JPH0980028A - Method and apparatus for multiple frequency eddy current flaw detection by single exciting coil system - Google Patents

Method and apparatus for multiple frequency eddy current flaw detection by single exciting coil system

Info

Publication number
JPH0980028A
JPH0980028A JP7237996A JP23799695A JPH0980028A JP H0980028 A JPH0980028 A JP H0980028A JP 7237996 A JP7237996 A JP 7237996A JP 23799695 A JP23799695 A JP 23799695A JP H0980028 A JPH0980028 A JP H0980028A
Authority
JP
Japan
Prior art keywords
frequency
component
coil
flaw
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7237996A
Other languages
Japanese (ja)
Inventor
Hiromi Aramaki
巻 広 美 荒
Takeshi Kumagai
谷 猛 熊
Yoichi Senda
田 与 一 千
Koji Kawamura
村 皓 二 河
Kaneo Tsutsui
井 兼 夫 筒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON FUERUSUTAA KK
Nippon Steel Corp
Nippon Steel Texeng Co Ltd
Original Assignee
NIPPON FUERUSUTAA KK
Nippon Steel Corp
Nittetsu Elex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON FUERUSUTAA KK, Nippon Steel Corp, Nittetsu Elex Co Ltd filed Critical NIPPON FUERUSUTAA KK
Priority to JP7237996A priority Critical patent/JPH0980028A/en
Publication of JPH0980028A publication Critical patent/JPH0980028A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a method and an apparatus whose flaw detection accuracy is enhanced and whose detection accuracy of the kind of a flaw is enhanced. SOLUTION: In the eddy current flaw detection of a steel material by using a flaw detection coil, a current at a high frequency f1 and a current at a low frequency f2 sre superposed so as to be supplied to a single exciting coil 16 through which the steel material 17 is passed. A first component having a first phase shift with reference to an f1 component voltage for the exciting coil 16 in a voltage at the high frequency f1 induced in a detection coil 18 is extracted, two orthogonal components and a length which express the first component as a vector are computed on the basis of the first component, and a flaw is detected when they are at a set value of higher. In addition, a second component having a second phase shift with reference to an f2 component voltage for the exciting coil 16 in a voltage at the low frequency f2 induced in the detection coil 18 is extracted, two orthogonal components and a length which express the second component as a vector are computed on the basis of the second component, and a flaw is detected when they are at a set value or higher.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鋼材の表面疵探傷
に関し、特に、これに限定する意図ではないが、熱間圧
延により製造される棒鋼および線材を、励磁コイルと検
出コイルを用いる渦流探傷法により疵検出する方法およ
び装置に関し、より具体的には、単一の貫通型励磁コイ
ルに高周波と低周波を印加し、疵による渦電流の変化を
検出コイルに誘起された電圧の変化として検出し複数の
疵の判別を行う、多重周波数渦流探傷法及び装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to surface flaw detection of steel material, and particularly, although not intending to be limited to this, eddy current flaw detection of a steel bar and wire rod manufactured by hot rolling using an exciting coil and a detection coil. More specifically, the present invention relates to a method and apparatus for detecting flaws by a method, in which a high frequency and a low frequency are applied to a single through-type excitation coil, and a change in eddy current due to a flaw is detected as a change in voltage induced in the detection coil. The present invention relates to a multi-frequency eddy current flaw detection method and apparatus for discriminating a plurality of flaws.

【0002】[0002]

【従来の技術】渦流探傷は、磁性金属体の被検材にある
疵を非破壊的に検出するために励磁コイルに磁界を発生
させ、被検材に渦電流を生じさせ、疵などによる渦電流
の変化を検出コイルに誘起された電圧の変化として検出
するものである。従来、単一の周波数で渦流探傷により
疵を検出する場合、ヘゲ状の疵は検出しやすいがそれ以
外の疵は製品端部をサンプルングし疵検査と製品全体の
外観検査により保証していた。しかし、この方法ではヘ
ゲ状の疵以外は全長保証できないという問題がある。
2. Description of the Related Art Eddy-current flaw detection is a method for generating a magnetic field in an exciting coil to nondestructively detect a flaw in a material to be inspected of a magnetic metal body, generating an eddy current in the material to be inspected, and causing The change in current is detected as the change in voltage induced in the detection coil. Conventionally, when detecting flaws by eddy current flaw detection at a single frequency, it is easy to detect bald defects, but for other flaws, the product edge is sampled and guaranteed by flaw inspection and visual inspection of the entire product. It was However, this method has a problem that the entire length cannot be guaranteed except for the bald defects.

【0003】特公昭58−11571号公報は、高周波
が低周波の4〜16倍の比となる2種類の周波数をそれ
ぞれの発振器から探傷子に印加し、各周波数の疵信号の
比から鋼管の欠陥深さを推定する渦電流探傷法を開示し
ている。
Japanese Examined Patent Publication No. 58-11571 discloses that two types of frequencies, in which the high frequency is 4 to 16 times the low frequency, are applied to the flaw detector from each oscillator, and the flaw signal of the steel pipe is determined from the ratio of flaw signals of each frequency. An eddy current flaw detection method for estimating the defect depth is disclosed.

【0004】特公昭63−14905号公報は、励磁コ
イルに異なる試験周波数の電流を同時に通電して、検出
コイルの誘過電圧の、各試験周波数成分をフィルタでピ
ックアップして、各試験周波数の探傷情報を生成するミ
キシング方式と、1組の探傷コイルを用いて時分割で異
る試験周波数の探傷を行なうスイッチング方式が従来存
在することを説明して、そして特許取得対象の発明とし
て、複数組の探傷コイルを用いてそれぞれで各試験周波
数の探傷を行ない、探傷出力の差を求めて試験周波数間
での雑音要因を除去する方法を提示している。
Japanese Examined Patent Publication No. 63-14905 discloses that the exciting coil is simultaneously energized with currents of different test frequencies, each test frequency component of the induced voltage of the detection coil is picked up by a filter, and flaw detection information of each test frequency is detected. It is explained that there is a conventional mixing method for generating a flaw and a switching method for performing flaw detection at different test frequencies in time division by using a pair of flaw detection coils. We propose a method to detect flaws at each test frequency by using a coil, find the difference in flaw detection output, and remove the noise factor between the test frequencies.

【0005】実公昭62−5652号公報は、上記ミキ
シング方式の渦流探傷装置を提示している。これにおい
ては、複数の高周波発振器を用いて複数の周波数を発生
させ混合し励磁コイルに印加し、それぞれの高周波発振
器の誘起電圧を打ち消し電圧発生器、緩衝用抵抗器を用
い、それぞれの高周波発振器の出力信号を受けて位相検
波用参照信号を出力する複数の可変位相器を備え、それ
ぞれの周波数に対応した複数の疵信号をそれぞれ出力す
る位相検波器を備えた渦流探傷装置について記載されて
いる。
Japanese Utility Model Publication No. 62-5652 discloses an eddy current flaw detector of the mixing type. In this case, a plurality of high-frequency oscillators are used to generate and mix a plurality of frequencies, which are applied to the exciting coil, and the induced voltages of the respective high-frequency oscillators are canceled out by using voltage generators and buffer resistors. An eddy current flaw detection device is described that includes a plurality of variable phase shifters that receive an output signal and outputs a reference signal for phase detection, and a phase detector that outputs a plurality of flaw signals corresponding to respective frequencies.

【0006】[0006]

【発明が解決しようとする課題】従来、単一の周波数で
渦流探傷により疵を検出する場合、ヘゲ状の疵は検出し
やすいがそれ以外の疵は製品端部をサンプリングし疵検
査と製品全体の外観検査により保証していた。しかし、
この方法ではヘゲ状の疵以外は全長保証できないという
問題がある。
Conventionally, when a flaw is detected by eddy current flaw detection at a single frequency, it is easy to detect a bald-like flaw, but for other flaws, the edge of the product is sampled and the flaw inspection and the product are performed. It was guaranteed by a visual inspection of the whole. But,
This method has a problem in that the entire length cannot be guaranteed except for the bald defects.

【0007】また、複数の周波数を用いる場合でも、従
来は、ヘゲ状の疵検出に重点を置くと例えば異物噛み込
みの検出漏れが多いとか、異物噛み込みの検出に重点を
置くとヘゲ状の疵検出精度が低下するなど、疵種の判別
はむつかしく、疵種にかかわりのない疵検出精度の向上
が望まれている。
Further, even when a plurality of frequencies are used, conventionally, if the emphasis is placed on the detection of a bald defect, for example, the detection omission of foreign matter trapping is large, or if the emphasis is placed on the detection of foreign body trapping, then the hair loss occurs. It is difficult to discriminate between flaw types, such as deterioration in flaw detection accuracy, and improvement of flaw detection accuracy that is not related to flaw types is desired.

【0008】本発明は、疵検出精度を向上することを第
1の目的とし、疵種それぞれの検出精度を向上すること
を第2の目的とする。
The first object of the present invention is to improve the defect detection accuracy, and the second object is to improve the detection accuracy of each defect type.

【0009】[0009]

【課題を解決するための手段】[Means for Solving the Problems]

(1) 本発明の第1態様の方法は、励磁コイルおよび
検出コイルを含む探傷コイルを用いる鋼材の渦流探傷に
おいて、鋼材(17)が貫通する単一の励磁コイル(16)に高
周波f1の電流と低周波f2の電流を重畳して通電し、
検出コイル(18)に誘起する前記高周波f1の電圧の、前
記励磁コイル(16)の高周波f1の電流に対して第1の位
相ずれ(θ1)がある第1成分を抽出し、この第1成分よ
り、それをベクトルで表わす場合の直交2成分(x,y)お
よび長さ(v)の少くとも一者を算出してそれが設定値以
上のとき疵と検出し、かつ、前記検出コイル(18)に誘起
する前記低周波f2の電圧の、前記励磁コイル(16)の低
周波f2の電流に対して第2の位相ずれ(θ2)がある第
2成分を抽出し、この第2成分より、それをベクトルで
表わす場合の直交2成分(x,y)および長さ(v)の少くとも
一者を算出してそれが設定値以上のとき疵と検出する。
なお、理解を容易にするためにカッコ内には、図面に示
し後述する実施例の対応要素又は対応事項の記号を、参
考までに付記した。
(1) In the method of the first aspect of the present invention, in the eddy current flaw detection of a steel material using a flaw detection coil including an excitation coil and a detection coil, a high-frequency f1 current is applied to a single excitation coil (16) which the steel material (17) penetrates. And a low frequency f2 current are superposed and energized,
A first component of the voltage of the high frequency f1 induced in the detection coil (18) having a first phase shift (θ 1 ) with respect to the current of the high frequency f1 of the exciting coil (16) is extracted, and the first component is extracted. From the components, at least one of the two orthogonal components (x, y) and the length (v) in the case of representing it by a vector is calculated, and when it is equal to or more than a set value, it is detected as a flaw, and the detection coil A second component of the voltage of the low frequency f2 induced in (18) having a second phase shift (θ 2 ) with respect to the current of the low frequency f2 of the exciting coil (16) is extracted, and the second component is extracted. At least one of the two orthogonal components (x, y) and the length (v) in the case of expressing it as a vector is calculated from the component, and when it is equal to or larger than the set value, it is detected as a flaw.
In addition, in order to facilitate understanding, symbols of corresponding elements or corresponding items in the embodiments shown in the drawings and described later are added for reference in parentheses.

