WO2016143088A1 - Rope damage diagnostic examination device and rope damage diagnostic examination method - Google Patents

Rope damage diagnostic examination device and rope damage diagnostic examination method Download PDF

Info

Publication number
WO2016143088A1
WO2016143088A1 PCT/JP2015/057145 JP2015057145W WO2016143088A1 WO 2016143088 A1 WO2016143088 A1 WO 2016143088A1 JP 2015057145 W JP2015057145 W JP 2015057145W WO 2016143088 A1 WO2016143088 A1 WO 2016143088A1
Authority
WO
WIPO (PCT)
Prior art keywords
rope
magnetic field
magnetic
voltage
yoke
Prior art date
Application number
PCT/JP2015/057145
Other languages
French (fr)
Japanese (ja)
Inventor
甚 井上
白附 晶英
関 真規人
孝 吉岡
豊弘 野口
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to KR1020177027266A priority Critical patent/KR102020974B1/en
Priority to JP2017504499A priority patent/JP6289732B2/en
Priority to CN201580077392.4A priority patent/CN107430090B/en
Priority to PCT/JP2015/057145 priority patent/WO2016143088A1/en
Priority to DE112015006279.3T priority patent/DE112015006279B4/en
Publication of WO2016143088A1 publication Critical patent/WO2016143088A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9013Arrangements for scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields

Definitions

  • the present invention relates to an elevator rope damage diagnosis inspection apparatus and an elevator rope damage diagnosis inspection method for inspecting a breakage or a diameter reduction of a rope for hanging an elevator cage.
  • the E-shaped iron core (3) in Patent Document 1 has three leg portions (31, 32, 33), and U-shaped grooves (31U, 32U, 33U) are formed on the bottom surfaces thereof. Has been. Further, excitation coils (41, 42) are wound around the iron core (3), and a detection coil (43) is wound around the leg portion (33).
  • the wire rope (2) to be inspected is fitted in the grooves (31U, 32U, 33U), and the iron core (3) is connected to the exciting coils (41, 42). ) Along the wire rope (2). And when a leg part (33) passes the damaged part (21) of a wire rope (2), a damaged part (21) can be detected because a voltage generate
  • Patent Document 1 the output generated from the detection coil changes depending on the magnetic characteristics of the rope in addition to the shape of the damage. Therefore, although damage can be detected, other than damage may be detected due to variations in the magnetic characteristics of the rope.
  • such a conventional technique may detect a variation in the magnetic characteristics of the rope, not an abnormality in the shape of the rope (wire breakage, diameter reduction). As a result, there has been a problem that the detection accuracy is lowered or it is difficult to quantify the degree of damage.
  • the present invention has been made in order to solve the above-described problems, and quantitatively detects a rope shape abnormality more accurately than the prior art without depending on variations in magnetic characteristics.
  • An object of the present invention is to obtain a rope damage diagnosis and inspection apparatus and a rope damage diagnosis and inspection method.
  • a rope damage diagnosis and inspection apparatus is a rope damage diagnosis and inspection apparatus that inspects an abnormality in the shape of a rope that suspends an elevator car.
  • the rope damage diagnosis and inspection apparatus is attached to a rope and uses a magnetic field for bringing the rope into a magnetic saturation state.
  • the first yoke to be applied, the first alternating current source that outputs a constant alternating current, and the axial coil are configured to supply a constant current from the first alternating current source to the axial coil.
  • an AC magnetic field applicator that generates an eddy current and an eddy current magnetic field in the rope, and a leak that measures the leakage magnetic flux of the rope during the application of the AC magnetic field
  • the AC magnetic field applicator for the magnetic flux measuring instrument controls the AC magnetic field applicator for the magnetic flux measuring instrument, the first voltage measuring instrument that measures the voltage of the axial coil during application of the AC magnetic field, and the rope that is magnetically saturated by the first yoke.
  • a value proportional to the voltage from the voltage measured by the first voltage measuring device is detected by detecting whether or not the rope is broken from the magnitude of the leakage magnetic flux measured by the leakage magnetic flux measuring device.
  • a controller for calculating the cross-sectional area of the rope and inspecting the rope for abnormal shape from the presence / absence of breakage and the cross-sectional area.
  • the rope damage diagnosis and inspection method is a rope damage diagnosis and inspection method for inspecting an abnormality in the shape of a rope that suspends an elevator car, and applies a magnetic field to the rope to make the rope magnetically saturated.
  • a second step of applying an alternating magnetic field to the rope that has become magnetically saturated a third step of measuring the leakage flux of the rope during application of the alternating magnetic field, and the measured leakage flux
  • an alternating magnetic field is applied to a rope that is in a magnetic saturation state, and during the application of the alternating magnetic field, the presence or absence of a rope breakage is detected from the measurement result of the magnitude of the leakage magnetic flux of the rope.
  • the cross-sectional area of the rope is calculated from the measurement result of the voltage that fluctuates due to the eddy current magnetic field generated in the axial direction, and the configuration of the rope is inspected for the presence of breakage and the cross-sectional area.
  • Embodiment 1 of this invention It is a block diagram of the rope damage diagnostic inspection apparatus in Embodiment 1 of this invention. It is a figure for demonstrating the principle of the disconnection detection in Embodiment 1 of this invention. It is the figure which showed the 1st magnetic characteristic of the rope in Embodiment 1 of this invention. It is the figure which showed the 2nd magnetic characteristic of the rope in Embodiment 1 of this invention. In Embodiment 1 of this invention, it is a figure for demonstrating the relationship between the penetration
  • Embodiment 1 of this invention it is a figure for demonstrating the relationship between the penetration
  • FIG. 1 is a configuration diagram of a rope damage diagnosis and inspection apparatus according to Embodiment 1 of the present invention.
  • the rope damage diagnosis / inspection apparatus according to the first embodiment includes a first yoke 10, a second yoke 20, an axial coil 30, a magnetic sensor array 40, an alternating current source 50, and a voltage measuring device 60. .
  • the first yoke 10 is a yoke for applying a first magnetic field to the rope 1 by being attached to the rope 1 to be inspected, and includes a magnet 11.
  • a direct current magnetic field is applied to the rope 1 via the first yoke 10 as a first magnetic field, whereby the rope 1 can be magnetically saturated.
  • a pulse magnetic field is applied as a first magnetic field to the rope 1 via the first yoke 10, and this also magnetically saturates the rope 1. Can do.
  • a DC magnetic field is applied as an example.
  • the second yoke 20 is a yoke for applying an alternating magnetic field to the rope 1. Specifically, by supplying a constant alternating current from the alternating current source 50 to the axial coil 30 wound around the second yoke 20, the alternating magnetic field is applied to the rope 1 via the second yoke 20. Can be applied. As a result, an eddy current is generated in the rope 1 and an eddy current magnetic field due to the eddy current is also generated.
  • the magnetic sensor array 40 is a leakage flux measuring instrument that measures the leakage flux of the eddy current magnetic field from the breaking portion of the rope 1 and detects the breaking when an alternating magnetic field is applied via the second yoke 20.
