JPH0348152A - Eddy current flaw inspection and manufacture of reference sample therefor - Google Patents

Eddy current flaw inspection and manufacture of reference sample therefor

Info

Publication number
JPH0348152A
JPH0348152A JP1285400A JP28540089A JPH0348152A JP H0348152 A JPH0348152 A JP H0348152A JP 1285400 A JP1285400 A JP 1285400A JP 28540089 A JP28540089 A JP 28540089A JP H0348152 A JPH0348152 A JP H0348152A
Authority
JP
Japan
Prior art keywords
flaw detection
detection signal
eddy current
magnetic field
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1285400A
Other languages
Japanese (ja)
Inventor
Ikuo Imataki
今滝 郁雄
Seiji Yamaoka
山岡 誠治
Osamu Ishikawa
修 石川
Yoshibumi Yamada
義文 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIKKO KENSA SERVICE KK
Idemitsu Engineering Co Ltd
Original Assignee
NIKKO KENSA SERVICE KK
Idemitsu Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIKKO KENSA SERVICE KK, Idemitsu Engineering Co Ltd filed Critical NIKKO KENSA SERVICE KK
Priority to JP1285400A priority Critical patent/JPH0348152A/en
Publication of JPH0348152A publication Critical patent/JPH0348152A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To accurately decide the internal flaw of an object to be inspected by comparing the reference flaw detection signal related to a reference sample having a know flaw and the actual flaw detection signal of the object to be inspected. CONSTITUTION:Two kinds of eddy current flaw detections are performed with respect to a reference sample 1A having a known flaw. At first, an inspection device 10 is adjusted to pass, for example, a current with frequency of 400kHz through a coil 12 and the coil is sent into a reference pipe 1A and the first flaw detection signal 21 outputted from the inspection apparatus 10 is obtained. Next, for example, a current with frequency of 200kHz is mixed with the current with frequency of 400kHz and both currents are allowed to pass through the coil 12 to obtain the second flaw detection signal 22. By mixing the flaw detection signals 21, 22 in a reverse phase, the third flaw detection signal 23 is synthesized to be set to an actual flaw detection signal 26. Next, the same operation is applied to a pipe 1 being an actual object to be inspected to obtain an actual flaw detection signal 36. By comparing the actual flaw detection signals 26, 36, the internal flaw of the pipe 1 can be decided accurately.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、検査対象の表面欠陥等を渦電流により検査す
る渦流探傷検査法および渦流探傷検査用基準試料の製作
方法に係り、磁性材料に非磁性メツキを行った材料の内
外表面の製造時非破壊検査並びに既設の構造物や配管類
の使用中の内外表面非破壊検査などに利用できる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an eddy current flaw detection method for inspecting surface defects, etc. of an object to be inspected using eddy current, and a method for manufacturing a reference sample for eddy current flaw detection, and is applicable to magnetic materials. It can be used for non-destructive inspection of the inner and outer surfaces of non-magnetic plated materials during manufacturing, as well as for non-destructive inspection of the inner and outer surfaces of existing structures and piping while they are in use.

〔背景技術〕[Background technology]

従来より、渦流探傷検査法は、構造物や配管類の非破壊
検査方法として利用されている。特に、他の非破壊検査
方法に比べて検査作業が簡単かつ安価にできることから
、全品検査に最適であり、信頼性が要求される部品等の
製造時検査あるいは使用状態での保守点検等に多用され
ている。
Eddy current testing has conventionally been used as a non-destructive testing method for structures and piping. In particular, since the inspection work is simpler and cheaper than other non-destructive inspection methods, it is ideal for whole-product inspection, and is often used for inspection during manufacturing of parts that require reliability, or for maintenance inspections during use. has been done.

二の渦流探傷検査法は、変動磁界中におかれた導体には
渦電流が発生し、この渦電流が導体内部の欠損や亀裂等
の不連続部分に応じて特有の乱れを生じる現象を利用す
るものである。具体的な検査にあたりでは、例えば励磁
コイルを検査対象の所定部位に近接配置して交流を通し
、当該部位に交流磁界を加えて渦電流を発生させるとと
もに、渦電流に起因する磁界に応じた励磁コイルのイン
ピーダンス変化によって渦電流に対応した探傷信号を検
出する。ここで得られた探傷信号は、一般にX4直交座
標でグラフ化され、欠陥に対応する信号の乱れは略8の
字状の軌跡となって表れる。
The second eddy current inspection method utilizes the phenomenon that eddy currents are generated in a conductor placed in a fluctuating magnetic field, and that these eddy currents cause unique disturbances depending on discontinuities such as defects and cracks inside the conductor. It is something to do. For specific inspections, for example, an excitation coil is placed close to a predetermined part of the object to be inspected and an alternating current is passed through it, an alternating magnetic field is applied to the part to generate eddy currents, and excitation is performed in response to the magnetic field caused by the eddy current. A flaw detection signal corresponding to eddy current is detected by changing the impedance of the coil. The flaw detection signal obtained here is generally graphed using X4 orthogonal coordinates, and the disturbance in the signal corresponding to the defect appears as a substantially figure-8-shaped locus.

従って、この軌跡の形態や大きさに基づいて検査対象の
内部欠陥の形態や大きさ等を判定することができる。
Therefore, the form, size, etc. of the internal defect to be inspected can be determined based on the form and size of this trajectory.

ところで、強磁性体である鋼材に対して渦流探傷検査を
行う場合、検査対象の磁気不均一による磁界の乱れが雑
音として拾われてしまい、所期の渦電流が正確に検出で
きなくなることがある。このような磁気雑音を除去する
手段として直流磁気飽和法が採用されている。この方法
は、励磁コイルから加える交流磁界に適当な直流成分を
加えてバイアスをかけることにより、検査対象の磁気不
均一を整えて渦電流の検出時の雑音を低減することがで
きる。このため、磁気雑音の大きな検査対象に対して渦
流探傷検査法を行う場合、直流磁気飽和を併用すること
が行われている。
By the way, when performing eddy current testing on steel, which is a ferromagnetic material, disturbances in the magnetic field due to magnetic non-uniformity in the test object may be picked up as noise, making it impossible to accurately detect the desired eddy current. . A direct current magnetic saturation method is employed as a means to remove such magnetic noise. In this method, by applying a bias by adding an appropriate DC component to the AC magnetic field applied from the excitation coil, it is possible to correct magnetic non-uniformity in the object to be inspected and reduce noise during detection of eddy currents. For this reason, when performing the eddy current flaw detection method on an inspection object with large magnetic noise, DC magnetic saturation is also used.

(発明が解決しようとする課題) 前述のような渦流探傷検査法の対象となる配管類は、鉄
製などが一般的であるが、近年では耐蝕性などを向上す
るために表面に溶融アルミニウム等をメツキしたアルミ
ナイズド鋼などが利用されるようになっている。
(Problem to be solved by the invention) Pipes that are subject to the above-mentioned eddy current inspection method are generally made of steel, but in recent years, molten aluminum or the like has been coated on the surface to improve corrosion resistance. Metals such as plated aluminized steel are now being used.

ところが、このようなアルミナイズド鋼においては、表
面に形成されたアルミニウム被膜が非磁性体であり、磁
界の直流成分を遮蔽してしまい、前述した直流磁気飽和
による雑音除去が有効に作用しないという問題があった
。一方、アルミニウムで被覆された鋼材は強磁性体であ
り、磁気不均一による6n気的雑音が顕著であり、直流
るR気飽和を併用しないで渦流探傷検査法を利用した非
破壊検査を行うことが困難であった。
However, in such aluminized steel, the aluminum coating formed on the surface is a non-magnetic material and blocks the DC component of the magnetic field, resulting in the problem that the noise removal by DC magnetic saturation described above does not work effectively. was there. On the other hand, steel coated with aluminum is a ferromagnetic material, and 6N air noise due to magnetic inhomogeneity is noticeable, so it is difficult to perform non-destructive testing using eddy current testing without using direct current R air saturation. was difficult.

このため、アルミナイズド銅製品のアルミ)容融浴後の
製造時検査や、アルミナイズド鋼を使用した部分の保守
点検においては、抜き取りによる内部検査、放射線透過
画像検査など他の手段により使用状態での非破壊検査、
あるいは検査なしの定期的な全品交換といった対応がな
されているのが現状である。
For this reason, during manufacturing inspections of aluminized copper products after the aluminum molten bath and maintenance inspections of parts using aluminized steel, other methods such as internal inspections by sampling and radiographic image inspections are used to inspect the products in use. non-destructive testing,
Alternatively, the current situation is that all products are regularly replaced without inspection.

ところが、抜き取りにより内部検査では全品検査ではな
いため、検査を漏れて欠陥を生じた部品が継続使用され
る恐れがあり、危険物や高温流体を扱うプラントの配管
等、信頼性が重視される部分に対しては適′用できない
。また、放射線透過などの他の非破壊検査は、作業が煩
雑なうえ検査コストの高騰が避けられない、さらに、全
品交換では経済的な負担の増大が避けられないうえ、良
品までをも無条件で交換することになるという問題があ
った。従って、検査効率および信頼性が高(かつ経済的
な渦流探傷検査法をアルミナイズド綱製品等にも適用で
きるようにする技術の開発が求められていた。
However, because internal inspections do not involve inspecting all parts due to sampling, there is a risk that parts that fail inspection and have defects may continue to be used, and this is a problem in parts where reliability is important, such as piping in plants that handle hazardous materials and high-temperature fluids. It cannot be applied to. In addition, other non-destructive inspections such as radiographic inspection are complicated and inevitably increase inspection costs.Furthermore, replacing all products inevitably increases the economic burden, and even non-defective products cannot be unconditionally inspected. There was a problem that I had to replace it. Therefore, there has been a demand for the development of a technology that enables the application of an economical eddy current flaw detection method with high inspection efficiency and reliability to aluminized steel products and the like.