【0010】この作用および効果について、以下説明す
る。まず渦流探傷の原理を説明する。交流を流した励磁
コイル(16)および検出コイル(18)を導体(17)に近づける
と導体には電磁誘導により渦電流が生ずる。この渦電流
のつくる磁束は、励磁コイル(16)の磁束を打ち消す向き
に生ずる。これによって検出コイル(18)に生じた誘起電
圧Vは、磁束密度Bに影響されるエリアをS、検出コイ
ル(18)に鎖交する磁束をφとすると以下の式で示され
る。
The operation and effect will be described below. First, the principle of eddy current flaw detection will be described. When the exciting coil (16) and the detecting coil (18) in which an alternating current is applied are brought close to the conductor (17), an eddy current is generated in the conductor by electromagnetic induction. The magnetic flux generated by this eddy current is generated in the direction of canceling the magnetic flux of the exciting coil (16). The induced voltage V generated in the detection coil (18) by this is expressed by the following equation, where S is the area affected by the magnetic flux density B and φ is the magnetic flux interlinking with the detection coil (18).

【0011】[0011]

【数1】 [Equation 1]

【0012】この、検出コイル(18)に誘起される電圧V
は、導体(17)に生じた渦電流の変化やコイル(16,18)と
導体(17)間の磁束の変化を表わす。この電圧Vに基づい
てコイルインピーダンスを分析して疵による渦電流の変
化やコイル(16,18)と導体(17)間の磁束の変化を検出す
るのが測定原理である。図3に、クラックC,透磁率
μ,リフトオフLOおよび導電率σの変化による、検出
コイル(18)のインピーダンス変化を示す。この図で重要
なことは、クラックCすなわち疵に対するインピ−ダン
ス変化が、導体(17)が冷間の磁性体である場合に大きい
ということである。逆に、導体(17)が熱間(キュ−リ点
以上)の非磁性体の場合では、疵に対するインピーダン
スの変化が小さい。
This voltage V induced in the detection coil (18)
Represents changes in eddy currents generated in the conductor (17) and changes in magnetic flux between the coils (16, 18) and the conductor (17). The measurement principle is to analyze the coil impedance based on this voltage V to detect the change in eddy current due to a flaw and the change in magnetic flux between the coil (16, 18) and the conductor (17). FIG. 3 shows changes in impedance of the detection coil (18) due to changes in the crack C, magnetic permeability μ, lift-off LO and conductivity σ. What is important in this figure is that the change in impedance with respect to crack C, that is, the flaw, is large when the conductor (17) is a cold magnetic material. On the contrary, when the conductor (17) is a non-magnetic substance that is hot (at the Curie point or higher), the change in impedance due to a flaw is small.

【0013】すなわち、熱間圧延により製造される棒鋼
および線材を渦流探傷により疵検出する際、疵の表面が
冷えて磁性体となっているヘゲ状のものが検出しやすい
ということである。図3の中で非磁性体は、キューリ温
度約790℃以上のものである。キューリ温度は、鋼が
変態し磁性が変化する所であり、この付近で渦流探傷す
るとノイズが多発するので避ける必要がある。
That is, when detecting a flaw in a steel bar and a wire rod manufactured by hot rolling by eddy current flaw detection, it is easy to detect a whisker-like thing in which the surface of the flaw is cooled and becomes a magnetic substance. In FIG. 3, the non-magnetic material has a Curie temperature of about 790 ° C. or higher. The Curie temperature is the place where the steel transforms and the magnetism changes, and noise will occur frequently when eddy current flaw detection occurs near this, so it must be avoided.

【0014】渦流探傷としてもうひとつ重要なことは、
渦電流の浸透深さがあるということである。浸透深さδ
は、次式で示される; δ=√(ρ/πfμ) ρ:電気固有抵抗 μ:透磁率 f:周波数 すなわち、高周波の場合は浸透深さδは小さくなり、低
周波の場合は浸透深さδは大きくなる。
Another important thing as an eddy current flaw detection is
It means that there is a penetration depth of eddy current. Penetration depth δ
Is expressed by the following formula: δ = √ (ρ / πfμ) ρ: Electric resistivity μ: Permeability f: Frequency That is, the penetration depth δ becomes smaller at high frequencies and the penetration depth at low frequencies. δ becomes large.

【0015】本発明で検出しようとする欠陥の主要なも
のは、浅く長いヘゲ状の疵と、深く被検材に噛込んだ異
物噛込みである。上述の原理からすれば、ヘゲ状の疵は
高周波での探傷がよく、異物噛込みは低周波での探傷が
よいということになる。これを実現するには、高周波と
低周波で同時に探傷ができる多重周波数渦流探傷法が必
要となる。一方、同一周波数の場合でも、検出コイル(1
8)に誘起する電圧Vの、疵対応成分の、励磁交流に対す
る位相ずれ(θ1,θ2)はヘゲ状の疵と異物噛込みで異
なり、電圧Vから疵対応成分を分離(摘出)する場合、
疵成分摘出位相を、疵種当てに定めるのが、各種の疵を
それぞれ高精度に検出する上で好ましい。
The main defects to be detected in the present invention are shallow and long bald defects and foreign matter biting deeply into the test material. According to the above-mentioned principle, the flaw-like flaws are good for flaw detection at high frequency, and the foreign matter biting is good at flaw detection at low frequency. In order to realize this, a multi-frequency eddy current flaw detection method capable of flaw detection at high frequency and low frequency at the same time is required. On the other hand, even at the same frequency, the detection coil (1
The phase shift (θ 1 , θ 2 ) of the flaw-corresponding component of the voltage V induced in 8) with respect to the excitation AC is different between the bald-shaped flaw and the foreign matter biting, and the flaw-corresponding component is separated (extracted) from the voltage V. If you do
It is preferable to set the flaw component extraction phase to the flaw type target in order to detect various flaws with high accuracy.

【0016】本発明では、鋼材(17)が貫通する単一の励
磁コイル(16)に高周波f1の電流と低周波f2の電流を
重畳して通電し、検出コイル(18)に誘起する高周波f1
成分と低周波f2成分を摘出してそれぞれに基づいて疵
検出を行なうので、例えば、f1をヘゲ状の疵検出に適
した値に、f2を異物噛込みの検出に適した値に定める
ことにより、両種の疵を共に高精度で検出しうる。加え
て、検出コイル(18)に誘起する高周波f1の電圧の、第
1の位相ずれ(θ1)がある第1成分を抽出し、同様に低
周波f2の電圧の、第2の位相ずれ(θ2)がある第2成
分を抽出してそれぞれに基づいて疵検出を行なうので、
例えば、第1の位相ずれ(θ1)をヘゲ状の疵検出に適し
た値に、第2の位相ずれ(θ2)を異物噛込みの検出に適
した値に定めることにより、両種の疵を共に、更に高精
度で検出しうる。
According to the present invention, the high-frequency f1 current and the low-frequency f2 current are superposed on the single exciting coil (16) through which the steel material (17) penetrates, and the high-frequency f1 induced in the detection coil (18) is induced.
Since the component and the low-frequency f2 component are extracted and the flaw detection is performed based on each of them, for example, f1 is set to a value suitable for detecting a bald defect, and f2 is set to a value suitable for detecting foreign matter trapping. Thus, both types of flaws can be detected with high accuracy. In addition, the first component of the voltage of high frequency f1 induced in the detection coil (18) having the first phase shift (θ 1 ) is extracted, and similarly the second component of the voltage of low frequency f2 (second phase shift ( Since the second component with θ 2 ) is extracted and flaw detection is performed based on each,
For example, by setting the first phase shift (θ 1 ) to a value suitable for detecting a bald defect, and the second phase shift (θ 2 ) to a value suitable for detecting foreign matter trapping, both types of Both defects can be detected with higher accuracy.

【0017】[0017]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(2) 本発明の第2態様の方法は、励磁コイルおよび
検出コイルを含む探傷コイルを用いる鋼材の渦流探傷に
おいて、鋼材(17)が貫通する単一の励磁コイル(16)に高
周波f1の電流と低周波f2の電流を重畳して通電し、
検出コイル(18)に誘起する前記高周波f1の電圧の、前
記励磁コイル(16)の高周波f1の電流に対して第1の位
相ずれ(θ1)がある第1成分を抽出し、この第1成分を
ベクトルで表わし、ベクトルの方向(x1,y1)が設定範囲
内でベクトルの長さ(v1)が設定値以上のとき疵と検出
し、かつ、前記検出コイル(18)に誘起する前記低周波f
2の電圧の、前記励磁コイル(16)の低周波f2の電流に
対して第2の位相ずれ(θ2)がある第2成分を抽出し、
この第2成分をベクトルで表わし、ベクトルの方向(x2,
y2)が設定範囲内でベクトルの長さ(v2)が設定値以上の
とき疵と検出する。
(2) According to the method of the second aspect of the present invention, in eddy current flaw detection of a steel material using a flaw detection coil including an excitation coil and a detection coil, a high-frequency f1 current is applied to a single excitation coil (16) through which the steel material (17) penetrates. And a low frequency f2 current are superposed and energized,
A first component of the voltage of the high frequency f1 induced in the detection coil (18) having a first phase shift (θ 1 ) with respect to the current of the high frequency f1 of the exciting coil (16) is extracted, and the first component is extracted. The component is represented by a vector, and when the vector direction (x 1 , y 1 ) is within the set range and the vector length (v 1 ) is greater than or equal to the set value, it is detected as a flaw and induced in the detection coil (18). The low frequency f
A second component of the voltage of 2 having a second phase shift (θ 2 ) with respect to the low frequency f2 current of the exciting coil (16) is extracted,
This second component is represented by a vector, and the vector direction (x 2 ,
If y 2 ) is within the setting range and the vector length (v 2 ) is greater than or equal to the setting value, a defect is detected.