  • the direction of the magnetic field detected using the magnetic sensor array 40 may be not only the radial direction but also the axial direction and the circumferential direction. Details of the principle of break detection will be described later.
  • a Hall element As such a leakage magnetic flux measuring instrument, a Hall element, a magnetoresistive element (AMR, GMR, TMR), or a coil can be used instead of the magnetic sensor array 40. Furthermore, when a coil is used as the leakage flux measuring instrument, a single coil may be used.
  • the voltage measuring device 60 measures the voltage V of the axial coil 30 that fluctuates due to the eddy current magnetic field when an AC magnetic field is applied via the second yoke 20, and measures the cross-sectional area S of the rope 1 proportional to the voltage V. Details of the principle of cross-sectional area measurement will be described later.
  • the rope damage diagnostic inspection apparatus has a controller 70. Then, the controller 70 controls the output from the AC current source 50, and executes the break detection process and the cross-sectional area measurement process based on the measurement results by the magnetic sensor array 40 and the voltage measuring device 60.
  • FIG. 2 is a diagram for explaining the principle of disconnection detection in the first embodiment of the present invention. Specifically, an explanatory diagram showing a state in which the magnetic sensor array 40 detects a change in an eddy current magnetic field. It is.
  • the controller 70 measures the change of the eddy current magnetic field by the magnetic sensor array 40, and when the magnitude of the change deviates from the allowable value, the rope 70 It can be detected that 1 breakage has occurred.
  • the AC magnetic flux in the rope 1 by the axial coil 30 is proportional to the rope cross-sectional area and the rope permeability ⁇ .
  • the rope 1 is mainly made of iron, and its magnetic properties change depending on the temperature, material, rolling, etc. during manufacture. Also, the magnetic characteristics change depending on the tension applied to the rope.
  • FIG. 3 is a diagram showing a first magnetic characteristic of the rope 1 according to the first embodiment of the present invention.
  • the first magnetic characteristic shown in FIG. 3 is a magnetic characteristic by a BH curve in which the horizontal axis represents the applied magnetic field H and the vertical axis represents the magnetic field in the rope 1.
  • FIG. 4 is a diagram showing a second magnetic characteristic of the rope 1 according to the first embodiment of the present invention.
  • the second magnetic characteristic shown in FIG. 4 is a magnetic characteristic based on a ⁇ -H curve with the applied magnetic field H on the horizontal axis and the permeability ⁇ on the vertical axis.
  • the magnetic permeability ⁇ corresponds to the slope of the BH curve shown in FIG.
  • the magnetic permeability ⁇ in the applied magnetic field H1 shown in FIG. 4 is affected by the magnetic characteristics of each rope 1 and varies greatly.
  • the internal magnetic flux of the rope 1 is saturated by applying a DC magnetic field, and the applied magnetic field H2 shown in FIG. 4 is obtained.
  • the controller 70 can measure the cross-sectional area in a state where the variation of the magnetic permeability ⁇ is small and the influence of the magnetic characteristics that are different for each rope 1 is suppressed.
  • a DC magnetic field is applied to the rope 1 via the first yoke 10 to saturate the internal magnetic flux B of the rope 1.
  • the controller 70 can obtain the cross-sectional area S from the following calculation formula (1) regarding the axial coil 30.
  • n is the number of coil turns per unit length
  • H rf is an AC magnetic field.
  • the controller 70 controls the axial coil 30 wound around the second yoke 20 so that a constant alternating current is supplied from the alternating current source 50.
  • n ⁇ ⁇ H rf in the above equation (1) Can be a known constant value. Therefore, the controller 70 can measure a value proportional to the cross-sectional area S by measuring the voltage V of the axial coil 30 with the voltage measuring device 60.
  • the eddy current magnetic field is generated by the electromagnetic induction action of the exciting magnetic field by the axial coil 30, it is generated in the direction to cancel the exciting magnetic field. Therefore, the exciting magnetic field that reaches the inside of the rope 1 becomes smaller as the inside of the rope is reduced by the eddy current magnetic field. As a result, the eddy current becomes smaller toward the inside of the rope 1.
  • the depth (skin depth) ⁇ at which the magnitude of the eddy current decreases to 1 / e from the value on the rope surface is expressed by the following equation (2).
  • 1 / ⁇ ( ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ f) (2)
  • each coefficient in the above equation (2) is as follows.
  • Magnetic permeability
  • Electrical conductivity
  • f Frequency of excitation magnetic field
  • FIG. 5 is a diagram for explaining the relationship between the penetration of eddy currents into the rope 1 and the strength of the magnetic field when the rope 1 is in a state of no magnetic field in the first embodiment of the present invention.
  • FIG. 6 is a diagram for explaining the relationship between the penetration of eddy currents into the rope 1 and the strength of the magnetic field when the rope 1 is in a strong magnetic field in the first embodiment of the present invention. .
  • a DC magnetic field is applied to the rope to saturate the internal magnetic flux of the rope. Then, by applying an alternating magnetic field to the saturated rope, rope breakage detection and cross-sectional area measurement are performed. As a result, it is possible to realize an improvement in the accuracy of breakage detection and cross-sectional area measurement while suppressing the influence due to the difference in magnetic characteristics for ropes having different magnetic characteristics.
  • Embodiment 2 a rope damage diagnostic inspection apparatus that realizes the above-described features 1 and 2 with a configuration different from that of the first embodiment will be described.
  • FIG. 7 is a configuration diagram of a rope damage diagnostic inspection apparatus according to Embodiment 2 of the present invention.
  • the rope damage diagnosis and inspection apparatus according to the second embodiment includes a first yoke 10, a second yoke 20, an axial coil 30, a circumferential coil 41, alternating current sources 50 and 51, and voltage measuring devices 60 and 61. It is configured.
  • the controller 70 is not shown.
  • the rope damage diagnosis and inspection apparatus includes a circumferential coil 41 instead of the magnetic sensor array 40, and an alternating current source 51 and a voltage measuring device. 61 is newly provided.
  • the cross-sectional area measurement is the same as in the previous embodiment, but the break detection is performed using the circumferential coil 41 arranged in the vicinity of the rope 1.
  • the controller 70 applies the alternating magnetic field generated by the alternating current source 50, the axial coil 30, and the second yoke 20 to the rope 1, and measures the leakage magnetic flux by the magnetic sensor array 40. By doing so, the breakage was detected.
  • the controller 70 applies an alternating magnetic field generated by the alternating current source 51 and the circumferential coil 41 to the rope 1 and measures the leakage magnetic flux by the circumferential coil 41. By doing so, rupture detection is performed.
  • FIG. 8 is a diagram for explaining the principle of disconnection detection in the second embodiment of the present invention. Specifically, the circumferential coil 41 generates an alternating magnetic field 2 and changes the eddy current magnetic field. It is explanatory drawing which showed the state detected.
  • the controller 70 generates the AC magnetic field 2 by the AC current source 51 and the circumferential coil 41 and applies it to the rope 1 when performing break detection, and when measuring the cross-sectional area.
  • an AC magnetic field 1 is generated by the AC current source 50, the axial coil 30, and the second yoke 20 and applied to the rope 1.
