used. A plurality of detection coils to which current is applied are used in correspondence with each of the excitation currents,
Conditions such as the coil length, coil diameter, and number of turns of each detection coil are determined according to each test frequency so that the response range of each eddy current generated on the surface of the test material by each excitation current is approximately equal. Then, during flaw detection, apply an excitation current corresponding to each detection coil to each detection coil, find the difference in output from the single frequency flaw detector connected to each detection coil, and calculate the difference between the different test frequencies. A multi-frequency eddy current flaw detection method using a multiple coil method, which is characterized by the removal of noise factors. 2. In a multi-frequency eddy current flaw detection device that detects defects by applying multiple types of excitation currents with different test frequencies to the detection coil and generating eddy currents in the test material, the excitation currents with different test frequencies are applied separately. , and so that the response ranges of eddy currents generated on the surface of the test material by the excitation current are approximately equal,
A plurality of detection coils with conditions such as coil length, coil diameter, number of turns, etc. determined according to each test frequency are provided corresponding to each excitation current, and a plurality of single frequency flaw detectors are connected to each detection coil. and analysis means for determining the difference in phase detection output from each of the flaw detectors,
and a display means for displaying the analysis results from the analysis means, and each of the flaw detectors is provided with a bandpass filter or a correlator for each test frequency that passes only a specific test frequency corresponding to each detection coil. Features multi-frequency eddy current flaw detection equipment.
JP56091156A 1981-06-12 1981-06-12 Multifrequency eddy current flaw detection method and apparatus by multiple coil system Granted JPS5817353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56091156A JPS5817353A (en) 1981-06-12 1981-06-12 Multifrequency eddy current flaw detection method and apparatus by multiple coil system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56091156A JPS5817353A (en) 1981-06-12 1981-06-12 Multifrequency eddy current flaw detection method and apparatus by multiple coil system

Publications (2)

Publication Number Publication Date
JPS5817353A JPS5817353A (en) 1983-02-01
JPS6314905B2 true JPS6314905B2 (en) 1988-04-02

Family

ID=14018642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56091156A Granted JPS5817353A (en) 1981-06-12 1981-06-12 Multifrequency eddy current flaw detection method and apparatus by multiple coil system

Country Status (1)

Country Link
JP (1) JPS5817353A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131287A (en) * 1998-10-23 2000-05-12 Japan Science & Technology Corp Method and device for detecting flaw using magnetic measurement

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108955A (en) * 1982-12-13 1984-06-23 Nippon Steel Corp Multiprobe-coil multifrequency eddy current type flaw detector
JPS59166857A (en) * 1983-03-11 1984-09-20 Nippon Steel Corp Signal processing circuit of multi-probe and multi-frequency eddy current test equipment
JPS59176664A (en) * 1983-03-28 1984-10-06 Mitsubishi Heavy Ind Ltd Flaw detector and analyzer using multifrequency eddy current
JPS6273158A (en) * 1985-09-27 1987-04-03 Daizaburo Iwasaki Signal processing method and apparatus in eddy current flaw detection test
SE456863B (en) * 1986-07-15 1988-11-07 Toernbloms Kvalitetskontroll MEASURING AND / OR CONTROL DEVICE Utilizing vortex flow technology with suppression of benign surface deformations
SE451886B (en) * 1986-10-10 1987-11-02 Sten Linder SET AND DEVICE FOR SOUND-FREE SEAT OF SIZES OF OR CONNECTED TO ELECTRICALLY CONDUCTIVE MATERIAL
JPH0348152A (en) * 1989-04-17 1991-03-01 Idemitsu Eng Co Ltd Eddy current flaw inspection and manufacture of reference sample therefor
US5068608A (en) * 1989-10-30 1991-11-26 Westinghouse Electric Corp. Multiple coil eddy current probe system and method for determining the length of a discontinuity
US5049817A (en) * 1990-06-08 1991-09-17 Atomic Energy Of Canada Limited Eddy current probe, incorporating multi-bracelets of different pancake coil diameters, for detecting internal defects in ferromagnetic tubes
US11710489B2 (en) 2004-06-14 2023-07-25 Wanda Papadimitriou Autonomous material evaluation system and method
US11680867B2 (en) 2004-06-14 2023-06-20 Wanda Papadimitriou Stress engineering assessment of risers and riser strings
FR2904693B1 (en) * 2006-08-03 2008-10-24 Commissariat Energie Atomique FOUCAULT CURRENT CONTROL DEVICE WITH SEPARATE TRANSMIT / RECEIVE FUNCTIONS OF AN ELECTRICALLY CONDUCTIVE PIECE
CN107422028B (en) * 2017-04-20 2021-01-05 北京昊鹏智能技术有限公司 Distributed structure health monitoring system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131287A (en) * 1998-10-23 2000-05-12 Japan Science & Technology Corp Method and device for detecting flaw using magnetic measurement

Also Published As

Publication number Publication date
JPS5817353A (en) 1983-02-01

Similar Documents

Publication Publication Date Title
KR100218653B1 (en) Electronic induced type test apparatus
US4107605A (en) Eddy current flaw detector utilizing plural sets of four planar coils, with the plural sets disposed in a common bridge
EP0107844B1 (en) Eddy-current defect-detecting system for metal tubes
US3693075A (en) Eddy current system for testing tubes for defects,eccentricity,and wall thickness
JP4756409B1 (en) Nondestructive inspection apparatus and nondestructive inspection method using alternating magnetic field
JP5383597B2 (en) Eddy current inspection apparatus and inspection method
JPS6314905B2 (en)
Janousek et al. Novel insight into swept frequency eddy-current non-destructive evaluation of material defects
US4061968A (en) Process of and apparatus for non-destructive eddy current testing involves the suppression of displayed lobes corresponding to fault parameters to be eliminated from the display
GB2527835A (en) Apparatus and circuit
Dmitriev et al. Non-destructive testing of Al-Mg alloys by using the eddy-current method
JPH0989843A (en) Method and apparatus for eddy current flaw detection
Singh et al. Thickness evaluation of aluminium plate using pulsed eddy current technique
RU2694428C1 (en) Measuring line of eddy-current flaw detector for pipes inspection
US10775347B2 (en) Material inspection using eddy currents
JP2798199B2 (en) Noise Removal Method in Eddy Current Testing
EP1877767A2 (en) Near fieldtm and combination near fieldtm - remote field electromagnetic testing (et) probes for inspecting ferromagnetic pipes and tubes such as those used in heat exchangers
EP0049951A2 (en) Device and method for measuring carburization in furnace tubes
JPH09274018A (en) Method and apparatus for detecting flaw of magnetic metal element
CA1124328A (en) Multifrequency eddy current testing device
JPH0980028A (en) Method and apparatus for multiple frequency eddy current flaw detection by single exciting coil system
RU2818648C1 (en) Device for determining homogeneity of mechanical properties of articles made from ferromagnetic materials and detecting zones with abnormal hardness therein
KR102283396B1 (en) Sensor Probe tesing System for Eddy Current Nondestructive Testing
JPH09166582A (en) Electromagnetic flaw detection method
KR101173760B1 (en) Detection method of eddy current signal of small amplitude