JPH10170481A - Eddy current flaw detector - Google Patents

Eddy current flaw detector

Info

Publication number
JPH10170481A
JPH10170481A JP8353076A JP35307696A JPH10170481A JP H10170481 A JPH10170481 A JP H10170481A JP 8353076 A JP8353076 A JP 8353076A JP 35307696 A JP35307696 A JP 35307696A JP H10170481 A JPH10170481 A JP H10170481A
Authority
JP
Japan
Prior art keywords
coils
detection
coil
eddy current
circumferential direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8353076A
Other languages
Japanese (ja)
Inventor
Tamotsu Nishimine
保 西峯
Osamu Tsuyama
修 津山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP8353076A priority Critical patent/JPH10170481A/en
Publication of JPH10170481A publication Critical patent/JPH10170481A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To highly accurately detect a linear flaw during hot working. SOLUTION: A material 1 to be inspected penetrates inside exciting coils 20, 20 which are spaced in an axial direction. A pair of detection coils 30, 30 connected in a differential manner are arranged between the exciting coils 20 and 20. Axial centers of the detection coils 30, 30 are directed to a radial direction of the exciting coils 20 and a vertical component of a secondary magnetic field is detected. The detection coils 30, 30 are arranged side by side in a circumferential direction of the exciting coils 20 and rotated in the circumferential direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は線材、棒鋼といった
外形が円形の被検査材の表面疵の検査に使用される渦流
探傷装置に関し、特に熱間加工工程における表面疵の検
査に適した渦流探傷装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eddy current flaw detector used for inspecting a surface flaw of a material to be inspected having a circular outer shape such as a wire rod or a steel bar, and more particularly to an eddy current flaw detector suitable for inspecting a surface flaw in a hot working process. Related to the device.

【0002】[0002]

【従来の技術】棒鋼の熱間圧延工程における表面疵の検
査には、貫通コイル型と称される渦流探傷装置が使用さ
れている。この渦流探傷装置は、図5(a)に示すよう
に、内側を被検査材1が貫通する貫通型の励磁コイル2
と、励磁コイル2に対して同心状に組み合わされた一対
の貫通型の検出コイル3,3とを有する。一対の検出コ
イル3,3は軸心方向に並べて配置されており、コイル
内側を被検査材1が軸方向に移動するときの検出コイル
3,3の差動出力差より、被検査材1の表面疵が検出さ
れる。
2. Description of the Related Art An eddy current flaw detector called a through coil type is used for inspection of surface flaws in a hot rolling process of a steel bar. As shown in FIG. 5A, this eddy current flaw detection apparatus has a penetration type excitation coil 2 through which a material 1 to be inspected penetrates the inside.
And a pair of penetrating detection coils 3 and 3 concentrically combined with the excitation coil 2. The pair of detection coils 3 and 3 are arranged side by side in the axial direction, and the differential output difference between the detection coils 3 and 3 when the inspection target material 1 moves in the axial direction inside the coil is used to detect the detection target material 1. Surface flaws are detected.

【0003】この渦流探傷装置は、その原理よりして、
ヘゲ疵4のような大面積の表面疵の検出には適するが、
被検査材1の長手方向に連続的に生じる比較的浅い線状
疵5の検出には適さない。
[0003] This eddy current flaw detector is based on the principle,
Suitable for detecting large area surface flaws such as scabs 4
It is not suitable for detecting relatively shallow linear flaws 5 that occur continuously in the longitudinal direction of the material 1 to be inspected.

【0004】一方、線状疵5の検出が可能な渦流探傷装
置としては、プローブ型と呼ばれるものがある。これ
は、図5(b)に示すように、被検査材1の表面に対向
するプローブコイル6を、被検査材1の周方向に回転さ
せるものである。しかし、この渦流探傷装置は、被検査
材1の表面からコイルまでの距離である所謂リフトオフ
を大きくとれないため、被検査材1の表面にスケールが
存在し通線性が要求される熱間圧延工程には適用できな
いという制約がある。
On the other hand, as an eddy current flaw detector capable of detecting the linear flaw 5, there is a so-called probe type. As shown in FIG. 5B, the probe coil 6 facing the surface of the material 1 to be inspected is rotated in the circumferential direction of the material 1 to be inspected. However, this eddy current flaw detection device does not allow so-called lift-off, which is the distance from the surface of the material 1 to be inspected to the coil, so that there is a scale on the surface of the material 1 to be inspected and a hot rolling process that requires wire permeability. Has a restriction that it cannot be applied.