  • the axial coil 30 when the AC magnetic field 2 is being applied by the circumferential coil 41 in order to perform the fracture detection operation, the axial coil 30 is not operated and a current is passed through the axial coil 30. It is controlled by the controller 70 so as not to exist. On the contrary, when the AC magnetic field 1 is being applied by the axial coil 30 in order to measure the cross-sectional area, the controller 70 does not operate the circumferential coil so that no current flows through the circumferential coil 41. Be controlled.
  • the controller 70 When performing the disconnection detection in the second embodiment, the controller 70 causes an eddy current to flow in the axial direction by applying an alternating magnetic field 2 in the circumferential direction as shown in FIG. And the controller 70 detects the change of the eddy current magnetic field in a fracture
  • FIG. 9 is a flowchart showing a series of processing for fracture detection and cross-sectional area measurement according to Embodiment 2 of the present invention.
  • the series of processes in FIG. 9 is executed by the controller 70 included in the rope damage diagnostic inspection apparatus.
  • the operation of FIG. 9 is based on the premise that the internal magnetic flux of the rope 1 is saturated by application of a DC magnetic field or a pulse magnetic field.
  • step S ⁇ b> 901 the controller 70 applies an alternating current magnetic field 2 to the rope 1 by supplying a constant alternating current to the circumferential coil 41 from the alternating current source 51.
  • step S ⁇ b> 902 the controller 70 detects the voltage V ⁇ b> 2 of the circumferential coil 41 via the voltage measuring device 61, thereby executing break detection. Specifically, the controller 70 determines that a break has occurred when the voltage V2 exceeds a voltage level corresponding to the allowable change amount of the eddy current magnetic field.
  • step S903 the controller 70 stops supplying an AC constant current from the AC current source 51 to the circumferential coil 41, ends the break detection process, and performs a cross-sectional area measurement process after step S911. Migrate to
  • step S911 the controller 70 supplies the AC magnetic field 1 to the rope 1 by supplying an AC constant current from the AC current source 50 to the axial coil 30.
  • step S912 the controller 70 detects the voltage V1 of the axial coil 30 through the voltage measuring device 60, thereby executing cross-sectional area measurement. Specifically, the controller 70 measures the cross-sectional area based on the mathematical formula (1) described above.
  • step S913 the controller 70 stops supplying the constant AC current from the AC current source 50 to the axial coil 30, ends the cross-sectional area measurement process, and performs the break process after step S901. Return.
  • a DC magnetic field is applied to the rope so that the internal magnetic flux of the rope is saturated. Then, by applying an alternating magnetic field to the saturated rope, rope breakage detection and cross-sectional area measurement are performed.
  • a circumferential coil is used when detecting breakage. As a result, it becomes possible to further improve the detection accuracy of breakage as compared with the first embodiment.
  • Embodiment 3 FIG. In the third embodiment, a rope damage diagnostic inspection apparatus that realizes the above-described feature 1 and feature 2 with a configuration different from that of the first and second embodiments will be described.
  • FIG. 10 is a configuration diagram of a rope damage diagnostic inspection apparatus according to Embodiment 3 of the present invention.
  • the rope damage diagnosis and inspection apparatus according to the third embodiment includes a first yoke 10, an axial coil 31, a magnetic sensor array 40, an AC current source 50, and a voltage measuring device 60.
  • the rope damage diagnosis and inspection apparatus is arranged around the rope 1 instead of the axial coil 30 wound around the second yoke 20.
  • An axial coil 31 is provided.
  • break detection and cross-sectional area measurement are the same as those in the first embodiment, and a description thereof will be omitted.
  • the second yoke 20 is not required by adopting a configuration in which the axial coil 31 is disposed around the rope 1. As a result, the absorption of the DC magnetic field by the yoke can be eliminated, and variations in the magnetic permeability ⁇ can be suppressed.
  • FIG. 11 is a perspective view of the axial coil 31 according to the third embodiment of the present invention. As shown on the right side of FIG. 10 together with FIG. 11, the axial coil 31 can be easily attached to and detached from the rope 1 by adopting a two-part configuration.
  • the configuration is such that the axial coil is arranged around the rope and the second yoke for applying the alternating magnetic field is not required.
  • the absorption of the DC magnetic field by the yoke can be eliminated, the influence of the variation of the magnetic permeability ⁇ can be suppressed, and further improvement in the accuracy of fracture detection and cross-sectional area measurement can be realized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

This rope damage diagnostic examination device is provided with: a first yoke that applies a magnetic field for putting a rope in a magnetically saturated state; an AC magnetic field applicator that, by the supplying of a fixed current to an axially oriented coil, applies an AC magnetic field to the rope in the axial direction thereof and thereby generates an eddy current and an eddy current magnetic field in the rope; and a controller that, during application of the AC magnetic field to the rope that has been put in a magnetically saturated state by the first yoke, detects the presence of a breakage in the rope from the result of measuring the magnitude of leakage flux of the rope, calculates the cross-sectional area of the rope from the result of measuring a voltage that fluctuates due to the eddy current magnetic field generated in the axial direction of the rope, and performs an examination for a shape abnormality in the rope from the presence or absence of a breakage and the cross-sectional area.

Description

ロープ損傷診断検査装置およびロープ損傷診断検査方法Rope damage diagnostic inspection apparatus and rope damage diagnostic inspection method
 本発明は、エレベータのカゴを吊るすロープの破断あるいは減径を検査するエレベータのロープ損傷診断検査装置およびエレベータのロープ損傷診断検査方法に関する。 The present invention relates to an elevator rope damage diagnosis inspection apparatus and an elevator rope damage diagnosis inspection method for inspecting a breakage or a diameter reduction of a rope for hanging an elevator cage.
 E字形状の鉄心を用いて、ロープ損傷を検出する従来技術がある(例えば、特許文献1参照)。この特許文献1におけるE字形状の鉄心(3)は、3つの脚部(31、32、33)を有し、それらの底面には、U字形状の溝(31U、32U、33U)が形成されている。また、鉄心(3)には励磁用コイル(41、42)が巻回され、脚部(33)には検出用コイル(43)が巻回されている。 There is a conventional technique for detecting rope damage using an E-shaped iron core (see, for example, Patent Document 1). The E-shaped iron core (3) in Patent Document 1 has three leg portions (31, 32, 33), and U-shaped grooves (31U, 32U, 33U) are formed on the bottom surfaces thereof. Has been. Further, excitation coils (41, 42) are wound around the iron core (3), and a detection coil (43) is wound around the leg portion (33).
 検査時において、溝(31U、32U、33U)には、検査対象であるワイヤロープ(2)が嵌めこまれ、励磁用コイル(41、42)に交流電源が接続された状態で、鉄心(3)をワイヤロープ(2)に沿って移動させる。そして、脚部(33)がワイヤロープ(2)の損傷部(21)を通過するとき、検出コイル(43)に電圧が発生することで、損傷部(21)を検出することができる。 At the time of inspection, the wire rope (2) to be inspected is fitted in the grooves (31U, 32U, 33U), and the iron core (3) is connected to the exciting coils (41, 42). ) Along the wire rope (2). And when a leg part (33) passes the damaged part (21) of a wire rope (2), a damaged part (21) can be detected because a voltage generate | occur | produces in a detection coil (43).