本発明の目的は、検査時の磁気的雑音の影響を受けに<
<、常に正確で確実な検査結果が得られる渦流探傷検査
法お−よびこの検査に用いる基準試料の製作方法を提供
することにある。
The purpose of the present invention is to reduce the influence of magnetic noise during inspection.
The object of the present invention is to provide an eddy current flaw detection inspection method that always provides accurate and reliable inspection results, and a method for manufacturing a reference sample used in this inspection.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の渦流探傷検査法は、所定周波数の第一の磁界を
対象物に加え、当該磁界による渦電流を検出して第一の
探傷信号を発生するとともに、周波数が第一の磁界と略
整数比をなす第二の磁界またはこの第二の磁界と第一の
磁界との混合磁界の何れかを対象物に加え、当該磁界に
よる渦電流を検出して第二の探傷信号を発生し、得られ
た第一および第二の探傷信号を互いの雑音成分が相殺さ
れるように合成して第三の探傷信号を発生するという検
査手順を用い、 既知の欠陥を存する基準試料を対象物として前記検査手
順を適用し、得られた第三の探傷信号を基準探傷信号と
するとともに、 実際の検査対象を対象物として前記検査手順を適用し、
得られた第三の探傷信号を実探傷信号とし、この実探傷
信号を前記基準探傷信号ど対比することにより検査対象
の内部欠陥を判定する、という構成を採用したものであ
る。
The eddy current flaw detection inspection method of the present invention applies a first magnetic field of a predetermined frequency to a target object, detects an eddy current caused by the magnetic field, and generates a first flaw detection signal, and the frequency is approximately an integer with the first magnetic field. Either a second magnetic field having a ratio or a mixed magnetic field of the second magnetic field and the first magnetic field is applied to the object, and an eddy current caused by the magnetic field is detected to generate a second flaw detection signal. Using an inspection procedure in which a third flaw detection signal is generated by combining the first and second flaw detection signals so that their noise components cancel each other out, Applying the inspection procedure, using the obtained third flaw detection signal as a reference flaw detection signal, and applying the above inspection procedure using the actual inspection target as the object,
The obtained third flaw detection signal is used as an actual flaw detection signal, and by comparing this actual flaw detection signal with the reference flaw detection signal, etc., an internal defect in the object to be inspected is determined.

ここで、本発明の渦流探傷検査法を具体化するにあたっ
て、前記検査手順を実行する際の装置構成としては、通
常の渦流探傷検査法と同様のものがそのまま利用できる
Here, in embodying the eddy current flaw detection inspection method of the present invention, the same equipment configuration as the normal eddy current flaw detection method can be used as is when executing the above inspection procedure.

また、前記検査手順において、第二の探傷信号を得るた
めの磁界に第二の磁界をそのまま用いる場合には、第一
および第二の探傷信号を合成した際に互いの成分゛どう
しが相殺しあい、第三の探傷信号として一方の探傷信号
の基本振動成分等が残されるようにすることが好ましい
In addition, in the above inspection procedure, when the second magnetic field is used as it is for obtaining the second flaw detection signal, when the first and second flaw detection signals are combined, their components cancel each other out. It is preferable that the fundamental vibration components of one of the flaw detection signals be left as the third flaw detection signal.

従って、第二の磁界の周波数としては、第一の磁界の周
波数の2倍、3倍ないし整数倍程度、あるいは1/2.
1/3ないし整数分の1程度となるような設定、すなわ
ち一方が他方の高調波成分となるような設定にすること
が好ましい。
Therefore, the frequency of the second magnetic field is about twice, three times, or an integral multiple of the frequency of the first magnetic field, or 1/2.
It is preferable to set it so that it is about 1/3 or a fraction of an integer, that is, one becomes a harmonic component of the other.

さらに、前記検査手順において、第二の探傷信号を得る
ための磁界に第一の磁界と第二の磁界との混合磁界を用
いる場合には、第一および第二の探傷信号を合成した際
に各信号の第一の磁界に対応する成分どうしが相殺しあ
い、第三の探傷信号として第二の磁界に対応する成分が
そのまま残されるようにすればよい。
Furthermore, in the above inspection procedure, when a mixed magnetic field of the first magnetic field and the second magnetic field is used as the magnetic field for obtaining the second flaw detection signal, when the first and second flaw detection signals are combined, The components of each signal corresponding to the first magnetic field may cancel each other out, and the component corresponding to the second magnetic field may be left as is as the third flaw detection signal.

従って、第二の磁界の周波数としては、第一の磁界の周
波数の2倍、3倍ないし整数倍程度、あるいはl/、2
.1/3ないし整数分の1程度となるものを含む任意の
ものが利用できる。ここで、第一および第二の磁界が共
通の倍音系列である場合には、第一の磁界の成分を相殺
する際に第二の磁界の成分が影響を受けることがある。
Therefore, the frequency of the second magnetic field is about twice, three times, or an integral multiple of the frequency of the first magnetic field, or l/, 2
.. Any one can be used, including one that is approximately 1/3 to one fraction of an integer. Here, if the first and second magnetic fields have a common overtone series, the component of the second magnetic field may be affected when canceling the component of the first magnetic field.

このような場合には、第一および第二の磁界の波動を高
調波の少ない正弦波等にすればよい。また、互いの周波
数が不規則な関係であると、第3の探傷信号の合成時に
変調歪み等を生じる場合がある。このため、第二の磁界
の周波数としては、第一の磁界の周波数に対して2:3
.3:4 などの整数比となるように設定してもよい。
In such a case, the waves of the first and second magnetic fields may be made into a sine wave or the like with few harmonics. Furthermore, if the frequencies are in an irregular relationship, modulation distortion or the like may occur during synthesis of the third flaw detection signal. Therefore, the frequency of the second magnetic field is 2:3 with respect to the frequency of the first magnetic field.
.. It may be set to an integer ratio such as 3:4.

また、基準探傷信号と実探傷信号との対比にあたっては
、基準探傷信号において探傷信号の軌跡の方向が、例え
ば通常の渦流探傷検査法に利用される位相角模式図のY
座標軸方向などに一致するように回転させる基準位相角
を設定し、この基準位相角に応じて実探傷信号における
軌跡の位相調整を行い、最終的に得られる軌跡に基づい
て欠陥の形態や大きさ等を判定する等の手法が利用でき
る。
In addition, when comparing the reference flaw detection signal and the actual flaw detection signal, it should be noted that the direction of the trajectory of the flaw detection signal in the reference flaw detection signal is, for example, Y
Set a reference phase angle for rotation to match the coordinate axis direction, adjust the phase of the trajectory in the actual flaw detection signal according to this reference phase angle, and determine the shape and size of the defect based on the final trajectory. Methods such as determining the following can be used.

一方、基準試料としては、欠陥の形態、深さや幅などが
明らかであり、かつ当該既知の欠陥以外は実際の検査対
象と同様であるものを利用すればよい。例えば、実際の
検査対象と同様の材質形状のものを用い、その一部に所
定の形状および寸法の人工欠陥を形成し、特に欠陥の形
態および寸法等について各種のものを製作しておけば検
査精度を向上できる。
On the other hand, as the reference sample, one may be used that has a clear defect shape, depth, width, etc., and is similar to the actual inspection target except for the known defect. For example, if a material with the same shape and shape as the actual inspection target is used, and an artificial defect of a predetermined shape and size is formed on a part of the material, and various types are manufactured with particular regard to the shape and size of the defect, inspection can be carried out. Accuracy can be improved.

ところで、基準試料の製作にあたっては、金属材料に所
定の人工欠陥を正確に形成する必要がある。しかし、微
小な放電溶融を行う放電加工では製作コストが高く、実
際の利用に適さない。一方、通常の金属加工に多用され
る旋盤やフライス盤による機械加工では精度良く加工す
ることが難しく、特に薄肉のものでは基材が変形しやす
く加工が困難である。
By the way, in manufacturing a reference sample, it is necessary to accurately form a predetermined artificial defect in a metal material. However, electric discharge machining, which performs minute electric discharge melting, is expensive to manufacture and is not suitable for actual use. On the other hand, machining using a lathe or milling machine, which is often used in ordinary metal processing, is difficult to process with high precision, and in particular, in the case of thin-walled materials, the base material tends to deform and processing is difficult.

このため、本発明の渦流探傷検査用基準試料の製作方法
は、表面を所定の被覆材料で被覆された金属材料を電解
質溶液に浸漬し、前記金属材料と電解質溶液との間に電
解電圧を印加し、前記被覆材料を電解腐食して所定の人
工欠陥を形成する、という構成を採用したものである。
Therefore, the method for manufacturing a reference sample for eddy current testing of the present invention involves immersing a metal material whose surface is coated with a predetermined coating material in an electrolyte solution, and applying an electrolytic voltage between the metal material and the electrolyte solution. However, the coating material is electrolytically corroded to form predetermined artificial defects.