【0005】このような状況を背景として開発された渦
流探傷装置として、特開平3−115851号公報に記
載のものがある。この渦流探傷装置は、図6に示すよう
に、内側を被検査材1が貫通する貫通型の主励磁コイル
2aと、主励磁コイル2aの外側に軸心方向に間隔をあ
けて配置された付加コイル2b,2bと、付加コイル2
b,2bの間に配置された複数の検出コイル7とを具備
する。
An eddy current flaw detector developed under such circumstances is disclosed in Japanese Patent Application Laid-Open No. 3-115585. As shown in FIG. 6, this eddy current flaw detection apparatus has a penetrating main excitation coil 2a through which a material 1 to be inspected penetrates, and an additional excitation coil 2a disposed outside the main excitation coil 2a with an interval in the axial direction. Coil 2b, 2b, additional coil 2
b, 2b.

【0006】複数の検出コイル7は、軸心を励磁コイル
の周方向に向け、且つ励磁コイルの軸方向2位置におい
て励磁コイルの周方向に多数配列されると共に、周方向
に隣接するもの同士が差動に接続されている。
[0006] A plurality of detection coils 7 are arranged in the circumferential direction of the exciting coil at two positions in the axial direction of the exciting coil with the axis thereof oriented in the circumferential direction of the exciting coil. Connected differentially.

【0007】[0007]

【発明が解決しようとする課題】特開平3−11585
1号公報に記載された渦流探傷装置では、主励磁コイル
2aの外側に付加コイル2b,2bを配置すること、及
び付加コイル2b,2bの間に配置される検出コイル7
の軸心を励磁コイルの周方向に向けて、励磁コイルによ
り生じる1次磁界(主にコイル軸方向に生じる)の影響
を排除することにより、比較的高い感度を維持しつつ比
較的大きいリフトオフが確保される。そのため、一応は
熱間での線状疵の検出が可能であり、具体的にはリフト
オフが3mmで深さが0.5mmの線状疵がS/N≧3の
感度で検出される。しかしながら、リフトオフが3mm
で深さが0.3mmの線状疵をS/N≧5の感度で検出す
ることはできない。
Problems to be Solved by the Invention
In the eddy current flaw detection device described in Japanese Patent Application Publication No. 1 (1993) -1995, the additional coils 2b, 2b are arranged outside the main excitation coil 2a, and the detection coil 7 arranged between the additional coils 2b, 2b.
Is oriented in the circumferential direction of the exciting coil to eliminate the influence of the primary magnetic field (generated mainly in the axial direction of the coil), thereby achieving a relatively large lift-off while maintaining relatively high sensitivity. Secured. Therefore, it is possible to detect a linear flaw in a hot state, and specifically, a linear flaw having a lift-off of 3 mm and a depth of 0.5 mm is detected with a sensitivity of S / N ≧ 3. However, lift-off is 3mm
And a linear flaw having a depth of 0.3 mm cannot be detected with a sensitivity of S / N ≧ 5.

【0008】また、この渦流探傷装置では検査漏れを防
止するために、周方向に隣接する検出コイル7,7のピ
ッチを小さくする必要がある。そのため、非常に多くの
検出コイル7が必要になり、これによる構造の複雑化及
びコスト高が問題になる。
Further, in this eddy current flaw detector, it is necessary to reduce the pitch between the detection coils 7, 7 adjacent in the circumferential direction in order to prevent the inspection from being missed. For this reason, a very large number of detection coils 7 are required, resulting in a complicated structure and high cost.

【0009】本発明の目的は、熱間で深さが0.3mmの
線状疵をS/N≧5の高感度で検出することができ、し
かも構造が簡単で低コストな渦流探傷装置を提供するこ
とにある。
An object of the present invention is to provide a low-cost eddy current flaw detection apparatus which can detect a linear flaw having a depth of 0.3 mm with high sensitivity of S / N ≧ 5 and has a simple structure. To provide.