 この特許文献1では、鉄心は、交流電源により励磁されるので、鉄心が停止しても、その部分のワイヤロープに着磁が生じることはなく、精度のよい、信頼性の高い探傷ができる。 In this Patent Document 1, since the iron core is excited by an AC power source, even if the iron core stops, the wire rope in that portion is not magnetized, and accurate and highly reliable flaw detection can be performed.
特開平10-19852号公報JP-A-10-19852
 しかしながら、従来技術には、以下のような課題がある。
 特許文献1において、検出用コイルから生じる出力は、損傷の形状の他に、ロープの磁気特性により変化する。そのため、損傷の検知はできるものの、ロープの磁気特性のバラツキにより、損傷以外も検知してしまうおそれがある。
However, the prior art has the following problems.
In Patent Document 1, the output generated from the detection coil changes depending on the magnetic characteristics of the rope in addition to the shape of the damage. Therefore, although damage can be detected, other than damage may be detected due to variations in the magnetic characteristics of the rope.
 換言すると、このような従来技術は、ロープの形状異常(素線破断、減径)ではなく、ロープの磁気特性のバラツキを検出してしまうおそれがある。その結果、検出精度が低下してしまう、あるいは、損傷度合いの定量化が困難である、といった問題があった。 In other words, such a conventional technique may detect a variation in the magnetic characteristics of the rope, not an abnormality in the shape of the rope (wire breakage, diameter reduction). As a result, there has been a problem that the detection accuracy is lowered or it is difficult to quantify the degree of damage.
 本発明は、前記のような課題を解決するためになされたものであり、磁気特性のばらつきに依存せずに、ロープの形状異常を定量的に、かつ、従来技術よりも高精度に検出することのできるロープ損傷診断検査装置およびロープ損傷診断検査方法を得ることを目的とする。 The present invention has been made in order to solve the above-described problems, and quantitatively detects a rope shape abnormality more accurately than the prior art without depending on variations in magnetic characteristics. An object of the present invention is to obtain a rope damage diagnosis and inspection apparatus and a rope damage diagnosis and inspection method.
 本発明に係るロープ損傷診断検査装置は、エレベータのかごを吊すロープの形状異常を検査するロープ損傷診断検査装置であって、ロープに装着され、ロープを磁気飽和状態とするための磁界をロープに対して印加する第1のヨークと、交流の一定電流を出力する第1の交流電流源と、軸方向コイルを有して構成され、第1の交流電流源から軸方向コイルに一定電流が供給されることで、ロープの軸方向に対して交流磁界を印加し、ロープ内に渦電流および渦電流磁界を発生させる交流磁界印加器と、交流磁界の印加中におけるロープの漏れ磁束を計測する漏れ磁束計測器と、交流磁界の印加中における軸方向コイルの電圧を測定する第1の電圧測定器と、第1のヨークにより磁気飽和状態となったロープに対して、交流磁界印加器を制御することで交流磁界を印加させ、漏れ磁束計測器により計測された漏れ磁束の大きさからロープの破断の有無を検出し、第1の電圧測定器により測定された電圧から、電圧に比例する値としてロープの断面積を算出し、破断の有無および断面積からロープの形状異常を検査するコントローラとを備えるものである。 A rope damage diagnosis and inspection apparatus according to the present invention is a rope damage diagnosis and inspection apparatus that inspects an abnormality in the shape of a rope that suspends an elevator car. The rope damage diagnosis and inspection apparatus is attached to a rope and uses a magnetic field for bringing the rope into a magnetic saturation state. The first yoke to be applied, the first alternating current source that outputs a constant alternating current, and the axial coil are configured to supply a constant current from the first alternating current source to the axial coil. By applying an AC magnetic field to the axial direction of the rope, an AC magnetic field applicator that generates an eddy current and an eddy current magnetic field in the rope, and a leak that measures the leakage magnetic flux of the rope during the application of the AC magnetic field Control the AC magnetic field applicator for the magnetic flux measuring instrument, the first voltage measuring instrument that measures the voltage of the axial coil during application of the AC magnetic field, and the rope that is magnetically saturated by the first yoke. A value proportional to the voltage from the voltage measured by the first voltage measuring device is detected by detecting whether or not the rope is broken from the magnitude of the leakage magnetic flux measured by the leakage magnetic flux measuring device. And a controller for calculating the cross-sectional area of the rope and inspecting the rope for abnormal shape from the presence / absence of breakage and the cross-sectional area.
 また、本発明に係るロープ損傷診断検査方法は、エレベータのかごを吊すロープの形状異常を検査するロープ損傷診断検査方法であって、ロープを磁気飽和状態とするための磁界をロープに対して印加する第1ステップと、磁気飽和状態となったロープに対して、交流磁界を印加させる第2ステップと、交流磁界の印加中におけるロープの漏れ磁束を計測する第3ステップと、計測された漏れ磁束の大きさからロープの破断の有無を検出する第4ステップと、交流磁界の印加中において、ロープの軸方向に発生する渦電流磁界により変動する電圧を測定する第5ステップと、測定された電圧に比例する値としてロープの断面積を算出する第6ステップと、第4ステップによる破断の有無の検出結果、およびステップ6による断面積の算出結果から、ロープの形状異常を判断する第7ステップとを有するものである。 The rope damage diagnosis and inspection method according to the present invention is a rope damage diagnosis and inspection method for inspecting an abnormality in the shape of a rope that suspends an elevator car, and applies a magnetic field to the rope to make the rope magnetically saturated. A second step of applying an alternating magnetic field to the rope that has become magnetically saturated, a third step of measuring the leakage flux of the rope during application of the alternating magnetic field, and the measured leakage flux A fourth step for detecting the presence or absence of a rope break from the magnitude of the wire, a fifth step for measuring a voltage fluctuating due to an eddy current magnetic field generated in the axial direction of the rope during application of an alternating magnetic field, and a measured voltage The sixth step of calculating the cross-sectional area of the rope as a value proportional to the value, the detection result of the presence or absence of breakage in the fourth step, and the calculation result of the cross-sectional area in step 6 From those having a seventh step of determining the abnormal shape of the rope.
 本発明によれば、磁気飽和状態となったロープに対して交流磁界を印加し、交流磁界の印加中において、ロープの漏れ磁束の大きさの計測結果からロープの破断の有無を検出し、ロープの軸方向に発生する渦電流磁界により変動する電圧の計測結果からロープの断面積を算出し、破断の有無および断面積からロープの形状異常を検査する構成を備えている。この結果、磁気特性のばらつきに依存せずに、ロープの形状異常を定量的に、かつ、従来技術よりも高精度に検出することのできるロープ損傷診断検査装置およびロープ損傷診断検査方法を得ることができる。 According to the present invention, an alternating magnetic field is applied to a rope that is in a magnetic saturation state, and during the application of the alternating magnetic field, the presence or absence of a rope breakage is detected from the measurement result of the magnitude of the leakage magnetic flux of the rope. The cross-sectional area of the rope is calculated from the measurement result of the voltage that fluctuates due to the eddy current magnetic field generated in the axial direction, and the configuration of the rope is inspected for the presence of breakage and the cross-sectional area. As a result, it is possible to obtain a rope damage diagnostic inspection apparatus and a rope damage diagnostic inspection method capable of detecting a rope shape abnormality quantitatively and with higher accuracy than conventional techniques without depending on variations in magnetic characteristics. Can do.