ここで、人工欠陥を形成する金属材料としては、前述し
たアルミナイズド鋼管など、メツキ加工等により表面を
被覆された板状や管状のもの等が該当し、機械加工の難
しい厚み1.0mm以下の薄肉のものにも適用可能であ
る。
Here, metal materials that can form artificial defects include plate-shaped or tubular materials whose surfaces are coated by plating, such as the aluminized steel pipes mentioned above, and materials with a thickness of 1.0 mm or less that are difficult to machine. It is also applicable to thin walls.

また、金属材料を電解腐食するにあたっては、人工欠陥
を形成する部位のみを当該欠陥に合わせて露出させてお
き、当該部位以外をマスキングしておくことで形状や寸
法を設定する。マスキングには、粘着テープあるいはペ
イント等が利用でき、所望の人工欠陥形状に対応した孔
を開けたテープを形成部位に張りつけ、このテープの周
囲の他の表面にはエナメル等を塗布する等、適宜併用し
てもよい。
Further, when electrolytically corroding a metal material, only the part where an artificial defect is to be formed is exposed in accordance with the defect, and the other parts are masked to set the shape and dimensions. Adhesive tape or paint can be used for masking, and a tape with holes corresponding to the desired artificial defect shape is pasted on the formation site, and other surfaces around this tape are coated with enamel, etc., as appropriate. May be used together.

さらに、電解液の濃度、電解電圧や電流および反応時間
等の設定により欠陥の深さ等を設定する。
Further, the depth of the defect and the like are set by setting the concentration of the electrolytic solution, the electrolytic voltage and current, the reaction time, and the like.

電解液としては、ホウフン酸(IIBF、)水溶液など
還元性の電解質の水?8液が利用でき、電解電圧として
はメツキ材と母材との境界層に電位差が確認できる程度
であればよい。
As the electrolyte, use reducing electrolyte water such as boronic acid (IIBF) aqueous solution. 8 liquids can be used, and the electrolytic voltage may be such that a potential difference can be confirmed in the boundary layer between the plating material and the base material.

ここで、電解°電圧の印加の際には金属材料を陽極とし
、電解液中に配置された対電極を陰極とする。対電極と
しては直径211111程度のアルミニウム棒などが利
用でき、先端を金属材料の人工欠陥形成部位の近傍に配
置することで、加工部位を集中的に電解腐食して効率よ
い加工が可能である。
Here, when applying the electrolysis voltage, the metal material is used as an anode, and the counter electrode placed in the electrolytic solution is used as a cathode. As the counter electrode, an aluminum rod or the like having a diameter of about 211,111 mm can be used, and by arranging the tip near the artificial defect formation site of the metal material, efficient machining is possible by intensively electrolytically corroding the machining site.

また、対電極の先端形状を人工欠陥の形状に対応して渦
巻き状の円形または矩形等とすることで、欠陥形成部分
に均一に電圧印加を行って−様な深さの人工欠陥を形成
可能である。
In addition, by making the tip of the counter electrode into a spiral circular or rectangular shape that corresponds to the shape of the artificial defect, it is possible to uniformly apply voltage to the defect forming area and form artificial defects with various depths. It is.

さらに、電解加工にあたっては、いわゆる定電位電解法
に基づく電圧制御を行うことが望ましく、ポテンシオス
タット等の定電位電解用電源を用い、照合電極として銀
−塩化銀電極を用いるなど、既知の装置を利用すればよ
い。
Furthermore, in electrolytic processing, it is desirable to perform voltage control based on the so-called constant potential electrolysis method, using known devices such as using a constant potential electrolysis power source such as a potentiostat and using a silver-silver chloride electrode as a reference electrode. You can use .

また、電解腐食の際には電解液中に気体を通して気泡に
よる撹拌を行うことが好ましく、加工部位近傍の電解液
を適宜循環させて電解生成物の滞留等による性能低下を
防止できる。
Further, during electrolytic corrosion, it is preferable to stir gas by passing gas into the electrolytic solution and use bubbles to circulate the electrolytic solution in the vicinity of the processing area as appropriate to prevent performance deterioration due to retention of electrolytic products.

特に、管状の材料の内面に人工欠陥を形成する場合、欠
陥形成部位を下部に配置し、当該管内に気泡を送り込め
ば、気泡は管内上部に沿って流動するため、十分な撹拌
が得られ、かつ欠陥形成部位と対電極との間の通電が気
泡によって不必要に遮られることを防止できる。
In particular, when forming artificial defects on the inner surface of a tube-shaped material, if the defect formation site is placed at the bottom and air bubbles are sent into the tube, the bubbles will flow along the top of the tube, resulting in sufficient agitation. , and it is possible to prevent the current flow between the defect forming site and the counter electrode from being unnecessarily blocked by air bubbles.

〔作用〕[Effect]

このような本発明においては、複数の周波数を利用する
検査手順の採用により探傷信号の磁気雑音を低減する。
In the present invention, the magnetic noise of the flaw detection signal is reduced by employing an inspection procedure that utilizes a plurality of frequencies.

すなわち、対象物から検出された第一および第二の探傷
信号には対象物の磁気不均一による雑音成分が含まれる
が、各々の雑音成分は検査時にそれぞれ同様に混入する
ものであり、第二の探傷信号として合成される際に相殺
される。
In other words, the first and second flaw detection signals detected from the target object include noise components due to the magnetic non-uniformity of the target object, but each noise component is mixed in the same way during the inspection, and the second flaw detection signal are canceled out when combined as a flaw detection signal.

従って、このような検査手順を実際の検査対象に適用す
れば、磁気雑音がなく、かつ検査対象の内部欠陥に対応
した実探傷信号が得られることになる。
Therefore, if such an inspection procedure is applied to an actual inspection object, an actual flaw detection signal that is free from magnetic noise and corresponds to the internal defects of the inspection object will be obtained.

一方、実探傷信号の評価にあたっては、既知の欠陥を有
する基準試料について同様な検査手順を適用し、ここで
得られた基準探傷信号と実探傷信号とを対比することに
より、検査対象の内部欠陥を既知の欠陥に対して相対的
に判定でき、併せて検査手順における雑音等が相殺され
る。
On the other hand, when evaluating the actual flaw detection signal, by applying the same inspection procedure to a reference sample with known defects and comparing the reference flaw detection signal obtained here with the actual flaw detection signal, it is possible to evaluate the internal defects of the inspection target. can be determined relative to known defects, and noise in the inspection procedure is also canceled out.

従って、例えば、実探傷信号を基準探傷13号と対比し
ながら通常の渦流探傷検査法と同様な位相角模式図に表
せば、それぞれ検査対象の内部欠陥に対応した軌跡が正
確に描かれることになる。
Therefore, for example, if the actual flaw detection signal is compared with the standard flaw detection No. 13 and expressed in a phase angle schematic diagram similar to the normal eddy current flaw detection method, the loci corresponding to the internal defects to be inspected will be accurately drawn. Become.

このように、本発明の渦流探傷検査法によれば、基準試
料との比較により正確な欠陥検査が行えるとともに、検
査時の磁気雑音による影響等を受けないため、直流磁気
飽和等の雑音防止手段を併用する必要がなく、アルミナ
イズド鋼等に対しても正確かつ確実な検査が行える。
As described above, according to the eddy current flaw detection inspection method of the present invention, accurate defect inspection can be performed by comparison with a reference sample, and since it is not affected by magnetic noise during inspection, noise prevention measures such as DC magnetic saturation can be used. There is no need to use it in conjunction with this method, and even aluminized steel can be inspected accurately and reliably.

さらに、本発明の渦流探傷検査用基準試料の製作方法を
用いることで、基準試料に電解腐食により簡単かつ安価
に精度の高い人工欠陥を形成することが可能となるため
、基準試料における基準探傷信号の精度を向上できると
ともに、各種の基準信号を容易に準備できるようになる
ため、比較判定の際の正確さをも向上でき、これにより
前記目的が達成される。
Furthermore, by using the method of manufacturing a reference sample for eddy current flaw detection of the present invention, it is possible to easily and inexpensively form highly accurate artificial defects on the reference sample by electrolytic corrosion, thereby making it possible to generate a reference flaw detection signal in the reference sample. Since it is possible to improve the accuracy of , and also to easily prepare various reference signals, it is also possible to improve the accuracy in comparison and judgment, thereby achieving the above object.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面に基づいて説明する。 Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図において、本実施例における検査対象は、外径2
5.4+w+s、肉厚2.77mm、長さ6000 m
に形成されたパイプlであり、このパイプlは5TB3
5製の鋼管の表面(外周および内周)にアルミニウ゛ム
被膜加工したアルミナイズド鋼管である。
In Fig. 1, the object to be inspected in this example is an outer diameter of 2
5.4+w+s, wall thickness 2.77mm, length 6000m
This is a pipe l formed in 5TB3.
This is an aluminized steel pipe made of No. 5 steel with an aluminum coating applied to the surface (outer and inner periphery).