【0018】すなわち、第1成分および第2成分をベク
トルで表わし、ベクトルの方向(x,y)が設定範囲内でベ
クトルの長さ(v)が設定値以上のとき疵と検出する。ベ
クトルは例えば図3上に示す矢印であり、疵(例えばク
ラック)の場合には、ベクトルの方向は、特定の範囲内
となり、前記設定範囲を疵の場合の範囲に定めることに
より、実質上疵のみが検出される。ベクトルの長さ(v)
は、疵の場合には略疵の大きさ(広がりおよび深さ)に
対応するので該設定値を、検出すべき最小疵サイズ対応
値に定めればよい。
That is, the first component and the second component are represented by vectors, and when the vector direction (x, y) is within the set range and the vector length (v) is equal to or larger than the set value, a flaw is detected. The vector is, for example, an arrow shown in FIG. 3, and in the case of a flaw (for example, a crack), the direction of the vector is within a specific range, and by setting the set range to the range of the flaw, the flaw is substantially damaged. Only detected. Vector length (v)
In the case of a flaw, since it corresponds to the size (spreading and depth) of the flaw, the set value may be set to the minimum flaw size corresponding value to be detected.

【0019】(3) 本発明の単数励磁コイル方式によ
る多重周波数渦流探傷装置は、鋼材(17)が貫通する単一
の励磁コイル(16);前記鋼材(17)に発生する磁束変化に
対応する電圧を誘起する検出コイル(18);前記励磁コイ
ル(16)に高周波f1の電流と低周波f2の電流を同時に
連続して通電する通電手段(1〜5,14,15);前記検出コイ
ル(18)に誘起する前記高周波f1の電圧を摘出する第1
フィルタ(101);第1フィルタ(101)が摘出した電圧の、
前記励磁コイル(16)の高周波f1の電流に対して第1の
位相ずれ(θ1)がある第1成分を抽出し、この第1成分
より、それをベクトルで表わす場合の直交2成分(x,y)
および長さ(v)の少くとも一者を含む第1ベクトル情報
を算出する第1成分検出手段(91,111,121);第1ベクト
ル情報を量子化する第1評価手段(131);前記検出コイ
ル(18)に誘起する前記低周波f2の電圧を摘出する第2
フィルタ(102);第2フィルタ(102)が摘出した電圧の、
前記励磁コイル(16)の低周波f2の電流に対して第2の
位相ずれ(θ2)がある第2成分を抽出し、この第2成分
より、それをベクトルで表わす場合の直交2成分(x,y)
および長さ(v)の少くとも一者を含む第2ベクトル情報
を算出する第2成分検出手段(92,112,122);および、第
2ベクトル情報を量子化する第2評価手段(132);を備
える。
(3) The multi-frequency eddy current flaw detector using the single excitation coil system of the present invention corresponds to a single excitation coil (16) through which a steel material (17) penetrates; and a change in magnetic flux generated in the steel material (17). Detecting coil (18) for inducing a voltage; Energizing means (1 to 5, 14, 15) for simultaneously and continuously applying a high frequency f1 current and a low frequency f2 current to the exciting coil (16); 18) The first to extract the voltage of the high frequency f1 induced in
Filter (10 1 ); of the voltage extracted by the first filter (10 1 ),
A first component having a first phase shift (θ 1 ) with respect to the high frequency f1 current of the exciting coil (16) is extracted, and from this first component, two orthogonal components (x , y)
And first component detecting means (9 1 , 11 1 , 12 1 ) for calculating first vector information including at least one of the length (v); first evaluating means (13) for quantizing the first vector information. 1 ); a second for extracting the voltage of the low frequency f2 induced in the detection coil (18)
Filter (10 2 ); of the voltage extracted by the second filter (10 2 ),
A second component having a second phase shift (θ 2 ) with respect to the low frequency f2 current of the exciting coil (16) is extracted, and from this second component, two orthogonal components (in the case of being represented by a vector) x, y)
And second component detecting means (9 2 , 11 2 , 12 2 ) for calculating second vector information including at least one of the length (v); and second evaluating means for quantizing the second vector information. (13 2 );

【0020】(4) 本発明の単数励磁コイル方式によ
る多重周波数渦流探傷装置は、鋼材(17)が貫通する単一
の励磁コイル(16);前記鋼材(17)に発生する磁束変化に
対応する電圧を誘起する検出コイル(18);前記励磁コイ
ル(16)に高周波f1の電流と低周波f2の電流を同時に
連続して通電する通電手段(1〜5,14,15);前記検出コイ
ル(18)に誘起する前記高周波f1の電圧を摘出する第1
フィルタ(101);第1フィルタ(101)が摘出した電圧の、
前記励磁コイル(16)の高周波f1の電流に対して第1の
位相ずれ(θ1)がある第1成分を抽出し、この第1成分
を、ベクトルの方向と長さで表わす第1ベクトル情報
(x,y,v)に変換する、第1成分検出手段(91,111,121);
第1ベクトル情報(x,y,v)が、第1設定範囲内の方向の
ものであるとき、それが表わす長さ(v)を量子化(S,L,M)
する第1評価手段(131);前記検出コイル(18)に誘起す
る前記低周波f2の電圧を摘出する第2フィルタ(1
02);第2フィルタ(102)が摘出した電圧の、前記励磁コ
イル(16)の低周波f2の電流に対して第2の位相ずれ
2)がある第2成分を抽出し、この第2成分を、ベク
トルの方向と長さで表わす第2ベクトル情報(x,y,v)に
変換する、第2成分検出手段(92,112,122);および、第
2ベクトル情報(x,y,v)が、第2設定範囲内の方向のも
のであるとき、それが表わす長さ(v)を量子化する第2
評価手段(132);を備える。
(4) The multi-frequency eddy current flaw detector using the single excitation coil method of the present invention corresponds to a single excitation coil (16) through which the steel material (17) penetrates; the magnetic flux change generated in the steel material (17). Detecting coil (18) for inducing a voltage; Energizing means (1 to 5, 14, 15) for simultaneously and continuously applying a high frequency f1 current and a low frequency f2 current to the exciting coil (16); 18) The first to extract the voltage of the high frequency f1 induced in
Filter (10 1 ); of the voltage extracted by the first filter (10 1 ),
The first vector information having a first phase shift (θ 1 ) with respect to the high frequency f1 current of the exciting coil (16) is extracted, and the first component is expressed by the direction and length of the vector.
First component detecting means (9 1 , 11 1 , 12 1 ), which is converted into (x, y, v);
When the first vector information (x, y, v) is in the direction within the first set range, the length (v) represented by it is quantized (S, L, M).
First evaluation means (13 1 ); second filter (1) for extracting the voltage of the low frequency f2 induced in the detection coil (18)
0 2 ); The second phase shift of the voltage extracted by the second filter (10 2 ) with respect to the low frequency f2 current of the exciting coil (16)
Second component detecting means (9 2 ) for extracting a second component having (θ 2 ) and converting the second component into second vector information (x, y, v) represented by the direction and length of the vector. , 11 2 , 12 2 ); and when the second vector information (x, y, v) is in the direction within the second set range, the second length (v) represented by the second vector information (x, y, v) is quantized.
Evaluating means (13 2 );

【0021】(5) 本発明の単数励磁コイル方式によ
る多重周波数渦流探傷装置は、上記(3)又は(4)に加え
て、第1評価手段(131)が発生する量子化デ−タ(S,M,L)
の同一のものの発生頻度を検出する第1頻度検出手段(1
9,21);および、第2評価手段(132)が発生する量子化デ
−タ(S,M,L)の同一のものの発生頻度を検出する第2頻
度検出手段(19,21);を更に備える。
(5) In addition to the above (3) or (4), the multi-frequency eddy current flaw detector by the single excitation coil system of the present invention has a quantization data ( 1 ) generated by the first evaluation means (13 1 ). (S, M, L)
First frequency detection means (1
9, 21); and, quantized de second evaluation means (13 2) is generated - data (S, M, second frequency detecting means for detecting the frequency of occurrence of the same ones L) (19, 21); Is further provided.

【0022】(6) 本発明の単数励磁コイル方式によ
る多重周波数渦流探傷装置は、上記(5)に加えて、第1
又は第2頻度検出手段(19,21)が検出した頻度が設定値
以上の時警報を発生する警報手段(21,24);および、該
頻度が設定値以上に対応する鋼材位置にマーキングする
手段(21,800);を更に備える。
(6) In addition to the above (5), the multi-frequency eddy current flaw detector according to the present invention, which uses the single excitation coil system, has the first
Alternatively, an alarm means (21, 24) for issuing an alarm when the frequency detected by the second frequency detection means (19, 21) is equal to or higher than a set value; and a means for marking a steel material position corresponding to the frequency equal to or higher than the set value. (21,800); is further provided.

【0023】(7) 本発明の単数励磁コイル方式によ
る多重周波数渦流探傷装置は、上記(3)又は(4)に加え
て、検出コイル(18)の誘起電圧が、鋼材(17)が検出コイ
ル(18)の位置にあることによる高レベルであるかを検出
するレベル検出手段(21);鋼材(17)の移動速度に比例す
る周波数の電気パルスを発生する同期パルス発生手段(2
9);および、前記レベル検出手段(21)が低レベルを検出
しているときおよび同期パルス発生手段(29)の電気パル
ス発生がないとき、探傷不可を示す情報を発生する警告
手段(21,24);を更に備える。
(7) In addition to the above (3) or (4), in the multi-frequency eddy current flaw detector using the single excitation coil method of the present invention, the induced voltage of the detection coil (18) is the steel material (17) is the detection coil. Level detection means (21) for detecting whether the level is high due to being at the position (18); Synchronous pulse generation means (2) for generating an electric pulse having a frequency proportional to the moving speed of the steel material (17)
9); and, when the level detecting means (21) detects a low level and when the synchronizing pulse generating means (29) does not generate an electric pulse, a warning means (21, 24); is further provided.