本発明の実施の形態1におけるロープ損傷診断検査装置の構成図である。It is a block diagram of the rope damage diagnostic inspection apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における断線検出の原理を説明するための図である。It is a figure for demonstrating the principle of the disconnection detection in Embodiment 1 of this invention. 本発明の実施の形態1におけるロープの第1の磁気特性を示した図である。It is the figure which showed the 1st magnetic characteristic of the rope in Embodiment 1 of this invention. 本発明の実施の形態1におけるロープの第2の磁気特性を示した図である。It is the figure which showed the 2nd magnetic characteristic of the rope in Embodiment 1 of this invention. 本発明の実施の形態1において、ロープが無磁界の状態での、渦電流のロープ1内への侵入と、磁界の強さとの関係を説明するための図である。In Embodiment 1 of this invention, it is a figure for demonstrating the relationship between the penetration | invasion of the eddy current in the rope 1 in the state of a rope without a magnetic field, and the strength of a magnetic field. 本発明の実施の形態1において、ロープが強磁界の状態での、渦電流のロープ1内への侵入と、磁界の強さとの関係を説明するための図である。In Embodiment 1 of this invention, it is a figure for demonstrating the relationship between the penetration | invasion of the eddy current in the rope 1 in the state of a strong magnetic field, and the strength of a magnetic field. 本発明の実施の形態2におけるロープ損傷診断検査装置の構成図である。It is a block diagram of the rope damage diagnostic inspection apparatus in Embodiment 2 of this invention. 本発明の実施の形態2における断線検出の原理を説明するための図である。It is a figure for demonstrating the principle of the disconnection detection in Embodiment 2 of this invention. 本発明の実施の形態2における破断検出および断面積計測の一連処理を示したフローチャートである。It is the flowchart which showed the series of processes of the fracture | rupture detection and cross-sectional area measurement in Embodiment 2 of this invention. 本発明の実施の形態3におけるロープ損傷診断検査装置の構成図である。It is a block diagram of the rope damage diagnostic inspection apparatus in Embodiment 3 of this invention. 本発明の実施の形態3における軸方向コイルの斜視図である。It is a perspective view of the axial coil in Embodiment 3 of this invention.
 以下、本発明のロープ損傷診断検査装置およびロープ損傷診断検査方法の好適な実施の形態につき、図面を用いて説明する。 Hereinafter, preferred embodiments of the rope damage diagnosis and inspection apparatus and the rope damage diagnosis and inspection method of the present invention will be described with reference to the drawings.
 実施の形態1.
 図1は、本発明の実施の形態1におけるロープ損傷診断検査装置の構成図である。本実施の形態1におけるロープ損傷診断検査装置は、第1ヨーク10、第2ヨーク20、軸方向コイル30、磁気センサアレイ40、交流電流源50、および電圧測定器60を備えて構成されている。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a rope damage diagnosis and inspection apparatus according to Embodiment 1 of the present invention. The rope damage diagnosis / inspection apparatus according to the first embodiment includes a first yoke 10, a second yoke 20, an axial coil 30, a magnetic sensor array 40, an alternating current source 50, and a voltage measuring device 60. .
 第1ヨーク10は、検査対象であるロープ1に装着されることで、ロープ1に対して第1磁界を印加するためのヨークであり、磁石11を備えている。磁石11として永久磁石11aを用いた場合には、第1ヨーク10を介して、ロープ1には第1磁界として直流磁界が印加されることとなり、これにより、ロープ1を磁気飽和させることができる。 The first yoke 10 is a yoke for applying a first magnetic field to the rope 1 by being attached to the rope 1 to be inspected, and includes a magnet 11. When the permanent magnet 11a is used as the magnet 11, a direct current magnetic field is applied to the rope 1 via the first yoke 10 as a first magnetic field, whereby the rope 1 can be magnetically saturated. .
 なお、磁石11として電磁石11bを用いた場合には、第1ヨーク10を介して、ロープ1には第1磁界としてパルス磁界が印加されることとなり、これによっても、ロープ1を磁気飽和させることができる。以下では、直流磁界を印加する場合を例に、説明する。 When the electromagnet 11b is used as the magnet 11, a pulse magnetic field is applied as a first magnetic field to the rope 1 via the first yoke 10, and this also magnetically saturates the rope 1. Can do. Hereinafter, a case where a DC magnetic field is applied will be described as an example.
 第2ヨーク20は、ロープ1に対して交流磁界を印加するためのヨークである。具体的には、第2ヨーク20に巻回された軸方向コイル30に対して、交流電流源50から交流の一定電流を供給することで、第2ヨーク20を介して、ロープ1に交流磁界を印加させることができる。この結果として、ロープ1内には、渦電流が発生するとともに、渦電流による渦電流磁界も発生する。 The second yoke 20 is a yoke for applying an alternating magnetic field to the rope 1. Specifically, by supplying a constant alternating current from the alternating current source 50 to the axial coil 30 wound around the second yoke 20, the alternating magnetic field is applied to the rope 1 via the second yoke 20. Can be applied. As a result, an eddy current is generated in the rope 1 and an eddy current magnetic field due to the eddy current is also generated.
 磁気センサアレイ40は、第2ヨーク20を介した交流磁界印加時に、ロープ1の破断部からの渦電流磁界の漏れ磁束を計測し、破断を検出する漏れ磁束計測器である。ここで、磁気センサアレイ40を用いて検出する磁界の方向は、径方向だけでなく、軸方向、周方向でもよい。破断検出の原理の詳細については、後述する。 The magnetic sensor array 40 is a leakage flux measuring instrument that measures the leakage flux of the eddy current magnetic field from the breaking portion of the rope 1 and detects the breaking when an alternating magnetic field is applied via the second yoke 20. Here, the direction of the magnetic field detected using the magnetic sensor array 40 may be not only the radial direction but also the axial direction and the circumferential direction. Details of the principle of break detection will be described later.
 なお、このような漏れ磁束計測器としては、磁気センサアレイ40の代わりに、ホール素子、磁気抵抗素子(AMR、GMR、TMR)、またはコイルを使用することができる。さらに、漏れ磁束計測器としてコイルを使用する場合には、単一コイルでもよい。 In addition, as such a leakage magnetic flux measuring instrument, a Hall element, a magnetoresistive element (AMR, GMR, TMR), or a coil can be used instead of the magnetic sensor array 40. Furthermore, when a coil is used as the leakage flux measuring instrument, a single coil may be used.
 電圧測定器60は、第2ヨーク20を介した交流磁界印加時に、渦電流磁界により変動する軸方向コイル30の電圧Vを測定し、電圧Vに比例するロープ1の断面積Sを計測する。断面積計測の原理の詳細については、後述する。 The voltage measuring device 60 measures the voltage V of the axial coil 30 that fluctuates due to the eddy current magnetic field when an AC magnetic field is applied via the second yoke 20, and measures the cross-sectional area S of the rope 1 proportional to the voltage V. Details of the principle of cross-sectional area measurement will be described later.