一方、本実施例で渦流探傷に使用する検査装置10は、
ケーブル11を介して接続された励磁用のコイル12を
備え、このコイル12は検査対象のパイプ1の内部に挿
入されている。この検査装置10は、指定された周波数
の交流磁界をコイル12の周囲に発生させ、コイル12
周辺のパイプ1壁面に渦電流を発生させるとともに、コ
イル12のインピーダンスの変化を検出することにより
、パイプ1に発生した渦電流の変°化を表す探傷信号1
4を出力可能である。また、検査装置10には送り機構
13が接続され、この送り機構13によりケーブル11
を順次送ってパイプl内のコイル12を移動させること
により、パイプlの全長にわたる渦流探傷が行えるよう
に構成されている。なお、送り機構13によりコイル1
2を移動させる速度は、500〜750mo+/sの範
囲で一定速度となるように設定されている。
On the other hand, the inspection device 10 used for eddy current flaw detection in this embodiment is as follows:
It includes an excitation coil 12 connected via a cable 11, and this coil 12 is inserted inside the pipe 1 to be inspected. This inspection device 10 generates an alternating current magnetic field of a specified frequency around the coil 12, and
By generating an eddy current on the wall surface of the surrounding pipe 1 and detecting a change in the impedance of the coil 12, a flaw detection signal 1 representing a change in the eddy current generated in the pipe 1 is generated.
4 can be output. Further, a feeding mechanism 13 is connected to the inspection device 10, and this feeding mechanism 13 allows the cable 11 to
The structure is such that eddy current flaw detection can be performed over the entire length of the pipe 1 by sequentially sending the coil 12 in the pipe 1. Note that the coil 1 is moved by the feeding mechanism 13.
The speed at which 2 is moved is set to be a constant speed within the range of 500 to 750 mo+/s.

このような検査装置lOによりパイプ1の検査を行うに
あたり、本実施例では本発明に基づく渦流探傷検査法を
採用する。このために、検査にあたり対象となるパイプ
1に対応しかつ既知の欠陥を有する基準試料を製作して
おく。
When inspecting the pipe 1 using such an inspection apparatus IO, this embodiment employs an eddy current flaw detection inspection method based on the present invention. For this purpose, a reference sample corresponding to the pipe 1 to be inspected and having known defects is prepared in advance.

基準試料としては、基本的にパイプ1と同様な管の内面
に、実際の腐食を想定した人工欠陥として深さ10〜1
50μmの凹みや3〜5II11径の貫通穴を正確に形
成した基準パイプ1^を用いる。
As a reference sample, we created an artificial defect on the inner surface of a pipe basically similar to Pipe 1 to a depth of 10 to 1 mm to simulate actual corrosion.
A reference pipe 1^ in which a recess of 50 μm and a through hole with a diameter of 3 to 5 II is accurately formed is used.

この基準パイプIAの製作にあたり、本実施例では本発
明の渦流探傷検査用基準試料の製作方法を採用する。以
下、第4図ないし第6図を参照して本製作方法によりパ
イプLAの内面に直径10IIIlの円形凹み状の人工
欠陥を形成する際の具体的な手順を説明する。
In manufacturing this reference pipe IA, this embodiment employs the method of manufacturing a reference sample for eddy current flaw detection according to the present invention. Hereinafter, with reference to FIGS. 4 to 6, a detailed procedure for forming a circular concave-shaped artificial defect with a diameter of 10III on the inner surface of the pipe LA using this manufacturing method will be explained.

第4図および第5図において、電解槽50の底部には、
パイプlと同様な材質形状のアルミナイズド鋼製のパイ
プIAが略水平に配置されている。
4 and 5, at the bottom of the electrolytic cell 50,
A pipe IA made of aluminized steel and having the same material and shape as the pipe I is arranged substantially horizontally.

ここで、第6図に示すように、パイプIAの内側の人工
欠陥を形成する部位60の周囲には、当該欠陥に対応す
る円形の孔61を有する粘着テープ62が貼られ、その
周囲ないしパイプ1、Aの他の表面にはエナメル等のペ
イント63が塗布されており、これらによりパイプ1^
は人工欠陥の加工部位60を除いて完全にマスキングさ
れている。
Here, as shown in FIG. 6, an adhesive tape 62 having a circular hole 61 corresponding to the defect is pasted around a region 60 on the inside of the pipe IA where an artificial defect is formed. 1. Paint 63 such as enamel is applied to the other surfaces of A, and these make the pipe 1^
is completely masked except for the processed region 60 of the artificial defect.

このパイプIAを浸漬するように、電解槽50の内部に
は電解液51が満たされている。この電解液51は、2
(ldのホウフッ酸(HBF、) 47%水溶液に54
0dの水を加えたものである。
The inside of the electrolytic bath 50 is filled with an electrolytic solution 51 so as to immerse the pipe IA. This electrolytic solution 51 contains 2
(ld borofluoric acid (HBF,) 54% in a 47% aqueous solution
0d of water is added.

一方、電解槽50の近傍には定電位電解用のポテンシオ
スタット52(日亜計測製NP−IR100O型等)が
配置されている。ポテンシオスタット52は、陽極端子
(−)をパ゛イブIAに接続され、照合電極端子(r−
)を照合電極53に接続されるとともに、陰掻端子(+
)を対電極54に接続されている。
On the other hand, a potentiostat 52 for constant potential electrolysis (NP-IR100O type manufactured by Nichia Scientific Instruments, etc.) is arranged near the electrolytic cell 50. The potentiostat 52 has an anode terminal (-) connected to the pipe IA, and a reference electrode terminal (r-
) is connected to the reference electrode 53, and the scratch terminal (+
) is connected to the counter electrode 54.

照合電極53は、銀−塩化銀電極として慣用されている
ものであり、塩化カリウム(KCI)飽和水溶液に銀製
の棒材を浸して表面に塩化銀被膜を形成したものである
、この電極53は、電解槽50内のパイプIAと離れた
位置で電解液51中に浸されている。
The reference electrode 53 is commonly used as a silver-silver chloride electrode, and is made by immersing a silver rod in a saturated potassium chloride (KCI) aqueous solution to form a silver chloride coating on the surface. , is immersed in the electrolytic solution 51 at a position away from the pipe IA in the electrolytic cell 50.

対電極54は、直径21111のアルミニウム製棒材を
用い、その基端側をゴム栓55で槽50の壁面に貫通支
持されるとともに、先端側をパイプIA内に挿入されて
いる。対電極54先端部56は、形成する人工欠陥に対
応して全体として円形となる渦巻き状とされ、加工部位
60に合わせて対向配置されている。
The counter electrode 54 is made of an aluminum bar with a diameter of 21111, and its proximal end is supported through the wall of the tank 50 with a rubber stopper 55, and its distal end is inserted into the pipe IA. The tip portion 56 of the counter electrode 54 has a spiral shape that has a circular shape as a whole corresponding to the artificial defect to be formed, and is arranged to face the processing region 60 .

また、電解槽50の内部には図示しないポンプ等により
空気を圧送供給されるチューブ57が配置され、その先
端はパイプIAの一端側に挿入されている。ここで、パ
イプIAは、前記一端側が他端側よりやや低く支持され
、チューブ57から送出された空気はパイプ1^で気泡
58となって他端側に移動し、これによりパイプIA内
の電解液51は一端側から他端側に流動しながら撹拌さ
れる。
Further, inside the electrolytic cell 50, a tube 57 to which air is pumped and supplied by a pump or the like (not shown) is arranged, and the tip thereof is inserted into one end side of the pipe IA. Here, the one end of the pipe IA is supported slightly lower than the other end, and the air sent out from the tube 57 forms bubbles 58 in the pipe 1^ and moves to the other end, thereby causing electrolysis in the pipe IA. The liquid 51 is stirred while flowing from one end to the other end.

なお、チューブ57からの送気量は、予備実験を行って
適宜設定することが好ましいが、−船釣に800〜10
00ad/sec程度に設定することで好適な撹拌が得
られる。
The amount of air supplied from the tube 57 is preferably set appropriately after conducting preliminary experiments;
Suitable stirring can be obtained by setting the speed to about 00 ad/sec.

また、ポテンシオスタット52に設定する電解電圧は、
予めパイプIAに電圧印加した際に鋼材部分とアルミニ
ウムメッキ層との間に電圧変化が検知される値を検知し
て選択すればよく、本実施例では−0,350mVに設
定する。
Moreover, the electrolytic voltage set to the potentiostat 52 is
The value may be selected by detecting in advance a value at which a voltage change is detected between the steel portion and the aluminum plating layer when a voltage is applied to the pipe IA, and in this embodiment, it is set to -0.350 mV.

以上のような設定の後、ポテンシオスタット52を通電
させてパイプIAと対111s4との間に一定の電解電
圧を印加することにより、加工部位60は電解?&52
により電解腐食されて次第に凹状とされる。
After the above settings, by energizing the potentiostat 52 and applying a constant electrolytic voltage between the pipe IA and the pair 111s4, the processing area 60 is electrolyzed. &52
It is electrolytically corroded and gradually becomes concave.

この際、パイプIAの他の部分は粘着テープ62および
ペイント53でマスキングされており腐食されることは
なく、孔61から露出された加工部位60のみが加工さ
れる。また、対電極54の先端部56を円形の渦巻き状
として加工部位60に対向させたため、加工部位60は
一′様な深さに電解腐食されるとともに電解作用が当該
部位に集中されるため加工は効率よく行われる。従って
、一定時間の経過の後にパイプIAを取り出せば、加工
部位60には孔61に応じた円形で所定深さの凹み状の
人工欠陥が形成される。この深さは電解液51の1度、
ポテンシオスタット52における電圧等の設定、パイプ
IAの材質、処理時間等により予め所望の値に調整でき
、既知の欠陥とすることができる。従って、加工したパ
イプIAは、パイプ1の渦流探傷検査用の基準パイプ1
^として利用可能となる。
At this time, other portions of the pipe IA are masked with adhesive tape 62 and paint 53 and are not corroded, and only the processed portion 60 exposed from the hole 61 is processed. In addition, since the tip 56 of the counter electrode 54 is formed into a circular spiral shape and is opposed to the processing area 60, the processing area 60 is electrolytically corroded to a uniform depth, and the electrolytic action is concentrated on the area. is done efficiently. Therefore, if the pipe IA is taken out after a certain period of time has elapsed, an artificial defect in the shape of a circular depression with a predetermined depth corresponding to the hole 61 is formed in the processed region 60. This depth is 1 degree of electrolyte 51,
It can be adjusted to a desired value in advance by setting the voltage etc. in the potentiostat 52, the material of the pipe IA, the processing time, etc., and can be treated as a known defect. Therefore, the processed pipe IA is the reference pipe 1 for eddy current testing of pipe 1.
It will be available as ^.