【0010】[0010]

【課題を解決するための手段】熱間での疵検出では、被
検査材の表面に存在するスケールを避けるために、リフ
トオフを大きくする必要があり、そのためには検出コイ
ルを大型化しその感度を上げなければならない。一方、
線状疵のような小さく浅い疵を検出するためには検出コ
イルを小型化する必要があり、これによる感度低下を補
うためにリフトオフを小さくする必要がある。このよう
な矛盾を解消して、比較的大きなリフトオフを確保した
状態でも線状疵を高精度に検出できるコイル構成につい
て、本発明者らは種々の実験及び解析を行った。その結
果、次のような事実が明らかになった。
Means for Solving the Problems In hot flaw detection, it is necessary to increase the lift-off in order to avoid scale existing on the surface of the material to be inspected. I have to raise it. on the other hand,
In order to detect a small and shallow flaw such as a linear flaw, it is necessary to reduce the size of the detection coil, and it is necessary to reduce the lift-off in order to compensate for a decrease in sensitivity due to this. The present inventors have conducted various experiments and analyzes on a coil configuration that can resolve such contradictions and detect a linear flaw with high accuracy even in a state where a relatively large lift-off is secured. As a result, the following facts became clear.

【0011】特開平3−115851号公報に記載の渦
流探傷装置では、1次磁界を強くするために、主励磁コ
イル2aの外側に付加コイル2b,2bを配置している
が、付加コイル2b,2bの間に配置される検出コイル
7は依然として主励磁コイル2aの外側に位置する。励
磁コイルにより生じる1次磁界の影響を排除するため
に、検出コイル7の軸心を励磁コイルの周方向に向けて
いるが、主励磁コイル2aの外側に位置する限り、少な
くない1次磁界の影響を受け、ノイズが増大する。
In the eddy current flaw detector described in Japanese Patent Application Laid-Open No. 3-1155851, additional coils 2b, 2b are arranged outside the main excitation coil 2a in order to strengthen the primary magnetic field. The detection coil 7 arranged between 2b is still located outside the main excitation coil 2a. In order to eliminate the influence of the primary magnetic field generated by the excitation coil, the axis of the detection coil 7 is oriented in the circumferential direction of the excitation coil. However, as long as it is located outside the main excitation coil 2a, not less than Affected, noise increases.

【0012】1次磁界を強くし、且つその影響を効果的
に排除するためには、励磁コイルを軸方向に完全に2分
割し、この間に検出コイルを配置する必要がある。
In order to strengthen the primary magnetic field and effectively eliminate its influence, it is necessary to completely divide the exciting coil into two parts in the axial direction, and to arrange the detecting coil therebetween.

【0013】検出コイルの向きについては、励磁コイル
の軸方向に主に生じる1次磁界の影響を排除することが
必要であり、このためにその軸心を励磁コイルの周方向
又は径方向に向ける必要がある。前者の場合は被検査材
の外面に平行な水平方向(周方向)の2次磁界が検出さ
れ、後者の場合は被検査材の外面に垂直な方向の2次磁
界が検出される。そして、特開平3−115851号公
報に記載の渦流探傷装置では前者の方式が採用されてい
る。
With respect to the direction of the detection coil, it is necessary to eliminate the influence of the primary magnetic field mainly generated in the axial direction of the exciting coil. For this purpose, the axis is oriented in the circumferential direction or radial direction of the exciting coil. There is a need. In the former case, a secondary magnetic field in the horizontal direction (circumferential direction) parallel to the outer surface of the test material is detected, and in the latter case, a secondary magnetic field in a direction perpendicular to the outer surface of the test material is detected. The former method is adopted in the eddy current flaw detector described in Japanese Patent Application Laid-Open No. 3-115585.

【0014】しかし、これについて本発明者が詳細な解
析を行ったところ、線状疵の近傍では2次磁界の垂直成
分が水平成分(周方向の成分)より大きいことから、線
状疵に対しては後者の方式、即ち検出コイルの軸心を励
磁コイルの径方向に向けて、垂直方向の2次磁界を検出
する方式の方が有効なことが判明した。
However, the present inventor conducted a detailed analysis on this, and found that the vertical component of the secondary magnetic field was larger than the horizontal component (component in the circumferential direction) near the linear flaw. It has been found that the latter method, that is, the method in which the axis of the detection coil is oriented in the radial direction of the exciting coil and the secondary magnetic field in the vertical direction is detected, is more effective.