 なお、図1には図示していないが、本実施の形態1におけるロープ損傷診断検査装置は、コントローラ70を有している。そして、コントローラ70は、交流電流源50からの出力を制御するとともに、磁気センサアレイ40および電圧測定器60による計測結果に基づいて、破断検出処理および断面積計測処理を実行する。 Although not shown in FIG. 1, the rope damage diagnostic inspection apparatus according to the first embodiment has a controller 70. Then, the controller 70 controls the output from the AC current source 50, and executes the break detection process and the cross-sectional area measurement process based on the measurement results by the magnetic sensor array 40 and the voltage measuring device 60.
 次に、本実施の形態1におけるロープ損傷診断検査装置で実行される破断検出の原理、および断面積計測の原理について、図面を用いて詳細に説明する。 Next, the principle of fracture detection and the principle of cross-sectional area measurement executed by the rope damage diagnosis and inspection apparatus according to the first embodiment will be described in detail with reference to the drawings.
<破断検出の原理について>
 図2は、本発明の実施の形態1における断線検出の原理を説明するための図であり、具体的には、磁気センサアレイ40により、渦電流磁界の変化を検出する状態を示した説明図である。
<About the principle of break detection>
FIG. 2 is a diagram for explaining the principle of disconnection detection in the first embodiment of the present invention. Specifically, an explanatory diagram showing a state in which the magnetic sensor array 40 detects a change in an eddy current magnetic field. It is.
 第2ヨーク20を介してロープ1に交流磁界が印加されることで、電磁誘導により、ロープ1の周方向には、渦電流が流れる。そして、図2の中央部に「A部」として示したようなロープ1の破断箇所がある場合には、渦電流の流路が変わることとなる。この結果、渦電流により生じる磁界に相当する「渦電流磁界」が変動する。 When an AC magnetic field is applied to the rope 1 through the second yoke 20, an eddy current flows in the circumferential direction of the rope 1 due to electromagnetic induction. And when there exists a fracture | rupture location of the rope 1 as shown as "A part" in the center part of FIG. 2, the flow path of eddy current will change. As a result, the “eddy current magnetic field” corresponding to the magnetic field generated by the eddy current varies.
 そこで、本発明の実施の形態1におけるコントローラ70は、磁気センサアレイ40により、この渦電流磁界の変化を計測し、変化量の大きさが許容値を逸脱した場合には、その箇所で、ロープ1の破断が発生していることを検出することができる。 Therefore, the controller 70 according to the first embodiment of the present invention measures the change of the eddy current magnetic field by the magnetic sensor array 40, and when the magnitude of the change deviates from the allowable value, the rope 70 It can be detected that 1 breakage has occurred.
<断面積計測の原理について>
 軸方向コイル30によるロープ1内の交流磁束は、ロープ断面積とロープの透磁率μに比例する。ここで、ロープ1は、主に鉄でできており、製造時の温度、材料、圧延などにより、磁気特性が変化する。また、ロープにかかる張力によっても、磁気特性が変化する。
<About the principle of cross-sectional area measurement>
The AC magnetic flux in the rope 1 by the axial coil 30 is proportional to the rope cross-sectional area and the rope permeability μ. Here, the rope 1 is mainly made of iron, and its magnetic properties change depending on the temperature, material, rolling, etc. during manufacture. Also, the magnetic characteristics change depending on the tension applied to the rope.
 図3は、本発明の実施の形態1におけるロープ1の第1の磁気特性を示した図である。具体的には、この図3に示した第1の磁気特性は、横軸を印加磁界H、縦軸をロープ1内の磁界としたB-Hカーブによる磁気特性である。 FIG. 3 is a diagram showing a first magnetic characteristic of the rope 1 according to the first embodiment of the present invention. Specifically, the first magnetic characteristic shown in FIG. 3 is a magnetic characteristic by a BH curve in which the horizontal axis represents the applied magnetic field H and the vertical axis represents the magnetic field in the rope 1.
 また、図4は、本発明の実施の形態1におけるロープ1の第2の磁気特性を示した図である。具体的には、この図4に示した第2の磁気特性は、横軸を印加磁界H、縦軸を透磁率μとしたμ-Hカーブによる磁気特性である。なお、透磁率μは、図3に示したB-Hカーブの傾きに相当する。 FIG. 4 is a diagram showing a second magnetic characteristic of the rope 1 according to the first embodiment of the present invention. Specifically, the second magnetic characteristic shown in FIG. 4 is a magnetic characteristic based on a μ-H curve with the applied magnetic field H on the horizontal axis and the permeability μ on the vertical axis. The magnetic permeability μ corresponds to the slope of the BH curve shown in FIG.
 従来技術の課題として上述したように、図4に示した印加磁界H1における透磁率μは、ロープ1毎の磁気特性の影響を受けて、ばらつきが大きくなってしまう。このような課題を解決するために、本実施の形態1では、直流磁界を印加することでロープ1の内部磁束を飽和させ、図4に示した印加磁界H2の状態としている。この結果、コントローラ70は、透磁率μのばらつきが少なく、ロープ1毎で異なる磁気特性の影響を抑制した状態で、断面積の計測を行うことができる。 As described above as a problem of the prior art, the magnetic permeability μ in the applied magnetic field H1 shown in FIG. 4 is affected by the magnetic characteristics of each rope 1 and varies greatly. In order to solve such a problem, in the first embodiment, the internal magnetic flux of the rope 1 is saturated by applying a DC magnetic field, and the applied magnetic field H2 shown in FIG. 4 is obtained. As a result, the controller 70 can measure the cross-sectional area in a state where the variation of the magnetic permeability μ is small and the influence of the magnetic characteristics that are different for each rope 1 is suppressed.
 そこで、本実施の形態1では、まず始めに、第1ヨーク10を介してロープ1に直流磁界を印加し、ロープ1の内部磁束Bを飽和状態とする。これにより、ロープ1の磁気特性、寸法にかかわらず、磁束Bの微分値に相当する透磁率μが、先の図4で示したように、ほぼ一定とすることができる。 Therefore, in the first embodiment, first, a DC magnetic field is applied to the rope 1 via the first yoke 10 to saturate the internal magnetic flux B of the rope 1. Thereby, irrespective of the magnetic characteristics and dimensions of the rope 1, the permeability μ corresponding to the differential value of the magnetic flux B can be made substantially constant as shown in FIG.
 次に、コントローラ70は、軸方向コイル30に関する以下の計算式(1)から、断面積Sを求めることができる。
  L=n×φ=n×μHrf×S         (1)
 ここで、nは、単位長さあたりのコイル巻数であり、Hrfは、交流磁界である。
Next, the controller 70 can obtain the cross-sectional area S from the following calculation formula (1) regarding the axial coil 30.
L = n × φ = n × μH rf × S (1)
Here, n is the number of coil turns per unit length, and H rf is an AC magnetic field.