このような基準パイプIAの準備の後、基準パイプIA
および本来の検査対象であるパイプlに対して本発明の
渦流探傷検査法に基づく操作を行う。
After such preparation of the reference pipe IA, the reference pipe IA
Then, the operation based on the eddy current flaw detection method of the present invention is performed on the pipe l, which is the original inspection target.

以下、第2図を参照して本検査法の具体的な操作につい
て説明する。
The specific operation of this testing method will be explained below with reference to FIG.

はじめに、基準試料である基準パイプIAを用いて基準
探傷信号を求めるために、基準パイプIAに対して二種
類の渦流探傷を行う。
First, in order to obtain a reference flaw detection signal using the reference pipe IA, which is a reference sample, two types of eddy current flaw detection are performed on the reference pipe IA.

第一の渦流探傷においては、検査装置10を調整して周
波数400にHzの電流をコイル12に通し、第一の磁
界を発生させるとともに、このコイル12を基準パイプ
IA内に順次送り、検査装置10から出力される探傷信
号を記録する。この操作により第一の探傷信号21が得
られる。
In the first eddy current flaw detection, the inspection device 10 is adjusted to pass a current with a frequency of 400 Hz through the coil 12 to generate a first magnetic field, and the coil 12 is sequentially sent into the reference pipe IA, and the inspection device The flaw detection signal output from 10 is recorded. Through this operation, the first flaw detection signal 21 is obtained.

第二の渦流探傷においては、第一の渦流探傷と同様な操
作を行う。この際、コイル12には、周波数400KH
zの電流に周波数200 K II zの電流をミキシ
ングしたものを通し、互いに整数比をなす各電流に基づ
く第一の磁界と第二の磁界との混合磁界を用い、検査装
置10から出力される探傷信号を記録する。この操作に
より第二の探傷信号22が得られる。
In the second eddy current flaw detection, the same operations as in the first eddy current flaw detection are performed. At this time, the coil 12 has a frequency of 400 KH.
A current obtained by mixing a current with a frequency of 200 K II z with a current of z is passed through, and a mixed magnetic field of a first magnetic field and a second magnetic field based on each current that is an integer ratio to each other is outputted from the inspection device 10. Record the flaw detection signal. A second flaw detection signal 22 is obtained by this operation.

なお、各々の渦流探傷に際しては、それぞれの雑音成分
がX軸方向となり、第一および第二の探傷信号21.2
2がY軸方向となるように位相角を設定しておく。
In addition, in each eddy current flaw detection, each noise component is in the X-axis direction, and the first and second flaw detection signals 21.2
The phase angle is set so that 2 is in the Y-axis direction.

これらの位相角の設定の後、第一および第二の探傷信号
21.22を逆相でミキシングすることにより第三の探
傷信号23を合成する。
After setting these phase angles, the third flaw detection signal 23 is synthesized by mixing the first and second flaw detection signals 21 and 22 in opposite phases.

ここで、元になる各探傷信号21.22には雑音成分2
4.25が含ま゛れているが、逆相とされたうえ各信号
21.22のミキシング比率を。調整することにより、
各々の雑音成分24.25は相殺される。
Here, each of the original flaw detection signals 21 and 22 has a noise component 2.
4.25 is included, but the mixing ratio of each signal is 21.22 in addition to being in reverse phase. By adjusting
Each noise component 24.25 is canceled out.

また、逆相ミキシングにより各探傷信号21.22の周
波数400にHzの電流に対応する成分は相殺されるが
、第三の探傷信号23として第二の深傷信号22に含ま
れていた周波数200にHzの電流に対応する成分が残
る。
In addition, by anti-phase mixing, the components corresponding to the current at frequency 400 Hz of each of the flaw detection signals 21 and 22 are canceled out, but the frequency 200 that was included in the second deep flaw signal 22 as the third flaw detection signal 23 is canceled out. A component corresponding to a current of Hz remains.

こうして得られた第三の探傷信号23を実探傷信号26
とする。この実探傷信号26には、基準パイプ1^に形
成された貫通穴に応した変化が表れているとともに、雑
音成分は除去されている。
The third flaw detection signal 23 obtained in this way is converted into the actual flaw detection signal 26.
shall be. This actual flaw detection signal 26 shows changes corresponding to the through holes formed in the reference pipe 1^, and noise components have been removed.

次に、実際の検査対象であるパイプ1を用いて実探傷信
号を求める。
Next, an actual flaw detection signal is obtained using the pipe 1 that is the actual inspection target.

ここで、実探傷信号を得る手順は、前述の基準パイプI
Aに対して基準探傷信号を得た手順と同様であり、単に
基準パイプ1^をパイプlに置き換えたものである。す
なわち、第一および第二の渦流探傷により、第一および
第二の探傷信号31.32を検出し、これらの探傷信号
31.32の逆相ミキシングにより第三の探傷信号33
を合成する。
Here, the procedure for obtaining the actual flaw detection signal is as follows:
The procedure is the same as that for obtaining the reference flaw detection signal for A, and the reference pipe 1^ is simply replaced with pipe l. That is, the first and second flaw detection signals 31 and 32 are detected by the first and second eddy current flaw detection, and the third flaw detection signal 33 is detected by reverse phase mixing of these flaw detection signals 31 and 32.
Synthesize.

こうして得られた第三の探傷信号33を実探傷信号36
とする。この実探傷信号36には、パイプ1に発生した
内部欠陥に応じた変化が表れているとともに、雑音成分
は除去されている。
The third flaw detection signal 33 obtained in this way is converted into the actual flaw detection signal 36.
shall be. This actual flaw detection signal 36 shows changes in accordance with internal defects that have occurred in the pipe 1, and noise components have been removed.

続いて、実探傷信号36と基準探傷信号26との対比を
行う、すなわち、例えば基準探傷信号2;6と実探傷信
号36とを同一の比較画面40上に表置し、各信号26
.36の軌跡の相違を比較することにより、各々の変化
の原因となった内部欠陥の比較を行い、基準パイプIA
に形成した既知の欠陥に基づいてパイプ1の内部欠陥を
判定する。
Next, the actual flaw detection signal 36 and the reference flaw detection signal 26 are compared, that is, for example, the reference flaw detection signal 2;6 and the actual flaw detection signal 36 are displayed on the same comparison screen 40, and each signal 26 is compared.
.. By comparing the differences in the 36 trajectories, the internal defects that caused each change were compared, and the reference pipe IA
Internal defects in the pipe 1 are determined based on known defects formed in the pipe 1.

このような本実施例によれば、以下に示すような効果が
ある。
According to this embodiment, the following effects can be obtained.

すなわち、既知の欠陥として正確に加工された人工欠陥
を有する基準パイプIAを用い、この基準パイプIAに
関する基準探傷信号26と、検査対象のパイプ1に関す
る実探傷信号36との対比を行うことにより、パイプl
の内部欠陥を正確に判定することができる。
That is, by using a reference pipe IA having an artificial defect that has been accurately processed as a known defect, and comparing the reference flaw detection signal 26 regarding this reference pipe IA with the actual flaw detection signal 36 regarding the pipe 1 to be inspected, pipe l
internal defects can be accurately determined.

第3図には、“各種の内部欠陥が発見されたパイプ1に
ついて本実施例の検査を行って得られた軌跡の具体例が
示されている。図において、Y軸から反時計廻りでX軸
までの位相角で表れた軌跡41゜4243は、それぞれ
パイプ1の内周面に生した深さ150 tr m、 1
00 u va、  50 p mの欠を員である。ま
た、Y軸方向に延びる軌跡のうち、軌跡44はパイプl
の内外を貫通する直径211IIlの穴であり、軌跡4
5゜46はパイプ1の外周面に生じた深さ 100〜1
50 μm、50〜60μmの欠損である。さらに、Y
軸から時計廻りに回転した方向の軌跡47はパイプ1の
内外を貫通する直径3smの穴である。
FIG. 3 shows a specific example of a trajectory obtained by performing the inspection according to this embodiment on a pipe 1 in which various internal defects were discovered. The trajectories 41° 4243 expressed by the phase angle up to the axis are the depths of 150 t m and 1 formed on the inner circumferential surface of the pipe 1, respectively.
00 u va, 50 pm. Also, among the trajectories extending in the Y-axis direction, the locus 44 is the pipe l.
It is a hole with a diameter of 211IIl passing through the inside and outside of the locus 4.
5゜46 is the depth created on the outer peripheral surface of pipe 1 100~1
The defects are 50 μm and 50 to 60 μm. Furthermore, Y
A locus 47 in the clockwise direction from the axis is a hole with a diameter of 3 sm passing through the inside and outside of the pipe 1.

このように、本実施例では、本発明の渦流探傷検査法を
用いることにより、基準試料との比較による正確な欠陥
検査を行うことができる。
As described above, in this example, by using the eddy current flaw detection method of the present invention, accurate defect inspection can be performed by comparison with the reference sample.