【0015】線状疵の近傍に生じる2次磁界は複雑であ
り、その垂直成分が水平成分(周方向の成分)より大き
い正確な理由は定かではないが、現段階ではその理由を
本発明者は次のように考えている。励磁コイルによって
発生する渦電流は被検査材の周方向に流れる。2次磁界
はこの周方向の渦電流の周囲に生じることから、被検査
材の軸方向の成分と垂直方向成分とに分けられる。線状
疵がある場合、これらの成分が変化すると考えられる
が、ここには水平方向(周方向)の成分は殆ど生じない
ので、水平方向(周方向)の2次磁界変化を検出する特
開平3−115851号公報に記載の渦流探傷装置で
は、励磁コイル(被検査材)の軸方向に生じる1次磁界
の影響は排除されるものの、線状疵に対する検出力は弱
い。
The secondary magnetic field generated near the linear flaw is complicated, and the exact reason why the vertical component is larger than the horizontal component (the component in the circumferential direction) is not clear. Thinks as follows. The eddy current generated by the exciting coil flows in the circumferential direction of the test object. Since the secondary magnetic field is generated around this circumferential eddy current, it is divided into an axial component and a vertical component of the test object. If there is a linear flaw, it is considered that these components change. However, since there is almost no horizontal (circumferential) component generated here, Japanese Patent Application Laid-Open Publication No. H10-260, which detects a secondary magnetic field change in the horizontal (circumferential) direction. In the eddy current flaw detector described in Japanese Patent Application Laid-Open No. 3-1155851, the influence of the primary magnetic field generated in the axial direction of the exciting coil (material to be inspected) is eliminated, but the detection power for the linear flaw is weak.

【0016】また、特開平3−115851号公報に記
載の渦流探傷装置では、検出コイルは励磁コイルの周方
向に配列されているが、この構成では前述したようにコ
イル数が多くなり、またコイル数を多くしても疵位置に
コイル位置が完全に対応しない場合があり、2次磁界の
ピーク値を常に検出できるとは限らないので、これによ
る感度低下も招く。そして、このような問題に対して
は、検出コイルを励磁コイルの周方向に回転駆動させる
のが有効である。そうすることによりコイル数が減少
し、しかも、その少ない検出コイルで2次磁界のピーク
値を確実に検出することができる。
Further, in the eddy current flaw detector described in Japanese Patent Application Laid-Open No. 3-1155851, the detection coils are arranged in the circumferential direction of the excitation coil. However, in this configuration, as described above, the number of coils is increased, and the number of coils is increased. Even if the number is increased, the coil position may not completely correspond to the flaw position, and the peak value of the secondary magnetic field cannot always be detected. To solve such a problem, it is effective to rotate the detection coil in the circumferential direction of the exciting coil. By doing so, the number of coils is reduced, and the peak value of the secondary magnetic field can be reliably detected with a small number of detection coils.

【0017】本発明の渦流探傷装置は、これらの知見に
基づいて開発されたものであって、内側を被検査材が貫
通し、且つ軸心方向に間隔をあけて配置された一対の貫
通型励磁コイルと、一対の励磁コイルの間に配置され、
且つ差動に接続された一対の検出コイルとを具備し、一
対の検出コイルは軸心を励磁コイルの半径方向に向ける
と共に、励磁コイルの周方向に並んで配置されてその周
方向に回転駆動されることを特徴とする。
The eddy current flaw detection device of the present invention has been developed based on these findings, and has a pair of penetration type penetrating members in which the material to be inspected penetrates the inside and is spaced apart in the axial direction. An exciting coil, disposed between the pair of exciting coils,
And a pair of differentially connected detection coils, the pair of detection coils having their axes oriented in the radial direction of the exciting coil and being arranged side by side in the circumferential direction of the exciting coil to be driven to rotate in the circumferential direction. It is characterized by being performed.

【0018】[0018]

【発明の実施の形態】以下に本発明の実施形態を図面に
基づいて説明する。図1は本発明の基本構成を示す模式
図、図2は本発明の実施形態を示す渦流探傷装置の斜視
図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing a basic configuration of the present invention, and FIG. 2 is a perspective view of an eddy current flaw detector showing an embodiment of the present invention.