 本実施の形態1では、コントローラ70の働きにより、第2ヨーク20に巻回された軸方向コイル30に対して、交流電流源50から交流の一定電流が供給されるように制御される。この結果、上式(1)における
  n×μHrf
は、既知の一定値とすることができる。従って、コントローラ70は、電圧測定器60により、軸方向コイル30の電圧Vを測定することで、断面積Sに比例した値を計測することが可能となる。
In the first embodiment, the controller 70 controls the axial coil 30 wound around the second yoke 20 so that a constant alternating current is supplied from the alternating current source 50. As a result, n × μH rf in the above equation (1)
Can be a known constant value. Therefore, the controller 70 can measure a value proportional to the cross-sectional area S by measuring the voltage V of the axial coil 30 with the voltage measuring device 60.
 なお、直流磁界を印加させてロープ1の内部磁束Bを飽和状態とすることは、断面積Sの計測を可能にするばかりでなく、渦電流磁界の変化の計測結果に基づくロープ1の破断検出を行う際の検出精度の向上にも寄与することを、次に説明する。 Note that applying a DC magnetic field to saturate the internal magnetic flux B of the rope 1 not only enables the measurement of the cross-sectional area S but also detects the breakage of the rope 1 based on the measurement result of the change in the eddy current magnetic field. The fact that it contributes to the improvement of detection accuracy when performing the following will be described.
 渦電流磁界は、軸方向コイル30による励磁磁界の電磁誘導作用により生じるため、この励磁磁界を打ち消す方向で生じる。従って、ロープ1の内部に届く励磁磁界は、渦電流磁界により、ロープ内部程、小さくなる。結果として、ロープ1の内部ほど、渦電流は、小さくなる。 Since the eddy current magnetic field is generated by the electromagnetic induction action of the exciting magnetic field by the axial coil 30, it is generated in the direction to cancel the exciting magnetic field. Therefore, the exciting magnetic field that reaches the inside of the rope 1 becomes smaller as the inside of the rope is reduced by the eddy current magnetic field. As a result, the eddy current becomes smaller toward the inside of the rope 1.
 そして、渦電流の大きさが、ロープ表面の値から1/eに減少する深さ(表皮深さ)δは、下式(2)で表される。
  δ=1/√(π×μ×σ×f)        (2)
 ここで、上式(2)における各係数は、以下のものである。
  π:円周率
  μ:透磁率
  σ:電気伝導率
  f:励磁磁界の周波数
The depth (skin depth) δ at which the magnitude of the eddy current decreases to 1 / e from the value on the rope surface is expressed by the following equation (2).
δ = 1 / √ (π × μ × σ × f) (2)
Here, each coefficient in the above equation (2) is as follows.
π: Circumference μ: Magnetic permeability σ: Electrical conductivity f: Frequency of excitation magnetic field
 従って、上式(2)からも明らかなように、渦電流は、透磁率μが小さい程、より深くロープ1の内部に侵入できる。図5は、本発明の実施の形態1において、ロープ1が無磁界の状態での、渦電流のロープ1内への侵入と、磁界の強さとの関係を説明するための図である。一方、図6は、本発明の実施の形態1において、ロープ1が強磁界の状態での、渦電流のロープ1内への侵入と、磁界の強さとの関係を説明するための図である。 Therefore, as is clear from the above equation (2), the eddy current can penetrate deeper into the rope 1 as the permeability μ is smaller. FIG. 5 is a diagram for explaining the relationship between the penetration of eddy currents into the rope 1 and the strength of the magnetic field when the rope 1 is in a state of no magnetic field in the first embodiment of the present invention. On the other hand, FIG. 6 is a diagram for explaining the relationship between the penetration of eddy currents into the rope 1 and the strength of the magnetic field when the rope 1 is in a strong magnetic field in the first embodiment of the present invention. .
 図5に示すように、無磁界中においては、透磁率μが大きいため、上式(2)で求まる表皮深さδは、浅くなってしまう。この結果、交流磁界、渦電流が、ロープ1の内部にまで侵入できず、欠陥位置まで渦電流が届かない状態が発生するおそれがある。 As shown in FIG. 5, in the absence of a magnetic field, the permeability μ is large, so that the skin depth δ obtained by the above equation (2) becomes shallow. As a result, the AC magnetic field and eddy current cannot enter the inside of the rope 1, and there is a possibility that a state where the eddy current does not reach the defect position may occur.
 これに対して、図6に示すように、強磁界中においては、透磁率μが小さいため、上式(2)で求まる表皮深さδは、先の図5の場合と比較して、より深くなる。この結果、交流磁界、渦電流が、ロープ1の内部まで侵入でき、欠陥位置まで渦電流が届く状態となる。従って、直流磁界を印加させてロープ1の内部磁束Bを飽和状態とさせておくことで、渦電流磁界の漏れ磁束の計測結果に基づくロープ1の破断検出精度を高めることが可能となる。 On the other hand, as shown in FIG. 6, since the magnetic permeability μ is small in a strong magnetic field, the skin depth δ obtained by the above equation (2) is more compared to the case of FIG. Deepen. As a result, an alternating magnetic field and eddy current can penetrate into the inside of the rope 1 and the eddy current reaches the defect position. Therefore, by applying a DC magnetic field to keep the internal magnetic flux B of the rope 1 in a saturated state, it becomes possible to improve the breakage detection accuracy of the rope 1 based on the measurement result of the leakage flux of the eddy current magnetic field.
 以上の説明から、本願発明の技術的特徴をまとめると、以下の2点となる。
(特徴1)ロープ1に直流磁界を印加することにより、ロープ1の磁気特性のバラツキを抑えることができ、断面積の計測を高精度に行うことができる。
(特徴2)ロープ1に直流磁界を印加することにより、ロープ1の透磁率μを下げることができ、この結果、交流磁界がロープ内部に侵入しやすくなり、ロープ1の破断検出精度を高めることが可能となる。
From the above description, the technical features of the present invention are summarized as follows.
(Characteristic 1) By applying a DC magnetic field to the rope 1, variations in the magnetic properties of the rope 1 can be suppressed, and the cross-sectional area can be measured with high accuracy.
(Characteristic 2) By applying a DC magnetic field to the rope 1, the permeability μ of the rope 1 can be lowered. As a result, the AC magnetic field can easily enter the inside of the rope, and the breakage detection accuracy of the rope 1 can be improved. Is possible.
 以上のように、実施の形態1によれば、ロープの形状異常を検出する際に、ロープに対して直流磁界を印加し、ロープの内部磁束を飽和状態としている。そして、この飽和状態のロープに対して交流磁界を印加することで、ロープの破断検出および断面積計測を実行している。この結果、個々で異なる磁気特性を有するロープに対して、磁気特性の違いによる影響を抑制した上で、破断検出および断面積計測の精度向上を実現できる。 As described above, according to the first embodiment, when detecting an abnormal shape of the rope, a DC magnetic field is applied to the rope to saturate the internal magnetic flux of the rope. Then, by applying an alternating magnetic field to the saturated rope, rope breakage detection and cross-sectional area measurement are performed. As a result, it is possible to realize an improvement in the accuracy of breakage detection and cross-sectional area measurement while suppressing the influence due to the difference in magnetic characteristics for ropes having different magnetic characteristics.