【0024】(8) 本発明の単数励磁コイル方式によ
る多重周波数渦流探傷装置は、上記(5)に加えて、鋼材
(17)の表面温度を測定する手段(900);該表面温度がキ
ューリー温度以上の時警報を発生する手段(21,24);鋼
材(17)の表面温度と第1および第2頻度検出手段(19,2
1)が検出した頻度に基づいて疵有無を決定する疵認識手
段(21);および、鋼材(17)の表面温度および疵有を出力
する手段(21,26);を更に備える。
(8) In addition to the above (5), the multi-frequency eddy current flaw detector using the single excitation coil system of the present invention is a steel material.
Means (900) for measuring the surface temperature of (17); Means (21, 24) for generating an alarm when the surface temperature is above the Curie temperature; Surface temperature of the steel material (17) and first and second frequency detecting means (19,2
It further comprises a flaw recognition means (21) for determining the presence / absence of a flaw based on the frequency detected by 1); and a means (21, 26) for outputting the surface temperature and the flaw presence of the steel material (17).

【0025】(9) 本発明の単数励磁コイル方式によ
る多重周波数渦流探傷装置は、上記(3)又は(4)に加え
て、第1成分および第2成分それぞれのベクトルの直交
2成分(x,y)のそれぞれのレベルを調整する第1および
第2感度調整手段(111,112);鋼材(17)の断面サイズ情
報(直径)対応で、励磁コイル(16)の通電周波数f1,f
2,第1および第2フィルタ(101,102)それぞれの通過
帯域,第1および第2の位相ずれ(θ12)、ならび
に、第1および第2評価手段(131,132)の量子化しきい
値、をメモリに保持し、与えられた断面サイズ情報(直
径)に対応するこれらの情報をメモリより読出して、読
出した情報が示す値を、前記通電手段(1〜5,14,15),第
1および第2フィルタ(101.102),第1および第2成分
検出手段(91,111,121/92,112,122)、ならびに、第1お
よび第2評価手段(131,132)に設定するパラメ−タ設定
手段(22);および、該パラメ−タ設定手段(22)に断面サ
イズ情報(直径)を与える入力手段(33/23);を更に備え
る。
(9) In addition to the above (3) or (4), the multi-frequency eddy current flaw detector using the single excitation coil system of the present invention has, in addition to the above (3) or (4), orthogonal two components (x, y) first and second sensitivity adjusting means (11 1 , 11 2 ) for adjusting respective levels; corresponding to cross-sectional size information (diameter) of the steel material (17), energization frequencies f1, f of the exciting coil (16)
2, the pass bands of the first and second filters (10 1 , 10 2 ), the first and second phase shifts (θ 1 , θ 2 ), and the first and second evaluation means (13 1 , 13). The quantization threshold value of 2 ) is held in the memory, these pieces of information corresponding to given cross-section size information (diameter) are read from the memory, and the value indicated by the read information is set to the energizing means (1 to 5). , 14, 15), first and second filter (10 1.10 2), first and second component detecting means (9 1, 11 1, 12 1/9 2, 11 2, 12 2), and, Parameter setting means (22) set in the first and second evaluation means (13 1 , 13 2 ); and an input means (33) for giving sectional size information (diameter) to the parameter setting means (22). / 23); is further provided.

【0026】本発明の他の目的および特徴は、図面を参
照した以下の実施例の説明より明らかになろう。
Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.

【0027】[0027]

【実施例】図2に、本発明の一実施例の概要を示し、図
1に、図2に示す渦流探傷機700および探傷処理回路
100,200の構成を示す。発振回路1は、12MH
Zの周波数のパルスを発生し、分周比が可変の第1組の
分周回路21,22に与える。分周回路21は、マイクロ
コンピュ−タMPU21が与えた第1分周比で12MH
Zを分周した第1パルスを発生する。第1分周比は小さ
い値であり、第1パルスは、後述の高周波f1信号の位
相同期パルスである。分周回路22は、マイクロコンピ
ュ−タMPU21が与えた第2分周比で12MHZを分
周した第2パルスを発生する。第2分周比は大きい値で
あり、第2パルスは、後述の低周波f2信号の位相同期
パルスである。
FIG. 2 shows an outline of one embodiment of the present invention, and FIG. 1 shows the configurations of the eddy current flaw detector 700 and flaw detection processing circuits 100 and 200 shown in FIG. The oscillation circuit 1 is 12 MH
A pulse having a frequency of Z is generated and applied to the first set of frequency dividing circuits 2 1 and 2 2 whose frequency dividing ratio is variable. The frequency dividing circuit 2 1 is 12 MH at the first frequency dividing ratio given by the microcomputer MPU21.
A first pulse obtained by dividing Z is generated. The first frequency division ratio has a small value, and the first pulse is a phase synchronization pulse of a high frequency f1 signal described later. Frequency dividing circuit 2 2, microcomputer - generating a second pulse derived by dividing the 12MHZ in second division ratio data MPU21 gave. The second frequency division ratio has a large value, and the second pulse is a phase synchronization pulse of the low frequency f2 signal described later.

【0028】第2組の分周回路31,32は、それぞれ高
周波f1,f2信号(サイン波)の一周期を定めるパル
スを発生し、整形回路41,42がサイン波に整形し、バ
ッファアンプ51,52がサイン波のレベル調整をする。
このようにして、高周波f1および低周波f2の交流サ
イン波信号f1,f2が生成されて混合器14に与えら
れる。混合器14は交流サイン波信号f1,f2を合成
する。合成波は電力増幅器15に与えられ、該合成波に
比例するレベルの電圧が貫通型励磁コイル16に印加さ
れる。この励磁コイル16のコイル巻き中心位置を、被
検材(熱間圧延により製造される棒鋼又は線材)が通過
する。
The second set of frequency dividing circuits 3 1 and 3 2 generate pulses that define one period of the high frequency f1 and f2 signals (sine waves), and the shaping circuits 4 1 and 4 2 shape the signals into sine waves. , The buffer amplifiers 5 1 and 5 2 adjust the level of the sine wave.
In this way, the AC sine wave signals f1 and f2 of the high frequency f1 and the low frequency f2 are generated and given to the mixer 14. The mixer 14 synthesizes the AC sine wave signals f1 and f2. The composite wave is applied to the power amplifier 15, and a voltage of a level proportional to the composite wave is applied to the feedthrough excitation coil 16. A test material (a steel bar or a wire manufactured by hot rolling) passes through the coil winding center position of the exciting coil 16.

【0029】検出コイル18は、励磁コイル16に加え
られる交流電圧の周波数と実質上同一の周波数の電圧が
誘起する。検出コイル18が発生する電圧は、増幅器7
1,72で増幅される。フィルタ81,82が、それぞれ高
周波f1成分および低周波f2成分を抽出し、位相検波
回路91,92が、位相同期検波により各成分を更に、ベ
クトル表現の直交2成分Xo(例えばsin値)および
Yo(cos値)に変換される。位相同期信号は、0°
/90°サンプルパルス発生回路61,62が、位相検波
回路91,92に与える。
The detection coil 18 induces a voltage having substantially the same frequency as the frequency of the AC voltage applied to the exciting coil 16. The voltage generated by the detection coil 18 is the amplifier 7
It is amplified by 1 , 7 2 . The filters 8 1 and 8 2 respectively extract the high frequency f1 component and the low frequency f2 component, and the phase detection circuits 9 1 and 9 2 further add each component by the phase synchronous detection to the orthogonal two component Xo (for example sin) of the vector representation. Value) and Yo (cos value). Phase synchronization signal is 0 °
The / 90 ° sample pulse generation circuits 6 1 and 6 2 provide the phase detection circuits 9 1 and 9 2 .

【0030】一般に、被検材17の表面性状による雑音
は高周波成分をもち、被検材の寸法,材質変化,探傷速
度による信号は低周波成分をもっている。このため、こ
れらの直交2成分信号は、目的の周波数以外の高周波,
低周波信号を含んでいる。ハイパス/ローパスフィルタ
ー回路101,102がこのような不要なノイズ信号を除
去する。
Generally, the noise due to the surface properties of the material 17 to be inspected has a high frequency component, and the signal due to the dimension of the material to be inspected, the material change and the flaw detection speed has a low frequency component. Therefore, these quadrature two-component signals have high frequencies other than the target frequency,
Contains low frequency signals. The high pass / low pass filter circuits 10 1 and 10 2 remove such unnecessary noise signals.

【0031】次に、直交2成分信号は感度調整回路11
1,112で成分別に振幅調整されたのち、位相器ベクト
ル発生回路121,122で以下の式にしたがって、疵存
在による位相ずれを有する電圧成分をベクトル表現で表
わす直交2成分信号x,yに変換される; 位相器ベクトル発生回路121: x=X0cosθ1−Y0sinθ1 y=X0sinθ1+Y0cosθ10,Y0:位相器前信号 x,y:位相器後信号 θ1:位相角度(ヘゲ状の疵対応の電圧成分の、励磁電
圧に対する位相ずれ:実験により求めた設定値) 位相器ベクトル発生回路122: x=X0cosθ2−Y0sinθ2 y=X0sinθ2+Y0cosθ20,Y0:位相器前信号 x,y:位相器後信号 θ1:位相角度(異物噛込み疵対応の電圧成分の、励磁
電圧に対する位相ずれ:実験により求めた設定値) 位相器ベクトル発生回路121,122はさらに、x信
号,y信号からベクトルの長さ v=√(x2+y2) を算出する。位相器ベクトル発生回路121,122が発
生するx信号,y信号は、合せてベクトルの方向を意味
する。
Next, the quadrature two-component signal is supplied to the sensitivity adjusting circuit 11
After the amplitudes of the components are adjusted by 1 and 11 2 , the quadrature two-component signal x, which expresses the voltage component having the phase shift due to the presence of a flaw by a vector expression, in the phase shifter vector generation circuits 12 1 and 12 2 according to the following equation. Phaser vector generation circuit 12 1 : x = X 0 cos θ 1 −Y 0 sin θ 1 y = X 0 sin θ 1 + Y 0 cos θ 1 X 0 , Y 0 : Phaser pre-signal x, y: phase Post-combination signal θ 1 : Phase angle (phase shift of voltage component corresponding to a bald defect with respect to excitation voltage: set value obtained by experiment) Phaser vector generation circuit 12 2 : x = X 0 cos θ 2 -Y 0 sin θ 2 y = X 0 sin θ 2 + Y 0 cos θ 2 X 0 , Y 0 : signal before phase shifter x, y: signal after phase shifter θ 1 : phase angle (phase of voltage component corresponding to foreign matter trapping flaw with respect to excitation voltage) Deviation: Setting value obtained by experiment) Vessel vector generating circuit 12 1, 12 2 further, x signal, calculates the length v = √ vector a (x 2 + y 2) from the y signal. The x signal and the y signal generated by the phaser vector generation circuits 12 1 and 12 2 collectively mean the vector direction.