【0019】本実施形態では、周方向に回転する回転体
50に円筒形状のボビン10が同心状に取り付けられて
いる。被検査材1はボビン10の内側の同心位置を軸方
向に移動する。ボビン10の外面には、一対の貫通型励
磁コイル20,20が軸方向に間隔をあけて取り付けら
れている。励磁コイル20,20は、被検査材1の外面
に軸方向の1次磁界を形成するために、巻き方向が同じ
であり、且つ直列に接続された状態で交流電源40に接
続されている。
In this embodiment, a cylindrical bobbin 10 is concentrically mounted on a rotating body 50 that rotates in the circumferential direction. The material 1 to be inspected moves in a concentric position inside the bobbin 10 in the axial direction. On the outer surface of the bobbin 10, a pair of through-type exciting coils 20, 20 are attached at intervals in the axial direction. The exciting coils 20 and 20 are connected to an AC power supply 40 in the same winding direction and connected in series in order to form a primary magnetic field in the axial direction on the outer surface of the test material 1.

【0020】ボビン10の外面には又、励磁コイル2
0,20の間に位置して一対の検出コイル30,30が
取り付けられている。検出コイル30,30はそれぞれ
の軸心がボビン10の外面に直角であり、且つボビン1
0の周方向に並んで配置されている。そして検出コイル
30,30は、出力差を検出しノイズを打ち消すために
差動に接続されている。
The outer surface of the bobbin 10 also has an exciting coil 2
A pair of detection coils 30, 30 are mounted between 0, 20. The detection coils 30 and 30 have their respective axes perpendicular to the outer surface of the bobbin 10 and the bobbin 1
0 are arranged side by side in the circumferential direction. The detection coils 30, 30 are differentially connected to detect an output difference and cancel noise.

【0021】探傷作業では、励磁コイル20,20に高
周波電圧を印加した状態で、ボビン10を周方向に回転
させ、その内側に線材、棒鋼等の被検査材1を通す。ボ
ビン10の回転により、励磁コイル20,20及び検出
コイル30,30が、被検査材1の周りを周方向に回転
する。また、励磁コイル20,20に高周波電圧を印加
することにより、被検査材1の外面に1次磁界が軸方向
に生じ、周方向に渦電流が生じる。
In the flaw detection work, the bobbin 10 is rotated in the circumferential direction while a high-frequency voltage is applied to the exciting coils 20, 20, and the material 1 to be inspected, such as a wire or a steel bar, is passed through the inside thereof. Due to the rotation of the bobbin 10, the exciting coils 20, 20 and the detecting coils 30, 30 rotate around the material 1 to be inspected in the circumferential direction. In addition, by applying a high-frequency voltage to the exciting coils 20, 20, a primary magnetic field is generated in the outer surface of the test object 1 in the axial direction, and an eddy current is generated in the circumferential direction.

【0022】被検査材1の表面に線状疵があると、その
上を検出コイル30,30が直角に順次横切る。また渦
電流によって生じる2次磁界に乱れが発生する。線状疵
近傍での2次磁界の垂直成分は、水平成分(周方向の成
分)より大きいことが確認されている。検出コイル3
0,30はこの2次磁界の垂直成分を検出し、一方の検
出コイル30が線状疵の上にあるとき、他方の検出コイ
ル30は線状疵から外れたところにあるため、両者の出
力差を検出することにより、線状疵が高精度に検出され
る。
If there is a linear flaw on the surface of the material 1 to be inspected, the detection coils 30, 30 sequentially cross it at right angles. In addition, disturbance occurs in the secondary magnetic field generated by the eddy current. It has been confirmed that the vertical component of the secondary magnetic field in the vicinity of the linear flaw is larger than the horizontal component (component in the circumferential direction). Detection coil 3
Reference numerals 0 and 30 detect the vertical component of the secondary magnetic field. When one detection coil 30 is located on a linear flaw, the other detection coil 30 is located off the linear flaw. By detecting the difference, the linear flaw is detected with high accuracy.

【0023】熱間圧延での探傷を目的とした場合、リフ
トオフは少なくとも3mm必要とされる。リフトオフが
3mmの場合、特開平3−115851号公報に記載の
渦流探傷装置では、深さが0.5mmの線状疵がS/N≧
3の感度で検出される。しかしながら、深さが0.3mm
の線状疵をS/N≧5の感度で検出することはできな
い。これに対し、本発明の渦流探傷装置は深さが0.3m
mの線状疵をS/N≧5の感度で検出することができ
る。
For the purpose of flaw detection in hot rolling, a lift-off of at least 3 mm is required. When the lift-off is 3 mm, in the eddy current flaw detector described in JP-A-3-115585, a linear flaw having a depth of 0.5 mm has a S / N ≧
Detected with a sensitivity of 3. However, the depth is 0.3mm
Cannot be detected with a sensitivity of S / N ≧ 5. In contrast, the eddy current flaw detector of the present invention has a depth of 0.3 m.
m linear flaws can be detected with a sensitivity of S / N ≧ 5.