特に、パイプ1に関する実探傷信号36、および基準パ
イプIAに関する基準探傷信号26の検出にあたっては
、それぞれ二回の渦流探傷を行い、各々で得られた第一
および第二の探傷信号を逆相ミキシングするとしたため
、各探傷信号に同様に含まれる検査時の雑音成分を相殺
できる。
In particular, in detecting the actual flaw detection signal 36 for the pipe 1 and the reference flaw detection signal 26 for the reference pipe IA, eddy current flaw detection is performed twice, and the first and second flaw detection signals obtained in each are mixed in reverse phase. Therefore, it is possible to cancel out the noise components during inspection that are similarly included in each flaw detection signal.

また、第一の渦流探傷では周波数400にllzの第一
の磁界を用い、第二の渦流探傷では周波数400にHz
による第一の磁界に周波数200KHzの第二の磁界を
加えた混合磁界を用いたため、逆相ミキシングにより第
二の磁界の200KHz成分が残され、第三の探傷信号
として取り出される。
In addition, in the first eddy current flaw detection, a first magnetic field of 100 Hz was used at a frequency of 400, and in the second eddy current flaw detection, a first magnetic field of 200 Hz was used at a frequency of 400.
Since a mixed magnetic field in which a second magnetic field with a frequency of 200 KHz was added to the first magnetic field according to the method was used, a 200 KHz component of the second magnetic field was left due to the reverse phase mixing and was taken out as a third flaw detection signal.

このため、パイプ1または基準パイプIAに関する第二
の探傷信号を利用して、雑音を含まず、かつパイプ!ま
たは基準パイプIAの内部欠陥を反映した実探傷信号3
6および基準探傷信号26を得ることができる。
For this reason, the second flaw detection signal related to pipe 1 or reference pipe IA is used to eliminate noise and detect pipe 1! Or actual flaw detection signal 3 reflecting internal defects of reference pipe IA
6 and a reference flaw detection signal 26 can be obtained.

さらに、本実施例によれば、前述したようにパイプlの
鋼管部分の磁気不均一に起因する磁気雑音が生じても、
第三の探傷信号の合成の際に雑音の影響を回避すること
ができ、直流磁気飽和等の雑音防止手段を併用する必要
がない。
Furthermore, according to this embodiment, even if magnetic noise occurs due to magnetic non-uniformity in the steel pipe portion of pipe l as described above,
The influence of noise can be avoided during synthesis of the third flaw detection signal, and there is no need to use noise prevention means such as direct current magnetic saturation.

従って、従来は渦流探傷検査法を利用することが困難で
あったアルミナイズド鋼製のパイプlに対しても何ら問
題なく適用することができる。これにより、渦流°探傷
検査法の特徴である正確かつ確実な検査を能率よく行え
る点を活かして、検査対象を漏れなく検査することによ
り製品出荷時あるいは保守点検時における信頼性を向上
することができる。
Therefore, it is possible to apply the eddy current inspection method to aluminized steel pipes l without any problems, for which it has been difficult to use the eddy current inspection method in the past. This makes it possible to improve reliability at the time of product shipment or maintenance inspection by taking advantage of the ability to perform accurate and reliable inspections efficiently, which is a feature of the eddy current flaw detection inspection method, and by inspecting all inspection targets without omission. can.

一方、基準試料である基準パイプIAとして、実際の検
査対象であるパイプlと同様の材質形状のものを用り、
その一部に所定の形状および寸法の人工欠陥を正確に形
成したため、比較判定における精度を向上することがで
きる。
On the other hand, as the reference pipe IA, which is the reference sample, we used a material with the same shape as the pipe I, which is the actual inspection target.
Since an artificial defect with a predetermined shape and size is accurately formed in a part of the sample, the accuracy in comparison and judgment can be improved.

ここで、本実施例では、基準パイプIAの製作に、本発
明の渦流探傷検査用基準試料の製作方法を採用したため
、電解腐食の条件設定を調整すすることにより正確な加
工が可能である。
Here, in this example, since the method for manufacturing a reference sample for eddy current testing of the present invention is adopted for manufacturing the reference pipe IA, accurate processing is possible by adjusting the electrolytic corrosion condition settings.

第1表には、本実施例に示した製作手順における電気量
と人工欠陥の深さとの対応が示されている。ここで、電
気量(クーロン)は対電極54とパイプIAとの間に流
れる電流と通電時間との積で求められ、ポテンシオスタ
ット52において適宜測定できる。
Table 1 shows the correspondence between the amount of electricity and the depth of the artificial defect in the manufacturing procedure shown in this example. Here, the quantity of electricity (coulombs) is determined by the product of the current flowing between the counter electrode 54 and the pipe IA and the energization time, and can be appropriately measured by the potentiostat 52.

第1表 この表の値をグラフ化すると第7図の直線71となる。Table 1 When the values in this table are graphed, a straight line 71 in FIG. 7 is obtained.

つまり、人工欠陥の深さは電解腐食の際の供給電気量と
正確な比例関係をなし、電気量を精密に制御することに
より人工欠陥の深さをμmオーダーで調整できることが
解かる。ここで、電気量の調整にはit値の調整の他、
通電時間の調整が利用でき、ポテンシオスタット52に
おける機能を適宜利用すればよい。
In other words, it can be seen that the depth of the artificial defect has a precise proportional relationship with the amount of electricity supplied during electrolytic corrosion, and that by precisely controlling the amount of electricity, the depth of the artificial defect can be adjusted on the μm order. Here, to adjust the amount of electricity, in addition to adjusting the it value,
Adjustment of the energization time can be used, and the function of the potentiostat 52 can be used as appropriate.

また、ポテンシオスタット52による定電位電解を行う
とともに、陰掻である対電極54の先端部56を人工欠
陥の形状に対応させかつ加工部位60に対向配置するこ
とにより、電解腐食の集中化により処理効率を向上でき
るとともに、加工部位60での電解腐食を均一化して人
工欠陥を−様な深さに形成することができる。
In addition, by performing constant potential electrolysis using the potentiostat 52, and by making the tip 56 of the counter electrode 54 corresponding to the shape of the artificial defect and arranging it opposite to the processing area 60, concentration of electrolytic corrosion can be reduced. Processing efficiency can be improved, and the electrolytic corrosion at the processed portion 60 can be made uniform to form artificial defects to a depth similar to that of the present invention.

さらに、電解腐食の際には電解液51中にチューブ57
がら空気を送って気泡5Bを発生させ、これにより撹拌
を行ってパイプIA内の電解液51を適宜循環させるよ
うにしたため、電解生成物の滞留等による性能低下を防
止できる。
Furthermore, during electrolytic corrosion, the tube 57 is placed in the electrolytic solution 51.
Since the electrolytic solution 51 in the pipe IA is circulated appropriately by stirring the electrolytic solution 51 by sending air through the pipe IA to generate bubbles 5B, deterioration in performance due to retention of electrolyzed products can be prevented.

ここで、比較のために、本実施例と同し条件で電解液5
1の撹拌手段を超音波振動板を用いた例について前記第
1表と同様な電気量と欠陥深さの計測を行ったところ、
第7図の直線72に示すような〜果となった。つまり、
一応比例関係はなしているが、電解腐食の効率が下がる
ことが解かる。さらに、得られた人工欠陥には凹凸が顕
著であり、これは超音波振動では十分な撹拌効果が得ら
れなかったためと考えられる。従って、本実施例のよう
な電解腐食による精密加工を実現する場合、送気撹拌を
併用することが望ましい。
Here, for comparison, the electrolytic solution 5 was prepared under the same conditions as in this example.
When measuring the amount of electricity and defect depth in the same manner as in Table 1 above for an example in which an ultrasonic diaphragm was used as the stirring means in No. 1, it was found that:
The result was as shown by the straight line 72 in FIG. In other words,
Although there is a proportional relationship, it can be seen that the efficiency of electrolytic corrosion decreases. Furthermore, the resulting artificial defects had noticeable irregularities, which is thought to be because the ultrasonic vibration did not provide a sufficient stirring effect. Therefore, when realizing precision machining by electrolytic corrosion as in this example, it is desirable to use air supply and stirring together.

このように、本実施例では基準パイプIAの製作に本発
明の渦流探傷検査用基準試料の製作方法を採用したため
、従来高精度を得る際に利用されていた放電加工等に比
べて製作コストを安価にでき、欠陥の形態および寸法等
について各種のものを多数製作して準備しておくことが
可能となり、検査作業にあたってより細かな比較判定が
行え、検査精度を向上できる。
In this way, in this example, the manufacturing method of the reference sample for eddy current testing of the present invention was adopted to manufacture the reference pipe IA, so the manufacturing cost was reduced compared to the electric discharge machining etc. that were conventionally used to obtain high accuracy. It can be done at low cost, and it is possible to manufacture and prepare a large number of various defect shapes and sizes, and it is possible to perform more detailed comparative judgments during inspection work, and improve inspection accuracy.

また、電解腐゛食による非機械力による加工であるため
、旋盤やフライス盤による機械加工に比べて薄肉のもの
に対しても適用でき、本発明の渦流探傷検査法が広範囲
に利用できるようになる。
In addition, since processing is performed using non-mechanical force using electrolytic corrosion, it can be applied to thin-walled objects compared to machining using lathes or milling machines, and the eddy current inspection method of the present invention can be used in a wide range of applications. .

なお、本発明は前記実施例に限定されるものではなく、
以下に示すような変形をも含むものである。
Note that the present invention is not limited to the above embodiments,
It also includes the following modifications.