【0032】位相器ベクトル発生回路121,122が発
生する上記2組のx信号,y信号は、MPU21を介し
てオシロスコープOSPに与えられ、オシロスコープO
SPは、x信号,y信号に従ったベクトル表示(2組)
を行う。
The above-mentioned two sets of x signal and y signal generated by the phase shifter vector generation circuits 12 1 and 12 2 are given to the oscilloscope OSP via the MPU 21 and the oscilloscope O.
SP is vector display according to x signal and y signal (2 sets)
I do.

【0033】評価回路131,132は、x信号およびy
信号(両者で表現されるベクトル方向)が表わす方向
が、疵存在範囲(設定範囲)であるかをチェックして、
そうであると、v信号を、S(第1しきい値未満),M
(第1しきい値以上第2しきい値未満)およびL(第2
しきい値以上)に量子化する。これを所定短周期で繰返
す。
The evaluation circuits 13 1 and 13 2 receive the x signal and the y signal.
Check if the direction represented by the signal (vector direction expressed by both) is the flaw existing range (set range),
If so, the v signal is changed to S (less than the first threshold value), M
(Equal to or more than the first threshold and less than the second threshold) and L (second
Quantize above threshold value). This is repeated in a predetermined short cycle.

【0034】カウンタ−回路(6個のカウンタ)19
は、評価回路131,132が発生するS,M,L(2
組、計6個)のそれぞれをカウントアップする。探傷実
績処理MPU21には、パルス発生器28が発生する10
0msec周期のパルスに応答して、それが到来する度に、
カウンター回路19のカウントデ−タ(6個)を読込み
その後直ちにカウンター回路19をリセット(カウント
値0に初期化)すると共に、位置レジスタ(内部メモリ
の一領域)のデ−タを、被検材17の速度(F/Vコン
バ−タ27の出力)×100msec相当値分、インクレメン
ト(カウントアップ)する。なお、圧延材センサ−36が
被検材17の先端到達を検出したときにタイマ−盤25
のタイマ−がトリガされて、設定時間後にタイムオ−バ
信号をMPU21に与える。MPU21は、このタイム
オ−バ信号を受けると、渦流探傷機700および探傷処
理回路100,200に探傷開始を指示し、検出コイル
18の電圧(平均値又は実効値)を監視してそれが被検
材17存在レベルに上昇した時点に位置レジスタを初期
化し、そしてパルス発振器28が発生するパルス(100ms
ec)に応答するカウントデ−タ(6個)の読込みを開始
するので、位置レジスタのデ−タは、被検材17の先端
を起点とした渦流探傷位置を表わす。
Counter-circuit (six counters) 19
The evaluation circuit 13 1, 13 S 2 is generated, M, L (2
Each group of 6 pieces) is counted up. The pulse generator 28 is generated in the flaw detection result processing MPU 21 10
In response to a pulse of 0 msec period, each time it arrives,
The count data (six pieces) of the counter circuit 19 is read, and immediately thereafter, the counter circuit 19 is reset (count value is initialized to 0), and the data of the position register (one area of the internal memory) is read. The speed (output of F / V converter 27) x 100 msec equivalent value is incremented (counted up). When the rolled material sensor 36 detects the arrival of the tip of the material 17 to be tested, the timer board 25
The timer is triggered to give a time-over signal to the MPU 21 after the set time. Upon receiving this time-over signal, the MPU 21 instructs the eddy current flaw detector 700 and flaw detection processing circuits 100 and 200 to start flaw detection, monitors the voltage (average value or effective value) of the detection coil 18, and detects it. The position register is initialized when the material 17 reaches the existing level, and the pulse generated by the pulse oscillator 28 (100 ms
Since the reading of the count data (6 pieces) in response to ec) is started, the data of the position register represents the eddy current flaw detection position starting from the tip of the test material 17.

【0035】探傷実績処理MPU21は、カウントデ−
タ(f1宛てS,M,Lそれぞれのカウント値&f2宛
てS,M,Lそれぞれのカウント値6個)を読込む度
に、カウントデ−タ(6個)をチェックして、カウント
値が1以上のデ−タ(f1/f2識別デ−タ+S/M/
L識別デ−タ+カウントデ−タ)、および、そのときの
位置レジスタのデ−タ(被検材17先端を起点とした探
傷位置)を、記録計26に与えると共に、パソコン22
に転送する。パソコン22は受信したデ−タをプリンタ
35に与える。記録計26は、横軸を探傷位置とし、縦
軸をカウント値とた座標系(6組)上に、デ−タをプロ
ット(打点)する。プリンタ35は、f1宛てS,M,
Lそれぞれのカウント値&f2宛てS,M,Lそれぞれ
のカウント値6個のそれぞれに、探傷位置とカウントデ
−タをプリントアウトする。
The flaw detection result processing MPU 21 uses a count data
Each time the data (count value of S, M, L for f1 & 6 count values of S, M, L for f2) is read, the count data (6) is checked and the count value is 1 or more. Data (f1 / f2 identification data + S / M /
L identification data + count data) and position register data at that time (a flaw detection position starting from the tip of the material 17 to be inspected) are given to the recorder 26 and the personal computer 22
Transfer to. The personal computer 22 gives the received data to the printer 35. The recorder 26 plots (dots) data on a coordinate system (6 sets) in which the horizontal axis represents the flaw detection position and the vertical axis represents the count value. The printer 35 sends S, M,
The flaw detection position and the count data are printed out for each of the six count values S, M, and L for the count value & f2 for each L.

【0036】MPU21は、量子化(S,M,L)それ
ぞれに宛てられたしきい値とカウント値とを比較して、
カウント値がしきい値以上のとき、疵有りとして、警報
盤24に警報発生を指示し、それからパルス発生器29
が発生するパルスのカウントを開始して、カウント値
が、疵有り位置がマ−キング装置800に到達するタイ
ミング値に合致したときに、マ−キング装置800にマ
−ク付け指示を与える。警報盤24は1回の指示に応答
して所定時間の間ブザ−を鳴らしかつ警報ランプを点灯
する。該所定時間内に更に警報発生指示があると、それ
から更に所定時間の間警報を継続する。
The MPU 21 compares the threshold value assigned to each of the quantization (S, M, L) with the count value,
When the count value is equal to or larger than the threshold value, it is determined that there is a defect, and the alarm panel 24 is instructed to generate an alarm.
Is started, and when the count value matches the timing value at which the flawed position reaches the marking device 800, a marking instruction is given to the marking device 800. The alarm panel 24 responds to one instruction by sounding a buzzer and turning on an alarm lamp for a predetermined time. If there is a further alarm generation instruction within the predetermined time, the alarm is continued for a further predetermined time.

【0037】パソコンのメモリには、線径別の探傷条件
となる探傷周波数f1,f2(分周回路21,22宛ての
分周比),感度(調整回路111,112宛て),フィル
ターの通過帯域(101,102宛て),位相θ1,θ
2(位相器ベクトル発生回路121,122宛て),疵判
定のしきい値(MPU21宛て)が格納されている。こ
の情報群をテーブルと称す。内容を表1,表2に例示し
た。
In the memory of the personal computer, the flaw detection frequencies f1 and f2 (division ratios to the frequency dividing circuits 2 1 and 2 2 ) which are flaw detection conditions for each wire diameter, the sensitivity (to the adjusting circuits 11 1 and 11 2 ), Filter pass band (to 10 1 and 10 2 ), phase θ 1 and θ
2 (to the phase shifter vector generation circuits 12 1 and 12 2 ) and the threshold value for flaw determination (to the MPU 21) are stored. This information group is called a table. The contents are illustrated in Table 1 and Table 2.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】探傷前に上位計算機23が、被検材17の
線径デ−タをパソコン22に与えるか、あるいはオペレ
−タが操作ボ−ド33からパソコン22に入力する。パ
ソコン22は線径デ−タの転送又は入力があると、線径
デ−タが表わす線径に対応付けられている上述の、探傷
周波数f1,f2,感度,フィルターの通過帯域,位相
θ1,θ2,疵判定のしきい値をテ−ブルから読み出して
MPU21に転送する。MPU21は、これらのデ−タ
が示す値を探傷処理装置100,200およびそれ自身
(しきい値に関して)に設定する。
Before the flaw detection, the host computer 23 gives the wire diameter data of the material 17 to be inspected to the personal computer 22, or the operator inputs it to the personal computer 22 from the operation board 33. When the personal computer 22 transfers or inputs the wire diameter data, the flaw detection frequencies f1 and f2, the sensitivity, the pass band of the filter, and the phase θ 1 are associated with the wire diameter represented by the wire diameter data. , Θ 2 , the threshold value for defect determination are read from the table and transferred to the MPU 21. The MPU 21 sets the values indicated by these data in the flaw detection processing devices 100, 200 and itself (with respect to the threshold value).

【0041】仕上圧延機の最終ロールに連結されたパル
ス発生器29が圧延速度に比例した周波数の指速パルス
を発生し、これがインタ−フェ−ス20およびF/Vコ
ンバータ27に与えられる。F/Vコンバータ27は、
この指速パルスの周波数に比例するレベルの、圧延速度
信号(アナログ電圧)を発生し、インタ−フェ−ス20
に与える。MPU21は、圧延速度信号をデジタル変換
して読込む。
A pulse generator 29 connected to the final roll of the finish rolling mill generates finger speed pulses having a frequency proportional to the rolling speed, which are supplied to the interface 20 and the F / V converter 27. The F / V converter 27 is
A rolling speed signal (analog voltage) having a level proportional to the frequency of the finger speed pulse is generated, and the interface 20
Give to. The MPU 21 digitally converts the rolling speed signal and reads it.