【0024】これは、励磁コイル20,20を軸方向に
離してこの間に検出コイル30,30を配置することに
より、励磁コイル20,20により生じる1次磁界の影
響が効果的に排除されること、検出コイル30,30の
軸心を被検査材1の径方向に向けることにより、線状疵
近傍に多く発生する2次磁界の垂直成分が検出されるこ
と、及び検出コイル30,30を被検査材1の周方向に
回転させることにより、垂直成分のピーク値が確実に検
出されることなどが理由である。
This is because the influence of the primary magnetic field generated by the exciting coils 20, 20 is effectively eliminated by separating the exciting coils 20, 20 in the axial direction and disposing the detecting coils 30, 30 therebetween. By directing the axes of the detection coils 30 and 30 in the radial direction of the inspection target material 1, it is possible to detect the vertical component of the secondary magnetic field, which frequently occurs near the linear flaw, and This is because, by rotating the inspection material 1 in the circumferential direction, the peak value of the vertical component is reliably detected.

【0025】励磁コイル20,20の隙間の大きさは、
この隙間に生じる1次磁界を強くするために、検出コイ
ル30,30が配置され得る範囲内でできるだけ小さい
ことが好まれる。検出コイル30,30の直径は3〜9
mmが好ましい。コイル自体の検出感度、励磁コイル2
0,20の隙間を小さくする点、及び検出コイル30,
30の間隔を小さくする点から、この直径は小さい程よ
いが、極端に小さいと検出コイル30,30の製作が困
難になる。また、検出コイル30,30の間隔について
は、できるだけ近くで信号をピックアップして差をとる
方が検出感度が上がるので、3mm以下が好ましい。
The size of the gap between the exciting coils 20 is
In order to increase the primary magnetic field generated in the gap, it is preferable that the primary magnetic field be as small as possible within a range where the detection coils 30, 30 can be arranged. The diameter of the detection coils 30 is 3 to 9
mm is preferred. Detection sensitivity of coil itself, excitation coil 2
The point of reducing the gap between 0, 20 and the detection coil 30,
The smaller the distance, the better the diameter is, but the extremely small the diameter makes it difficult to manufacture the detection coils 30. The distance between the detection coils 30, 30 is preferably 3 mm or less because it is better to pick up the signal as close as possible and take the difference to increase the detection sensitivity.

【0026】図3は検出コイルの向きが検出感度に及ぼ
す影響を解析した結果を示すグラフである。Aは図4
(a)に示すように検出コイルの軸心を励磁コイルの半
径方向に向けた場合、Bは図4(b)に示すように検出
コイルの軸心を励磁コイルの軸方向に向けた場合、Cは
図4(c)に示すように検出コイルの軸心を励磁コイル
の周方向に向けた場合である。共通条件としては線状疵
の深さ0.3mm、周波数1MHz、検出コイルの直径4.
5mm、リフトオフ3.0mmを採用した。
FIG. 3 is a graph showing the result of analyzing the effect of the direction of the detection coil on the detection sensitivity. A is FIG.
When the axis of the detection coil is oriented in the radial direction of the excitation coil as shown in FIG. 4A, B is obtained when the axis of the detection coil is oriented in the axis direction of the excitation coil as shown in FIG. FIG. 4C shows a case where the axis of the detection coil is oriented in the circumferential direction of the exciting coil as shown in FIG. Common conditions include a linear flaw depth of 0.3 mm, a frequency of 1 MHz, and a detection coil diameter of 4.
5 mm and a lift-off of 3.0 mm were employed.