すなわち、検査対象はパイプ1に限らす、板状あるいは
箱状等、他の形態であってもよく、あるいはアルミナイ
ズド鋼製に限らず、通常の鋼その他の磁性体材料にアル
ミニウム及びその他の非磁性体をメッキしたものでもよ
く1本発明は多様な検査対象の渦流探傷検査法に広く適
用することができる。
In other words, the object to be inspected is not limited to the pipe 1, but may be in other shapes such as a plate or box shape, or is not limited to aluminized steel, but can be made of ordinary steel or other magnetic materials, as well as aluminum and other non-magnetic materials. It may be plated with a magnetic material.The present invention can be widely applied to eddy current inspection methods for various inspection targets.

また、検査対象に磁界を加えるコイルは、前記実施例の
パイプ1のような管の内面に挿入される内挿型に限らず
、板材表面を検査する回転プローブ型コイル、管や線材
、線材の外表面を検査する貫通型コイルなど、通常の渦
流探傷検査法に用いられる全てのコイルであってもよく
、検査する対象物に応じて適宜選択すればよい。
In addition, the coil that applies a magnetic field to the inspection target is not limited to an insertion type that is inserted into the inner surface of a tube like pipe 1 in the above embodiment, but also a rotating probe type coil that inspects the surface of a plate material, a coil that applies a magnetic field to a tube, a wire rod, and a wire rod. Any coil used in normal eddy current testing methods, such as a through-type coil for inspecting the outer surface, may be used, and may be selected as appropriate depending on the object to be inspected.

さらに、検査対象および基準試料から実探傷信号および
基準探傷信号を検出するにあたっては、第一および第二
の渦流探傷に限らず、三回以上の渦流探傷を行ってもよ
く、複数の探傷信号により第三の探傷信号を合成しても
よい。
Furthermore, in detecting the actual flaw detection signal and the reference flaw detection signal from the inspection target and reference sample, the eddy current flaw detection is not limited to the first and second eddy current flaw detection, but may be performed three or more times, and multiple flaw detection signals are used. A third flaw detection signal may be combined.

また、前記実施例においては、第一の渦流探傷の際に周
波数400KHzの第一の磁界を用い、第二の4流探傷
の際に第一の磁界に周波数200にHzの第二の磁界を
加えた混合磁界を用いたが、これら第一および第二の磁
界には他の設定を利用してもよい。
Further, in the above embodiment, a first magnetic field with a frequency of 400 KHz is used during the first eddy current flaw detection, and a second magnetic field with a frequency of 200 Hz is applied to the first magnetic field during the second four-current flaw detection. Although an applied mixed magnetic field was used, other settings for these first and second magnetic fields may be utilized.

さらに、第二の渦流探傷の際に第二の磁界を単独で用い
てもよく、例えば、第一の渦流探傷に基本周波数400
にHzで高調波を多く含む第一の磁界を用い、第二の渦
流探傷に基本周波数200kllzで同様な第二の磁界
を用いれば、ミキシングにより第一の磁界の二次以上の
高調波成分と第二の磁界の各成分とを対応させることが
でき、第一の磁界の基本周波数400にHzの成分が第
三の探傷信号とじて得られる。
Furthermore, the second magnetic field may be used alone during the second eddy current flaw detection, for example, a fundamental frequency of 400 is used for the first eddy current flaw detection.
If a first magnetic field containing many harmonics at Hz is used for the second eddy current flaw detection, and a similar second magnetic field with a fundamental frequency of 200 kllz is used for the second eddy current flaw detection, mixing will cause harmonic components higher than the second order of the first magnetic field. The components of the second magnetic field can be made to correspond to each other, and a component of the fundamental frequency 400 Hz of the first magnetic field can be obtained as a third flaw detection signal.

このように、“第一および第二の渦流探傷における第一
および第二の磁界の周波数設定は多様な設定が可能であ
り、要するに第三の探傷信号を合成する際に、第一およ
び第二の探傷信号の一部成分が残るような設定であれば
よい。
In this way, various settings are possible for the frequency settings of the first and second magnetic fields in the first and second eddy current flaw detection.In short, when combining the third flaw detection signal, the first and second The settings may be such that some components of the flaw detection signal remain.

一方、基準試料としては検査対象と路間−の材質、形態
のものを用いることが好ましいが、この基準試料に形成
する既知の欠陥は、凹み状や貫通穴の人工欠陥に限らず
、溝状、亀裂状など、検査対象に生じる可能性のある欠
陥についてそれぞれ用、意してもよく、予め多様な人工
欠陥を有する基準試料を!#備して比較を行うようにす
れば、検査精度を一層向上することができる。
On the other hand, it is preferable to use the material and shape between the inspection target and the path as the reference sample, but known defects formed on this reference sample are not limited to artificial defects such as dents and through holes, but also grooves, etc. , cracks, and other defects that may occur in the inspection target.You can also prepare reference samples with various artificial defects in advance! # If the comparison is made with the following information in hand, the inspection accuracy can be further improved.

また、基準試料の製作にあたっては、他の適宜な方法を
採用してもよいが、前述したように、本発明の渦流探傷
検査用基準試料の製作方法を採用することにより高精度
のものを簡単かつ安価に得られ、本発明の渦流探傷検査
法には好適であるといえる。
In addition, other suitable methods may be adopted for producing the reference sample, but as mentioned above, by adopting the method for producing the reference sample for eddy current testing of the present invention, it is possible to easily obtain a high-precision sample. Moreover, it can be obtained at low cost, and can be said to be suitable for the eddy current flaw detection method of the present invention.

ここで、渦流探傷検査用基準試料の製作方法は、前記実
施例の装置構成および設定に限定されるものではなく、
電解質51の種類および濃度、ポテンシオスタット52
の種類および電解電圧の設定等、照合電橋53の材質、
形状および配置など、実施にあたって適宜変更すること
が望ましい。
Here, the method for manufacturing the reference sample for eddy current testing is not limited to the device configuration and settings of the above embodiments,
Type and concentration of electrolyte 51, potentiostat 52
The type and electrolysis voltage setting, etc., the material of the verification bridge 53,
It is desirable to change the shape, arrangement, etc. as appropriate for implementation.

また、対電極54の材質や配置等も任意であり、先端部
56の形状は矩形の枠状あるいは単に切断したままの先
端でもよく、その配置も人工欠陥の形成部位60と対向
配置に限らず、単に接近しているもの等でもよい、しか
し、前記実施例のようにすれば効率および加工結果を優
れたものとすることができる。
Further, the material and arrangement of the counter electrode 54 are arbitrary, and the shape of the tip 56 may be a rectangular frame shape or a simply cut tip, and its arrangement is not limited to facing the artificial defect formation site 60. , or simply those that are close together, etc. However, by doing as in the above embodiment, efficiency and processing results can be improved.

さらに、撹拌用に空気を送出する景は適宜変更すればよ
く、予備実験等により最適な値を決定することが望まし
い。また、チューブ57あるいは気体供給用の装置類も
適宜選択すればよく、供給するのは空気に限らない、な
お、撹拌手段は気体の供給による気泡の運動を利用する
ものに限らず、他の機械的な撹拌を行うものであっても
よい。
Furthermore, the manner in which air is sent out for stirring may be changed as appropriate, and it is desirable to determine the optimum value through preliminary experiments or the like. In addition, the tube 57 or gas supply devices may be appropriately selected, and the supply is not limited to air. Note that the stirring means is not limited to one that utilizes the movement of bubbles due to gas supply, and may be other machines. It may also be a device that performs regular stirring.

〔発明の効果〕゛ 以上に説明したように、本発明の渦流探傷検査法によれ
ば、基準試料との比較により正確な欠陥検査が行えると
ともに、検査時の磁気雑音による影響等を受けないため
、アルミナイズド鋼等に対しても正確かつ確実な検査を
行うことができる。
[Effects of the Invention] As explained above, according to the eddy current flaw detection inspection method of the present invention, accurate defect inspection can be performed by comparison with a reference sample, and it is not affected by magnetic noise during inspection. , aluminized steel, etc. can be accurately and reliably inspected.

また、本発明の渦流探傷検査用基準試料の製作方法によ
れば、正確な人工欠陥を有する広範な基準試料を簡単か
つ安価に準備できるため、前述の渦流探傷検査法を採用
する際に比較判定の正確さを向上することができる。
In addition, according to the method for producing a reference sample for eddy current flaw detection of the present invention, a wide range of reference samples having accurate artificial defects can be prepared easily and inexpensively, so that comparative judgment can be made when adopting the above-mentioned eddy current flaw detection inspection method. accuracy can be improved.

号、23.33・・・第三の探傷信号、24.25.3
4.35・・・雑音成分、26・・・基準探傷信号、3
6・・・実探傷信号、51・・・電解液、54・・・対
電掻、57.58・・・送気撹拌用のチューブおよび気
泡、60・・・加工部位。
No., 23.33...Third flaw detection signal, 24.25.3
4.35...Noise component, 26...Reference flaw detection signal, 3
6...Actual flaw detection signal, 51...Electrolytic solution, 54...Anti-electro scraping, 57.58...Tube and air bubbles for air supply and stirring, 60...Processed part.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例で用いる装置構成を示す模式
図、第2図は前記実施例の操作手順および信号の流れを
示す模式図、第3図は前記実施例における探傷信号の評
価の具体例を示すグラフ、第4図および第5図は前記実
施例で基準試料の製作を行うための装置構成を示すそれ
ぞれ別方向の断面図、第6図は前記製作の際の要部を示
す斜視図、第7図は前記実施例で製作し・た基準試料の
比較実験結果を示すグラフである。
Fig. 1 is a schematic diagram showing the configuration of an apparatus used in an embodiment of the present invention, Fig. 2 is a schematic diagram showing the operating procedure and signal flow of the embodiment, and Fig. 3 is an evaluation of flaw detection signals in the embodiment. 4 and 5 are cross-sectional views in different directions showing the configuration of the apparatus for manufacturing the reference sample in the above example, and FIG. 6 shows the main parts during the manufacture. The perspective view shown in FIG. 7 is a graph showing the results of comparative experiments of the reference samples produced in the above embodiments.