【0042】渦流探傷機700の下流には、マ−キング
装置800があり、MPU21が与えるマ−ク付け指示
に応答して塗料吹きつけノズルと加圧塗料液槽との間の
電磁弁を短時間の間開として、被検材17に塗料を噴射
する。
A marking device 800 is provided downstream of the eddy current flaw detector 700, and in response to a marking instruction given by the MPU 21, a solenoid valve between the paint spraying nozzle and the pressurized paint liquid tank is shortened. The coating is sprayed on the material 17 to be inspected for a period of time.

【0043】検出コイル18と探傷処理装置100,2
00との接続不良とか断線等によりつながっていないと
いうことを防止するため、MPU21は、パルス発生器
29が所定周期以下でパルスを発生している間、検出コ
イル18の電圧(の平均値又は実効値)を監視し、これ
が被検材17なしレベルまで低下すると、警報盤24に
警報を出力する。
Detecting coil 18 and flaw detectors 100, 2
In order to prevent connection failure due to connection failure with 00, disconnection, etc., the MPU 21 controls the voltage of the detection coil 18 (an average value or an effective value of the voltage of the detection coil 18 while the pulse generator 29 generates pulses at a predetermined period or less). (Value) is monitored, and when it falls to a level without the test material 17, an alarm is output to the alarm board 24.

【0044】前述の原理で説明したように、渦流探傷は
疵の表面が冷えて磁性体となっているヘゲ状のものが検
出しやすい。これは逆に言うと被検材17と疵との温度
差がない場合、疵検出はしにくいということである。ま
た、キューリ温度付近は鋼が変態し磁性が変化しノイズ
が多発する。このため、被検材17に疵がないのに疵信
号が多発することになる。
As described in the above-mentioned principle, the eddy-current flaw detection is easily detected when the surface of the flaw is cooled and becomes a magnetic substance. Conversely, this means that if there is no temperature difference between the test material 17 and the flaw, it is difficult to detect the flaw. Further, near the Curie temperature, the steel transforms, the magnetism changes, and noise frequently occurs. Therefore, many flaw signals are generated even though the material 17 to be inspected has no flaws.

【0045】以上の理由により被検材17の表面温度測
定及び分布測定が必要となる。MPU21は、被検材1
7の表面温度および内部温度を測定する温度計900の
検出温度をデジタル変換して読込み、被検材17の表面
/内部温度差を算出する。検出温度がキューリ温度付近
の場合は警報盤24に警報を出力する。記録計26に
は、前述の疵検出デ−タと表面温度及び表面/内部温度
差を出力する。これは、製品を検査するラインのオペレ
ータの所でもモニタリングできる。これにより、疵有り
信号が多発し被検材表面温度がキューリ温度付近の場合
はキューリ温度の影響と判断できるし、疵有り信号があ
り表面/内部温度差が大きい場合は、被検材17に疵が
存在している可能性が高いと判断し、製品の外観検査を
する等に活用ができる。
For the above reasons, it is necessary to measure the surface temperature and the distribution of the test material 17. MPU21 is the test material 1
The temperature detected by the thermometer 900 for measuring the surface temperature and the internal temperature of 7 is digitally converted and read, and the surface / internal temperature difference of the test material 17 is calculated. When the detected temperature is near the Curie temperature, an alarm is output to the alarm board 24. The recorder 26 outputs the flaw detection data, the surface temperature, and the surface / internal temperature difference described above. This can also be monitored at the operator of the line inspecting the product. As a result, if there are many flawed signals and the surface temperature of the material to be inspected is near the Curie temperature, it can be judged to be the effect of the Curie temperature, and if there is a flawed signal and the surface / internal temperature difference is large, the material to be inspected 17 It is judged that there is a high possibility that there is a flaw, and it can be used for visual inspection of products.

【0046】次に数値設定例を示すと、多重周波数渦流
探傷法によるヘゲ疵および異物噛込みの探傷条件として
以下の条件を設定して探傷を行った。
Next, as an example of setting numerical values, flaw detection was carried out by setting the following conditions as flaw detection flaws by the multi-frequency eddy current flaw detection method and foreign matter entrapment.

【0047】 −第1例− 線径 :5.5φ 探傷周波数 :f1 10KHZ 異物噛込み検出用 f2 30KHZ ヘゲ疵検出用 評価モード :f1 y信号 f2 v信号 探傷温度 :1000℃ 図5に探傷結果を示す。上記の条件では10KHZの時
の疵信号の大きさは、異物噛込みa1>ヘゲ疵b1であ
り、異物噛込みの方が検出しやすいことがわかった。3
0KHZの時の疵信号の大きさは、逆に異物噛込みa2
<ヘゲ疵b2であることがわかった。また、図6のオシ
ロスコープOSPのベクトル表示をみると、異物噛込み
はy軸にそって安定的に信号が高く出力する傾向があ
り、ヘゲ疵はベクトルの向きや大きさがバラツク傾向が
あることから、評価モードは異物噛込み検出用の10K
HZはy信号で疵レベルを判定することとし、ヘゲ疵検
出用の30KHZはv信号で疵レベルを判定することと
した。
-First Example- Wire diameter: 5.5φ Detection frequency: f 1 10KHZ For foreign object trapping detection f 2 30KHZ For bald spot detection Evaluation mode: f 1 y signal f 2 v signal Detection temperature: 1000 ° C. 5 shows the flaw detection results. Under the above conditions, the magnitude of the flaw signal at 10 KHZ was foreign matter trapping a 1 > health flaw b 1 , and it was found that foreign matter trapping was easier to detect. 3
On the contrary, the magnitude of the flaw signal at 0 KHZ is that the foreign matter is caught a 2
<It was found to be bald defects b 2 . Further, looking at the vector display of the oscilloscope OSP of FIG. 6, a foreign substance trapping tends to stably output a high signal along the y-axis, and a bald defect tends to vary in the direction and size of the vector. Therefore, the evaluation mode is 10K for detecting foreign matter trapping.
HZ determines the flaw level with the y signal, and 30KHZ for detecting bald flaws determines the flaw level with the v signal.

【0048】この時の探傷チャートの例を図7に示す。
疵信号が出ている時は、被検材17の表面/内部温度差
が大きくなっている場合もあり、その位置にはヘゲ疵ま
たは異物噛込みがあることが確かめられた。
An example of the flaw detection chart at this time is shown in FIG.
When the flaw signal is output, the surface / internal temperature difference of the test material 17 may be large, and it has been confirmed that there is a bald flaw or foreign matter trapped at that position.

【0049】 −第2例− 線径 :5.5φ 探傷周波数:f1 120KHZ 異物噛込み検出用 f2 30KHZ ヘゲ疵検出用 評価モード:f1 v信号 角度範囲 35°〜90° f2 v信号 探傷温度 :1000℃ 図8に探傷結果を示す。疵信号の出方の傾向は、第1例
と同じではあるがベクトル表示をみると、異物噛込みの
疵発生の範囲は、角度(ベクトルの方向)35°〜90
°の範囲であり、それ以外の範囲はマスキングすること
で異物噛込みとヘゲ疵の判別は約2割向上した。
[0049] - a second example - wire diameter: 5.5Fai testing frequency: f 1 120 kHz foreign object biting detection f 2 30 kHz scab defect detection Evaluation Mode: f 1 v signal angular range 35 ° ~90 ° f 2 v Signal flaw detection temperature: 1000 ° C. FIG. 8 shows the flaw detection results. Although the tendency of the flaw signal to appear is the same as that in the first example, when viewing the vector display, the range of flaw occurrence due to foreign matter biting is from 35 ° to 90 ° in angle (direction of vector).
By masking the other range, the discrimination of foreign matter biting and bald spots was improved by about 20%.

【0050】 −第3例− 線径 :5.5φ 探傷周波数:f1 10KHZ 異物噛込み検出用 f2 20KHZ ヘゲ疵検出用 評価モード:f1 y信号 f2 v信号 探傷温度 :790℃ 図9に探傷結果を示す。探傷温度が790℃あたりであ
ることがわかる。790℃は、キューリ温度であるの
で、疵信号が多発していることがわかる。しかし、被検
材17の表面/内部温度差は大きくなっている所がない
ことがわかる。被検材17全体がキューリ温度なので、
警報盤に警報が出力された。
-Third example-Wire diameter: 5.5φ Detection frequency: f 1 10KHZ For foreign object trapping detection f 2 20KHZ For bald spot detection Evaluation mode: f 1 y signal f 2 v signal Detection temperature: 790 ° C 9 shows the flaw detection results. It can be seen that the flaw detection temperature is around 790 ° C. Since 790 ° C is the Curie temperature, it can be seen that many flaw signals are generated. However, it can be seen that there is no large difference in the surface / internal temperature difference of the test material 17. Since the entire material 17 to be tested is the Curie temperature,
An alarm was output on the alarm panel.

【0051】[0051]

【発明の効果】本発明の単数コイル方式による多重周波
数渦流探傷法によれば、2種類以上の傷の識別が可能で
ある。単数励磁コイル方式であるので、複数の渦流探傷
コイルを併設したり各周波数で探傷装置ごと交換したり
する必要はないので装置も大型化せず、操作も簡単であ
る。
According to the multi-frequency eddy current flaw detection method using the single coil method of the present invention, it is possible to identify two or more types of flaws. Since it is a single excitation coil system, it is not necessary to install a plurality of eddy current flaw detection coils side by side or replace the flaw detection equipment at each frequency, so the equipment does not become large and the operation is simple.

【0052】また、探傷温度も測定しているので疵によ
る温度変化があるか、キューリ温度で探傷していないか
のチェックを行っており、渦流探傷の疵検出結果との併
用化により、さらなる品質保証の正確さの向上が期待で
きる。
Further, since the flaw detection temperature is also measured, it is checked whether there is a temperature change due to a flaw or whether the flaw is not detected at the Curie temperature. By using the flaw detection result of the eddy current flaw detection in combination, the quality is further improved. The accuracy of the guarantee can be expected to improve.

【図面の簡単な説明】[Brief description of drawings]

【図1】 図2に示す渦流探傷機700および渦流探傷
処理回路100,200の構成を示すブロック図であ
る。
FIG. 1 is a block diagram showing the configurations of an eddy current flaw detector 700 and eddy current flaw detection processing circuits 100 and 200 shown in FIG.

【図2】 本発明の一実施例の構成概要を示すブロック
図である。
FIG. 2 is a block diagram showing a schematic configuration of an embodiment of the present invention.