【0027】図3から分かるように、線状疵の近傍に生
じる2次磁界は垂直成分が水平成分(周方向の成分)よ
り大きく、軸心を励磁コイルの半径方向に向けた検出コ
イルによりこの垂直成分を検出することにより最も高い
感度が得られる。また、水平成分(周方向の成分)が意
外に少ないことが分かる。これは、前述したように、励
磁コイルによって発生する2次磁界が、主に被検出材の
軸方向成分と垂直方向成分とからなり、水平方向(周方
向)の成分を殆ど生じないことによる。
As can be seen from FIG. 3, the secondary magnetic field generated near the linear flaw has a vertical component larger than the horizontal component (a component in the circumferential direction), and the secondary magnetic field is generated by the detection coil whose axis is directed in the radial direction of the exciting coil. The highest sensitivity is obtained by detecting the vertical component. Also, it can be seen that the horizontal component (component in the circumferential direction) is unexpectedly small. This is because, as described above, the secondary magnetic field generated by the exciting coil is mainly composed of the axial component and the vertical component of the material to be detected, and hardly generates a horizontal (circumferential) component.

【0028】なお、本実施形態では励磁コイル20,2
0及び検出コイル30,30の両方を回転させている
が、この回転は検出コイル30,30についてのみ行え
ばよい。
In this embodiment, the exciting coils 20 and 2
Although both 0 and the detection coils 30 and 30 are rotated, this rotation may be performed only for the detection coils 30 and 30.

【0029】[0029]

【発明の効果】以上の説明から明らかなように、本発明
の渦流探傷装置は、軸方向に間隔をあけて配置した一対
の励磁コイルの間で、軸心を励磁コイルの軸方向に向け
た検出コイルを励磁コイルの周方向に回転させることに
より、大きいリフトオフを確保した状態で、線状疵に対
して高い感度を確保することができる。従って、これま
では困難であった熱間工程での浅い線状疵の検出を高精
度に行うことができる。しかも、多数の検出コイルを必
要としないので、構造が簡単で安価である。
As is apparent from the above description, in the eddy current flaw detector of the present invention, the axial center is directed in the axial direction of the exciting coil between a pair of exciting coils spaced apart in the axial direction. By rotating the detection coil in the circumferential direction of the excitation coil, it is possible to ensure high sensitivity to linear flaws in a state where a large lift-off is ensured. Therefore, the detection of shallow linear flaws in the hot step, which has been difficult so far, can be performed with high accuracy. Moreover, since a large number of detection coils are not required, the structure is simple and inexpensive.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の基本構成を示す模式図である。FIG. 1 is a schematic diagram showing a basic configuration of the present invention.

【図2】本発明の実施形態を示す渦流探傷装置の斜視図
である。
FIG. 2 is a perspective view of an eddy current flaw detector showing an embodiment of the present invention.

【図3】検出コイルの向きが検出感度に及ぼす影響を解
析した結果を示すグラフである。
FIG. 3 is a graph showing the result of analyzing the effect of the direction of a detection coil on detection sensitivity.

【図4】解析試験における検出コイルの配置形態を示す
模式図である。
FIG. 4 is a schematic diagram showing an arrangement of detection coils in an analysis test.

【図5】従来の渦流探傷装置の構成を示す模式図であ
る。
FIG. 5 is a schematic diagram showing a configuration of a conventional eddy current flaw detection device.

【図6】従来の別の渦流探傷装置の構成を示す模式図で
ある。
FIG. 6 is a schematic diagram showing a configuration of another conventional eddy current flaw detection device.

【符号の説明】[Explanation of symbols]

10 ボビン 20 励磁コイル 30 検出コイル 40 高周波電源 50 回転体 Reference Signs List 10 bobbin 20 excitation coil 30 detection coil 40 high frequency power supply 50 rotating body

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内側を被検査材が貫通し、且つ軸心方向
に間隔をあけて配置された一対の貫通型励磁コイルと、
一対の励磁コイルの間に配置され、且つ差動に接続され
た一対の検出コイルとを具備し、一対の検出コイルは軸
心を励磁コイルの半径方向に向けると共に、励磁コイル
の周方向に並んで配置されてその周方向に回転駆動され
ることを特徴とする渦流探傷装置。
1. A pair of through-type exciting coils, through which a material to be inspected penetrates the inside and spaced apart in the axial direction,
A pair of detection coils disposed between the pair of excitation coils and connected differentially, the pair of detection coils having their axes oriented in the radial direction of the excitation coil and arranged in the circumferential direction of the excitation coil. The eddy current flaw detection device is arranged and rotated in the circumferential direction.
JP8353076A 1996-12-13 1996-12-13 Eddy current flaw detector Pending JPH10170481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8353076A JPH10170481A (en) 1996-12-13 1996-12-13 Eddy current flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8353076A JPH10170481A (en) 1996-12-13 1996-12-13 Eddy current flaw detector