Claims (5)

【特許請求の範囲】[Claims] (1)所定周波数の第一の磁界を対象物に加え、当該磁
界による渦電流を検出して第一の探傷信号を発生すると
ともに、 周波数が第一の磁界と略整数比をなす第二の磁界または
この第二の磁界と第一の磁界との混合磁界の何れかを対
象物に加え、当該磁界による渦電流を検出して第二の探
傷信号を発生し、 得られた第一および第二の探傷信号を互いの雑音成分が
相殺されるように合成して第三の探傷信号を発生すると
いう検査手順を用い、 既知の欠陥を有する基準試料を対象物として前記検査手
順を適用し、得られた第三の探傷信号を基準探傷信号と
するとともに、 実際の検査対象を対象物として前記検査手順を通用し、
得られた第三の探傷信号を実探傷信号とし、この実探傷
信号を前記基準探傷信号と対比することにより検査対象
の内部欠陥を判定することを特徴とする渦流探傷検査法
(1) A first magnetic field with a predetermined frequency is applied to the object, an eddy current due to the magnetic field is detected to generate a first flaw detection signal, and a second magnetic field whose frequency is in a substantially integer ratio with the first magnetic field is applied. Either a magnetic field or a mixed magnetic field of the second magnetic field and the first magnetic field is applied to the object, and an eddy current caused by the magnetic field is detected to generate a second flaw detection signal. Using an inspection procedure in which a third flaw detection signal is generated by combining two flaw detection signals such that their noise components cancel each other out, applying the above inspection procedure to a reference sample having a known defect as a target, The obtained third flaw detection signal is used as the reference flaw detection signal, and the above inspection procedure is applied using the actual inspection object as the object.
An eddy current flaw detection inspection method characterized in that the obtained third flaw detection signal is used as an actual flaw detection signal, and an internal defect in the inspection target is determined by comparing this actual flaw detection signal with the reference flaw detection signal.
(2)表面を所定の被覆材料で被覆された金属材料を電
解質溶液に浸漬し、前記金属材料と電解質溶液との間に
電解電圧を印加し、前記被覆材料を電解腐食して所定の
人工欠陥を形成することを特徴とする渦流探傷検査用基
準試料の製作方法。
(2) A metal material whose surface is coated with a predetermined coating material is immersed in an electrolyte solution, an electrolytic voltage is applied between the metal material and the electrolyte solution, and the coating material is electrolytically corroded to form a predetermined artificial defect. A method for producing a reference sample for eddy current flaw detection, characterized by forming a .
(3)特許請求の範囲第2項において、前記電解電圧の
印加にあたり、前記金属材料の人工欠陥形成部位の近傍
の電解質溶液中に対電極を配置し、この対電極と前記金
属材料との間に前記電解電圧を印加することを特徴とす
る渦流探傷検査用基準試料の製作方法。
(3) In claim 2, when applying the electrolytic voltage, a counter electrode is placed in an electrolyte solution near the artificial defect formation site of the metal material, and a counter electrode is disposed between the counter electrode and the metal material. A method for producing a reference sample for eddy current flaw detection, the method comprising: applying the electrolytic voltage to the eddy current test.
(4)特許請求の範囲第2項または第3項において、前
記電解腐食の際に、前記電解液中に気体を通して気泡に
よる撹拌を行うことを特徴とする渦流探傷検査用基準試
料の製作方法。
(4) A method for producing a reference sample for eddy current testing according to claim 2 or 3, characterized in that during the electrolytic corrosion, gas is passed through the electrolytic solution and stirring is performed using bubbles.
(5)特許請求の範囲第2項ないし第4項の何れかにお
いて、前記金属材料はメッキ加工材料または薄肉材料で
あることを特徴とする渦流探傷検査用基準試料の製作方
法。
(5) A method for manufacturing a reference sample for eddy current testing according to any one of claims 2 to 4, wherein the metal material is a plated material or a thin material.
JP1285400A 1989-04-17 1989-10-31 Eddy current flaw inspection and manufacture of reference sample therefor Pending JPH0348152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1285400A JPH0348152A (en) 1989-04-17 1989-10-31 Eddy current flaw inspection and manufacture of reference sample therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9828789 1989-04-17
JP1-98287 1989-04-17
JP1285400A JPH0348152A (en) 1989-04-17 1989-10-31 Eddy current flaw inspection and manufacture of reference sample therefor

Publications (1)

Publication Number Publication Date
JPH0348152A true JPH0348152A (en) 1991-03-01

Family

ID=26439478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1285400A Pending JPH0348152A (en) 1989-04-17 1989-10-31 Eddy current flaw inspection and manufacture of reference sample therefor

Country Status (1)

Country Link
JP (1) JPH0348152A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005156565A (en) * 2003-11-26 2005-06-16 General Electric Co <Ge> Method and device for using eddy current transducer inside magnetic field
JP2005337909A (en) * 2004-05-27 2005-12-08 Olympus Corp Multicoil type probe of eddy current flaw detector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817353A (en) * 1981-06-12 1983-02-01 Kobe Steel Ltd Multifrequency eddy current flaw detection method and apparatus by multiple coil system
JPS6114641A (en) * 1984-06-29 1986-01-22 Keizo Takayanagi Manufacture of screen process printing plate
JPS6369999A (en) * 1986-09-11 1988-03-30 Mitsubishi Electric Corp Stirrer for treating liquid
JPS6450953A (en) * 1987-08-21 1989-02-27 Mitsubishi Heavy Ind Ltd Signal processing apparatus for detecting flaw using eddy current

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817353A (en) * 1981-06-12 1983-02-01 Kobe Steel Ltd Multifrequency eddy current flaw detection method and apparatus by multiple coil system
JPS6114641A (en) * 1984-06-29 1986-01-22 Keizo Takayanagi Manufacture of screen process printing plate
JPS6369999A (en) * 1986-09-11 1988-03-30 Mitsubishi Electric Corp Stirrer for treating liquid
JPS6450953A (en) * 1987-08-21 1989-02-27 Mitsubishi Heavy Ind Ltd Signal processing apparatus for detecting flaw using eddy current

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005156565A (en) * 2003-11-26 2005-06-16 General Electric Co <Ge> Method and device for using eddy current transducer inside magnetic field
JP2005337909A (en) * 2004-05-27 2005-12-08 Olympus Corp Multicoil type probe of eddy current flaw detector
JP4575029B2 (en) * 2004-05-27 2010-11-04 オリンパス株式会社 Multi-coil probe for eddy current flaw detector

Similar Documents

Publication Publication Date Title
Bastos et al. On the application of the scanning vibrating electrode technique (SVET) to corrosion research
RU2222001C2 (en) Procedure foreseeing utilization of electrochemical noise under corrosion
Ryl et al. Evaluation of cavitation erosion–corrosion degradation of mild steel by means of dynamic impedance spectroscopy in galvanostatic mode
RU2299399C2 (en) Method for determining object surface profile
Cai et al. A comparative study on corrosion kinetic parameter estimation methods for the early stage corrosion of Q345B steel in 3.5 wt% NaCl solution
JP2009085894A (en) Method and device for detecting weld zone defect
JP2023515125A (en) Method and measurement set-up for determining internal corrosion rate of steel structures
CN105196002B (en) A kind of preparation method of Magnetic testing with coat ARTIFICIAL CRACK defect test block
JPH05340907A (en) Diagnosing method of corrosion of reinforcing rod or the like in concrete
KR101477962B1 (en) Apparatus and method for detecting pitting corrosion of metal using acoustic emission method
JPH0348152A (en) Eddy current flaw inspection and manufacture of reference sample therefor
US4803428A (en) Method and apparatus for non-destructive material testing, particularly for determination of thickness of coating layers on a base material by measuring electrical conductivity or magnetic permeability at the finished specimen
JP2007017405A (en) Method for evaluating reinforcement corrosion rate
JP2002090286A (en) Equipment and method for evaluating corrosion
JPH11158698A (en) High-speed electroplating tester
US3694324A (en) Method of measuring accelerated corrosion rate
Chaal et al. On the mitigation of erosion–corrosion of copper by a drag-reducing cationic surfactant in turbulent flow conditions using a rotating cage
JP7113419B2 (en) Apparatus for detecting corroded portions of reinforcing bars in concrete and method for detecting the same
Lan et al. Evaluation of AC corrosion under anodic polarization using microzone pH analysis
Łosiewicz et al. Use of scanning vibrating electrode technique to localized corrosion evaluation
JPS6196401A (en) Method for measuring thickness of liner on the basis of two frequency
US20070108971A1 (en) Eddy current inspection of materials
JP4073472B1 (en) Method and apparatus for evaluating chilled structure of cast parts
Petersen et al. Evaluation of the effect of carbon dioxide corrosion inhibitors on cavitation damage caused during the ultrasound test
Trethewey et al. New methods of quantitative analysis of localized corrosion using scanning electrochemical probes