【図3】 熱間圧延で製造される棒鋼のクラック,透磁
率,リフトオフおよび導電率に対する、渦流探傷コイル
の検出コイルのインピーダンスを示すグラフである。
FIG. 3 is a graph showing the impedance of the detection coil of the eddy current flaw detection coil with respect to cracks, magnetic permeability, lift-off and conductivity of a steel bar manufactured by hot rolling.

【図4】 熱間圧延で製造される棒鋼のヘゲ疵および異
物噛込みの平面および断面を示す疵形態図である。
FIG. 4 is a flaw form diagram showing a plan view and a cross section of a barge flaw and a foreign matter biting of a steel bar manufactured by hot rolling.

【図5】 図1に示す探傷装置による探傷結果例を示す
グラフである。
5 is a graph showing an example of a flaw detection result by the flaw detection device shown in FIG.

【図6】 図1に示すオシロスコ−プOSPの表示面に
現われるベクトルの先端位置を示すグラフである。
6 is a graph showing the tip position of a vector appearing on the display surface of the oscilloscope OSP shown in FIG.

【図7】 図1に示す探傷装置により得られる算出値お
よび測定値を示すグラフである。
7 is a graph showing calculated values and measured values obtained by the flaw detection apparatus shown in FIG.

【図8】 図1に示すオシロスコ−プOSPの表示面に
現われるベクトルの先端位置を示すグラフである。
8 is a graph showing the position of the tip of a vector appearing on the display surface of the oscilloscope OSP shown in FIG.

【図9】 図1に示す探傷装置により得られる算出値お
よび測定値を示すグラフである。
9 is a graph showing calculated values and measured values obtained by the flaw detection apparatus shown in FIG.

【符号の説明】[Explanation of symbols]

OSP:オシロスコ−プ OSP: Oscilloscope

───────────────────────────────────────────────────── フロントページの続き (72)発明者 荒 巻 広 美 釜石市鈴子町23−15 新日本製鐵株式会社 釜石製鐵所内 (72)発明者 熊 谷 猛 釜石市鈴子町23−15 新日本製鐵株式会社 釜石製鐵所内 (72)発明者 千 田 与 一 釜石市鈴子町23−15 新日本製鐵株式会社 釜石製鐵所内 (72)発明者 河 村 皓 二 神奈川県相模市淵野辺5−10−1 日鉄テ クノス株式会社内 (72)発明者 筒 井 兼 夫 東京都目黒区碑文谷5丁目25番10号ノアビ ル22 日本フェルスター株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiromi Aramaki Hiromi 23-15 Suzuko-machi, Kamaishi-shi Nippon Steel Corporation Kamaishi Works (72) Inventor Takeshi Kumagaya 23-15 Suzuko, Kamaishi Steel Works Co., Ltd.Kamaishi Works (72) Inventor Yoichi Senda 23-15 Suzuko-cho, Kamaishi City Shin Nippon Steel Co., Ltd. 10-1 Nittetsu Technos Co., Ltd. (72) Inventor Kaneo Tsutsui 5-25-10 Himonya, Himonya, Meguro-ku, Tokyo Noahvil 22 Nippon Forster Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】励磁コイルおよび検出コイルを含む探傷コ
イルを用いる鋼材の渦流探傷において、鋼材が貫通する
単一の励磁コイルに高周波f1の電流と低周波f2の電
流を重畳して通電し、検出コイルに誘起する前記高周波
f1の電圧の、前記励磁コイルの高周波f1の電流に対
して第1の位相ずれがある第1成分を抽出し、この第1
成分より、それをベクトルで表わす場合の直交2成分お
よび長さの少くとも一者を算出してそれが設定値以上の
とき疵と検出し、かつ、前記検出コイルに誘起する前記
低周波f2の電圧の、前記励磁コイルの低周波f2の電
流に対して第2の位相ずれがある第2成分を抽出し、こ
の第2成分より、それをベクトルで表わす場合の直交2
成分および長さの少くとも一者を算出してそれが設定値
以上のとき疵と検出する、単数励磁コイル方式による多
重周波数渦流探傷法。
1. In eddy current flaw detection of steel using a flaw detection coil including an excitation coil and a detection coil, a single excitation coil penetrated by the steel is superposed with a high-frequency f1 current and a low-frequency f2 current, and detected. A first component of the voltage of the high frequency f1 induced in the coil having a first phase shift with respect to the current of the high frequency f1 of the exciting coil is extracted, and the first component is extracted.
From the component, two orthogonal components in the case of expressing it by a vector and at least one of the lengths are calculated, and when it is equal to or more than a set value, a flaw is detected, and the low frequency f2 of the low frequency f2 induced in the detection coil is detected. A quadrature 2 when a second component of the voltage having a second phase shift with respect to the low frequency f2 current of the exciting coil is extracted and expressed as a vector from the second component
A multi-frequency eddy current flaw detection method using a single excitation coil method that calculates at least one of the component and length and detects a flaw when it is above a set value.
【請求項2】励磁コイルおよび検出コイルを含む探傷コ
イルを用いる鋼材の渦流探傷において、鋼材が貫通する
単一の励磁コイルに高周波f1の電流と低周波f2の電
流を重畳して通電し、検出コイルに誘起する前記高周波
f1の電圧の、前記励磁コイルの高周波f1の電流に対
して第1の位相ずれがある第1成分を抽出し、この第1
成分をベクトルで表わし、ベクトルの方向が設定範囲内
でベクトルの長さが設定値以上のとき疵と検出し、か
つ、前記検出コイルに誘起する前記低周波f2の電圧
の、前記励磁コイルの低周波f2の電流に対して第2の
位相ずれがある第2成分を抽出し、この第2成分をベク
トルで表わし、ベクトルの方向が設定範囲内でベクトル
の長さが設定値以上のとき疵と検出する、単数励磁コイ
ル方式による多重周波数渦流探傷法。
2. In eddy current flaw detection of steel using a flaw detection coil including an excitation coil and a detection coil, a high frequency f1 current and a low frequency f2 current are applied to a single excitation coil through which the steel material penetrates for detection. A first component of the voltage of the high frequency f1 induced in the coil having a first phase shift with respect to the current of the high frequency f1 of the exciting coil is extracted, and the first component is extracted.
The component is represented by a vector, and when the vector direction is within a set range and the length of the vector is a set value or more, it is detected as a flaw, and the low frequency f2 of the voltage of the low frequency f2 induced in the detection coil is detected. A second component having a second phase shift with respect to the current of the frequency f2 is extracted, and the second component is represented by a vector. When the vector direction is within the set range and the vector length is equal to or larger than the set value, there is a defect. Multi-frequency eddy current flaw detection method using single excitation coil method.
【請求項3】鋼材が貫通する単一の励磁コイル;前記鋼
材に発生する磁束変化に対応する電圧を誘起する検出コ
イル;前記励磁コイルに高周波f1の電流と低周波f2
の電流を同時に連続して通電する通電手段;前記検出コ
イルに誘起する前記高周波f1の電圧を摘出する第1フ
ィルタ;第1フィルタが摘出した電圧の、前記励磁コイ
ルの高周波f1の電流に対して第1の位相ずれがある第
1成分を抽出し、この第1成分より、それをベクトルで
表わす場合の直交2成分および長さの少くとも一者を含
む第1ベクトル情報を算出する第1成分検出手段;第1
ベクトル情報を量子化する第1評価手段;前記検出コイ
ルに誘起する前記低周波f2の電圧を摘出する第2フィ
ルタ;第2フィルタが摘出した電圧の、前記励磁コイル
の低周波f2の電流に対して第2の位相ずれがある第2
成分を抽出し、この第2成分より、それをベクトルで表
わす場合の直交2成分および長さの少くとも一者を含む
第2ベクトル情報を算出する第2成分検出手段;およ
び、第2ベクトル情報を量子化する第2評価手段;を備
える、単数励磁コイル方式による多重周波数渦流探傷装
置。
3. A single excitation coil through which a steel material penetrates; a detection coil which induces a voltage corresponding to a change in magnetic flux generated in the steel material; a high frequency f1 current and a low frequency f2 in the excitation coil.
Means for energizing the above currents simultaneously and continuously; a first filter for extracting the voltage of the high frequency f1 induced in the detection coil; with respect to the current of the high frequency f1 of the exciting coil of the voltage extracted by the first filter A first component that extracts a first component having a first phase shift and calculates first vector information including two orthogonal components and at least one of the lengths when the first component is expressed by a vector from the first component Detection means; first
First evaluation means for quantizing vector information; second filter for extracting the voltage of the low frequency f2 induced in the detection coil; for the current of the low frequency f2 of the exciting coil of the voltage extracted by the second filter The second with a second phase shift
Second component detecting means for extracting a component, and calculating from this second component second vector information including two orthogonal components and a length of at least one when representing it by a vector; and second vector information A multi-frequency eddy current flaw detector by a single excitation coil system, which comprises:
【請求項4】鋼材が貫通する単一の励磁コイル;前記鋼
材に発生する磁束変化に対応する電圧を誘起する検出コ
イル;前記励磁コイルに高周波f1の電流と低周波f2
の電流を同時に連続して通電する通電手段;前記検出コ
イルに誘起する前記高周波f1の電圧を摘出する第1フ
ィルタ;第1フィルタが摘出した電圧の、前記励磁コイ
ルの高周波f1の電流に対して第1の位相ずれがある第
1成分を抽出し、この第1成分を、ベクトルの方向と長
さで表わす第1ベクトル情報に変換する、第1成分検出
手段;第1ベクトル情報が、第1設定範囲内の方向のも
のであるとき、それが表わす長さを量子化する第1評価
手段;前記検出コイルに誘起する前記低周波f2の電圧
を摘出する第2フィルタ;第2フィルタが摘出した電圧
の、前記励磁コイルの低周波f2の電流に対して第2の
位相ずれがある第2成分を抽出し、この第2成分を、ベ
クトルの方向と長さで表わす第2ベクトル情報に変換す
る、第2成分検出手段;および、 第2ベクトル情報が、第2設定範囲内の方向のものであ
るとき、それが表わす長さを量子化する第2評価手段;
を備える、単数励磁コイル方式による多重周波数渦流探
傷装置。
4. A single excitation coil through which a steel material penetrates; a detection coil for inducing a voltage corresponding to a change in magnetic flux generated in the steel material; a high frequency f1 current and a low frequency f2 in the excitation coil.
Means for energizing the above currents simultaneously and continuously; a first filter for extracting the voltage of the high frequency f1 induced in the detection coil; with respect to the current of the high frequency f1 of the exciting coil of the voltage extracted by the first filter First component detecting means for extracting a first component having a first phase shift and converting the first component into first vector information represented by the direction and length of the vector; First evaluation means for quantizing the length represented by the direction within the set range; second filter for extracting the low frequency f2 voltage induced in the detection coil; second filter for extracting A second component of the voltage having a second phase shift with respect to the low frequency f2 current of the exciting coil is extracted, and this second component is converted into second vector information represented by the direction and length of the vector. , Second component detection Stage; and, second vector information, when those directions within the second set range, second evaluation means for quantizing a length that it represents;
A multi-frequency eddy current flaw detector with a single excitation coil system.
【請求項5】第1評価手段が発生する量子化デ−タの同
一のものの発生頻度を検出する第1頻度検出手段;およ
び、第2評価手段が発生する量子化デ−タの同一のもの
の発生頻度を検出する第2頻度検出手段;を更に備える
請求項3又は請求項4記載の単数励磁コイル方式による
多重周波数渦流探傷装置。
5. A first frequency detecting means for detecting the occurrence frequency of the same quantized data generated by the first evaluation means; and a first frequency detecting means for detecting the same quantized data generated by the second evaluation means. The multi-frequency eddy current flaw detector according to claim 3 or 4, further comprising: a second frequency detecting means for detecting the occurrence frequency.
【請求項6】第1又は第2頻度検出手段が検出した頻度
が設定値以上の時警報を発生する警報手段;および、該
頻度が設定値以上に対応する鋼材位置にマーキングする
手段;を更に備える請求項5記載の単数励磁コイル方式
による多重周波数渦流探傷装置。
6. An alarm means for issuing an alarm when the frequency detected by the first or second frequency detecting means is equal to or higher than a set value; and a means for marking a steel material position corresponding to the frequency equal to or higher than the set value. The multi-frequency eddy current flaw detector according to claim 5, which comprises a single excitation coil system.
【請求項7】検出コイルの誘起電圧が、鋼材が検出コイ
ルの位置にあることによる高レベルであるかを検出する
レベル検出手段;鋼材の移動速度に比例する周波数の電
気パルスを発生する同期パルス発生手段;および、前記
レベル検出手段が低レベルを検出しているときおよび同
期パルス発生手段の電気パルス発生がないとき、探傷不
可を示す情報を発生する警告手段;を更に備える請求項
3又は請求項4記載の単数励磁コイル方式による多重周
波数渦流探傷装置。
7. A level detecting means for detecting whether the induced voltage of the detection coil is at a high level due to the steel material being at the position of the detection coil; a synchronous pulse for generating an electric pulse having a frequency proportional to the moving speed of the steel material. 4. The method according to claim 3, further comprising: a generating unit; and a warning unit that generates information indicating that the flaw detection is impossible when the level detecting unit detects a low level and when the synchronous pulse generating unit does not generate an electric pulse. Item 4. A multi-frequency eddy current flaw detector using a single excitation coil system according to Item 4.
【請求項8】鋼材の表面温度を測定する手段;該表面温
度がキューリー温度以上の時警報を発生する手段;鋼材
の表面温度と第1および第2頻度検出手段が検出した頻
度に基づいて疵有無を決定する疵認識手段;および、鋼
材の表面温度および疵有を出力する手段;を更に備える
請求項5記載の単数励磁コイル方式による多重周波数渦
流探傷装置。
8. A means for measuring the surface temperature of a steel material; a means for issuing an alarm when the surface temperature is equal to or higher than the Curie temperature; a flaw based on the surface temperature of the steel material and the frequency detected by the first and second frequency detecting means. The multi-frequency eddy current flaw detector according to claim 5, further comprising: a flaw recognizing means for determining presence / absence; and a means for outputting the surface temperature of the steel material and the flaw presence.
【請求項9】第1成分および第2成分それぞれのベクト
ルの直交2成分のそれぞれのレベルを調整する第1およ
び第2感度調整手段;鋼材の断面サイズ情報対応で、励
磁コイルの通電周波数f1,f2,第1および第2フィ
ルタそれぞれの通過帯域,第1および第2の位相、なら
びに、第1および第2評価手段の量子化しきい値、をメ
モリに保持し、与えられた断面サイズ情報に対応するこ
れらの情報をメモリより読出して、読出した情報が示す
値を、前記通電手段,第1および第2フィルタ,第1お
よび第2成分検出手段、ならびに、第1および第2評価
手段に設定するパラメ−タ設定手段;および、該パラメ
−タ設定手段に断面サイズ情報を与える入力手段;を更
に備える、請求項3又は請求項4記載の単数励磁コイル
方式による多重周波数渦流探傷装置。
9. First and second sensitivity adjusting means for adjusting the levels of the two orthogonal components of the vectors of the first component and the second component respectively; corresponding to the sectional size information of the steel material, the energizing frequency f1, of the exciting coil. f2, the passbands of the first and second filters, the first and second phases, and the quantization thresholds of the first and second evaluation means are held in a memory and correspond to given section size information. This information is read from the memory, and the value indicated by the read information is set in the energizing means, the first and second filters, the first and second component detecting means, and the first and second evaluating means. 5. A single-excitation coil system multiple perimeter according to claim 3 or 4, further comprising: parameter setting means; and input means for giving sectional size information to the parameter setting means. Number eddy current device.
JP7237996A 1995-09-18 1995-09-18 Method and apparatus for multiple frequency eddy current flaw detection by single exciting coil system Pending JPH0980028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7237996A JPH0980028A (en) 1995-09-18 1995-09-18 Method and apparatus for multiple frequency eddy current flaw detection by single exciting coil system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7237996A JPH0980028A (en) 1995-09-18 1995-09-18 Method and apparatus for multiple frequency eddy current flaw detection by single exciting coil system