Publications (1)

Publication Number Publication Date
JPH10170481A true JPH10170481A (en) 1998-06-26

Family

ID=18428403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8353076A Pending JPH10170481A (en) 1996-12-13 1996-12-13 Eddy current flaw detector

Country Status (1)

Country Link
JP (1) JPH10170481A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2403551A (en) * 2002-03-25 2005-01-05 Matsushita Electric Ind Co Ltd Portable terminal
JP2007147411A (en) * 2005-11-26 2007-06-14 Marktec Corp Eddy current flaw detection probe
JP2010236928A (en) * 2009-03-30 2010-10-21 Central Res Inst Of Electric Power Ind Method and sensor for detection of eddy current flaw
WO2016143088A1 (en) * 2015-03-11 2016-09-15 三菱電機株式会社 Rope damage diagnostic examination device and rope damage diagnostic examination method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2403551A (en) * 2002-03-25 2005-01-05 Matsushita Electric Ind Co Ltd Portable terminal
GB2403551B (en) * 2002-03-25 2005-09-07 Matsushita Electric Ind Co Ltd Portable terminal apparatus
JP2007147411A (en) * 2005-11-26 2007-06-14 Marktec Corp Eddy current flaw detection probe
JP2010236928A (en) * 2009-03-30 2010-10-21 Central Res Inst Of Electric Power Ind Method and sensor for detection of eddy current flaw
WO2016143088A1 (en) * 2015-03-11 2016-09-15 三菱電機株式会社 Rope damage diagnostic examination device and rope damage diagnostic examination method
JPWO2016143088A1 (en) * 2015-03-11 2017-06-08 三菱電機株式会社 Rope damage diagnostic inspection apparatus and rope damage diagnostic inspection method
CN107430090A (en) * 2015-03-11 2017-12-01 三菱电机株式会社 Cord damage deagnostic test device and cord damage deagnostic test method
CN107430090B (en) * 2015-03-11 2020-06-23 三菱电机株式会社 Rope damage diagnosis and inspection device and rope damage diagnosis and inspection method

Similar Documents

Publication Publication Date Title
US4602212A (en) Method and apparatus including a flux leakage and eddy current sensor for detecting surface flaws in metal products
JP5758798B2 (en) Method and apparatus for detecting defects near a surface by measuring leakage flux
US4477776A (en) Apparatus and process for flux leakage testing using transverse and vectored magnetization
US4785243A (en) Electronically scanned eddy current flaw inspection
JP5153274B2 (en) Inspection equipment for inspection objects
JP4247723B2 (en) Eddy current flaw detection method and eddy current flaw detection apparatus
US4673879A (en) Eddy current flaw detector having rotatable field defining sleeve for selectively enhancing induced eddy currents in a workpiece
JPH10111279A (en) Eddy current flaw detection device
US5942894A (en) Radially focused eddy current sensor for detection of longitudinal flaws in metallic tubes
US4002967A (en) Annular eddy current test coil with magnetic laminations adjacent a limited circumferential extent
CN110646508A (en) Enhanced magnetic field type non-directional orthogonal weld eddy current detection sensor and detection method
US3437917A (en) Method of and apparatus for high speed magnetic inspection of tubular goods
US3469182A (en) Flaw detecting apparatus with mechanical scanning of detection means
US5041786A (en) Method of nondestructively inspecting for flaws in metal stocks including selection of detection coil diameter.
CN112415088B (en) Internal penetrating type transverse pulse eddy current detection probe and application method thereof
JPH10170481A (en) Eddy current flaw detector
USRE29166E (en) Magnetic flaw detector system for reciprocating pairs of leakage field detectors with means for adjusting the spacing between each pair of detectors
JP2004251839A (en) Pipe inner surface flaw inspection device
JPS61198055A (en) Insertion type probe for eddy current examination
JPS626162A (en) Eddy current examination method
JPS61502563A (en) Eddy current flaw detection method and device
JPH05142204A (en) Electromagnetic-induction type inspecting apparatus
EP0792455B1 (en) Eddy current hybrid probe
JPH06265526A (en) Leakage flux flaw detecting apparatus
JPH1078412A (en) Method and device for detecting flaw on surface