Publications (1)

Publication Number Publication Date
JPH0980028A true JPH0980028A (en) 1997-03-28

Family

ID=17023582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7237996A Pending JPH0980028A (en) 1995-09-18 1995-09-18 Method and apparatus for multiple frequency eddy current flaw detection by single exciting coil system

Country Status (1)

Country Link
JP (1) JPH0980028A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131287A (en) * 1998-10-23 2000-05-12 Japan Science & Technology Corp Method and device for detecting flaw using magnetic measurement
JP2000176543A (en) * 1998-12-09 2000-06-27 Kawasaki Steel Corp Detection and production of steel plate, and treating equipment for hot-rolled steel plate and producing equipment for cold-rolled steel plate
JP2001066262A (en) * 1999-06-25 2001-03-16 Nkk Corp Surface scratch marking device, and metal belt with marking and its manufacturing method
JP2003149212A (en) * 2001-11-09 2003-05-21 Japan Science & Technology Corp Nondestructive inspecting apparatus
JP2009085907A (en) * 2007-10-03 2009-04-23 Amatsuji Steel Ball Mfg Co Ltd Apparatus for inspecting steel ball
JP2012078309A (en) * 2010-10-06 2012-04-19 Hitachi-Ge Nuclear Energy Ltd Position detection method and position detection device for structure by eddy current probe

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131287A (en) * 1998-10-23 2000-05-12 Japan Science & Technology Corp Method and device for detecting flaw using magnetic measurement
JP2000176543A (en) * 1998-12-09 2000-06-27 Kawasaki Steel Corp Detection and production of steel plate, and treating equipment for hot-rolled steel plate and producing equipment for cold-rolled steel plate
JP2001066262A (en) * 1999-06-25 2001-03-16 Nkk Corp Surface scratch marking device, and metal belt with marking and its manufacturing method
JP2003149212A (en) * 2001-11-09 2003-05-21 Japan Science & Technology Corp Nondestructive inspecting apparatus
JP2009085907A (en) * 2007-10-03 2009-04-23 Amatsuji Steel Ball Mfg Co Ltd Apparatus for inspecting steel ball
JP2012078309A (en) * 2010-10-06 2012-04-19 Hitachi-Ge Nuclear Energy Ltd Position detection method and position detection device for structure by eddy current probe

Similar Documents

Publication Publication Date Title
US9453817B2 (en) Nondestructive inspection device using alternating magnetic field, and nondestructive inspection method
JPH0854375A (en) Electromagnetic induction-type inspecting apparatus
Janousek et al. Novel insight into swept frequency eddy-current non-destructive evaluation of material defects
EP2963415A1 (en) Apparatus and circuit for an alternatig current field measurement
JP2003240761A (en) Method and apparatus for detecting surface layer defect or surface defect in magnetic metal specimen
Ma et al. Development of multiple frequency electromagnetic induction systems for steel flow visualization
CN114460168A (en) Pulsed eddy current detection system and method
JPH0980028A (en) Method and apparatus for multiple frequency eddy current flaw detection by single exciting coil system
JPS6314905B2 (en)
Dobmann et al. Magnetic leakage flux testing with probes: physical principles and restrictions for application
JP3266899B2 (en) Method and apparatus for flaw detection of magnetic metal body
JP3309702B2 (en) Metal body flaw detection method and apparatus
Joubert et al. Source separation techniques applied to the detection of subsurface defects in the eddy current NDT of aeronautical lap-joints
Ewald 3-dimensional magnetic leakage field sensor in nondestructive testing
JPH09274018A (en) Method and apparatus for detecting flaw of magnetic metal element
Nagata et al. Non-destructive evaluation for internal defect of metal casting
Smetana et al. Pulsed Eddy Currents: A New Trend in Non-destructive Evaluation of Conductive Materials
Majidnia et al. Investigation of an encircling Pulsed Eddy Current probe for corrosion detection
JPH05203629A (en) Electromagnetic flaw detection and device
Ishkov et al. Study of closely spaced cracks in steel by eddy current method
KR101173760B1 (en) Detection method of eddy current signal of small amplitude
Stubendekova et al. Influence of selected defect parameter on response signals in swept frequency electromagnetic nondestructive testing
Rawicki Unconventional methods of non-destructive tests. Part 2
Vaverka et al. Investigation of Artificial Cracks by Sweep Frequency Eddy Current Testing
Sergey et al. Subminiature Eddy-Current Transducers for Conductive Materials and Layered Composites Research

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020730