 実施の形態2.
 本実施の形態2では、先の実施の形態1とは異なる構成により、上述した特徴1、特徴2を実現するロープ損傷診断検査装置について説明する。
Embodiment 2. FIG.
In the second embodiment, a rope damage diagnostic inspection apparatus that realizes the above-described features 1 and 2 with a configuration different from that of the first embodiment will be described.
 図7は、本発明の実施の形態2におけるロープ損傷診断検査装置の構成図である。本実施の形態2におけるロープ損傷診断検査装置は、第1ヨーク10、第2ヨーク20、軸方向コイル30、周方向コイル41、交流電流源50、51、および電圧測定器60、61を備えて構成されている。なお、図7においても、コントローラ70は、図示を省略している。 FIG. 7 is a configuration diagram of a rope damage diagnostic inspection apparatus according to Embodiment 2 of the present invention. The rope damage diagnosis and inspection apparatus according to the second embodiment includes a first yoke 10, a second yoke 20, an axial coil 30, a circumferential coil 41, alternating current sources 50 and 51, and voltage measuring devices 60 and 61. It is configured. In FIG. 7, the controller 70 is not shown.
 先の実施の形態1との構成上の違いとして、本実施の形態2におけるロープ損傷診断検査装置は、磁気センサアレイ40の代わりに周方向コイル41を備えるとともに、交流電流源51および電圧測定器61を新たに備えている。そして、本実施の形態2では、断面積計測に関しては、先の実施の形態と同様であるが、破断検出に関しては、ロープ1の近傍に配置された周方向コイル41を用いて行っており、以下、図面を用いて詳細に説明する。 As a structural difference from the first embodiment, the rope damage diagnosis and inspection apparatus according to the second embodiment includes a circumferential coil 41 instead of the magnetic sensor array 40, and an alternating current source 51 and a voltage measuring device. 61 is newly provided. In the second embodiment, the cross-sectional area measurement is the same as in the previous embodiment, but the break detection is performed using the circumferential coil 41 arranged in the vicinity of the rope 1. Hereinafter, it explains in detail using a drawing.
 先の実施の形態1において、コントローラ70は、交流電流源50、軸方向コイル30、第2ヨーク20により発生させた交流磁界をロープ1に対して印加し、磁気センサアレイ40により漏れ磁束を計測することで、破断検出を行っていた。 In the first embodiment, the controller 70 applies the alternating magnetic field generated by the alternating current source 50, the axial coil 30, and the second yoke 20 to the rope 1, and measures the leakage magnetic flux by the magnetic sensor array 40. By doing so, the breakage was detected.
 これに対して、本実施の形態2において、コントローラ70は、交流電流源51、周方向コイル41により発生させた交流磁界をロープ1に対して印加し、周方向コイル41により漏れ磁束の計測を行うことで、破断検出を行っている。 In contrast, in the second embodiment, the controller 70 applies an alternating magnetic field generated by the alternating current source 51 and the circumferential coil 41 to the rope 1 and measures the leakage magnetic flux by the circumferential coil 41. By doing so, rupture detection is performed.
<実施の形態2における破断検出の原理について>
 図8は、本発明の実施の形態2における断線検出の原理を説明するための図であり、具体的には、周方向コイル41により、交流磁界2を発生させるとともに、渦電流磁界の変化を検出する状態を示した説明図である。
<About the principle of fracture detection in Embodiment 2>
FIG. 8 is a diagram for explaining the principle of disconnection detection in the second embodiment of the present invention. Specifically, the circumferential coil 41 generates an alternating magnetic field 2 and changes the eddy current magnetic field. It is explanatory drawing which showed the state detected.
 本実施の形態2において、コントローラ70は、破断検出を行う際には、交流電流源51、周方向コイル41により、交流磁界2を発生させ、ロープ1に印加し、断面積計測を行う際には、先の実施の形態1と同様に、交流電流源50、軸方向コイル30、第2ヨーク20により交流磁界1を発生させ、ロープ1に印加している。 In the second embodiment, the controller 70 generates the AC magnetic field 2 by the AC current source 51 and the circumferential coil 41 and applies it to the rope 1 when performing break detection, and when measuring the cross-sectional area. As in the first embodiment, an AC magnetic field 1 is generated by the AC current source 50, the axial coil 30, and the second yoke 20 and applied to the rope 1.
 そこで、本実施の形態2では、破断検出動作を行うために周方向コイル41で交流磁界2を印加中の場合には、軸方向コイル30は、動作させず、軸方向コイル30に電流を流さないように、コントローラ70によって制御される。逆に、断面積計測を行うために軸方向コイル30で交流磁界1を印加中の場合には、周方向コイルは、動作させず、周方向コイル41に電流を流さないように、コントローラ70によって制御される。 Therefore, in the second embodiment, when the AC magnetic field 2 is being applied by the circumferential coil 41 in order to perform the fracture detection operation, the axial coil 30 is not operated and a current is passed through the axial coil 30. It is controlled by the controller 70 so as not to exist. On the contrary, when the AC magnetic field 1 is being applied by the axial coil 30 in order to measure the cross-sectional area, the controller 70 does not operate the circumferential coil so that no current flows through the circumferential coil 41. Be controlled.
 本実施の形態2において断線検出を行う際には、コントローラ70は、図8に示すように、周方向に交流磁界2を印加させることにより、軸方向に渦電流を流す。そして、コントローラ70は、電圧測定器61により周方向コイル41の電圧V2を読み取ることで、破断箇所(A部)での渦電流磁界の変化を検出する。 When performing the disconnection detection in the second embodiment, the controller 70 causes an eddy current to flow in the axial direction by applying an alternating magnetic field 2 in the circumferential direction as shown in FIG. And the controller 70 detects the change of the eddy current magnetic field in a fracture | rupture location (A part) by reading the voltage V2 of the circumferential coil 41 with the voltage measuring device 61. FIG.
 図9は、本発明の実施の形態2における破断検出および断面積計測の一連処理を示したフローチャートである。この図9における一連処理は、ロープ損傷診断検査装置が有しているコントローラ70によって実行されるものである。また、図9では、破断検出→断面積計測の順で行っているが、順番は、逆でも問題ない。また、図9の動作は、ロープ1の内部磁束が、直流磁界あるいはパルス磁界の印加により、飽和状態となっていることが前提である。 FIG. 9 is a flowchart showing a series of processing for fracture detection and cross-sectional area measurement according to Embodiment 2 of the present invention. The series of processes in FIG. 9 is executed by the controller 70 included in the rope damage diagnostic inspection apparatus. Moreover, in FIG. 9, although it performs in order of a fracture | rupture detection-> cross-sectional area measurement, there is no problem even if the order is reverse. Further, the operation of FIG. 9 is based on the premise that the internal magnetic flux of the rope 1 is saturated by application of a DC magnetic field or a pulse magnetic field.
 まず始めに、ステップS901において、コントローラ70は、交流電流源51から周方向コイル41に対して交流の一定電流を供給させることで、ロープ1に対して交流磁界2を印加させる。 First, in step S <b> 901, the controller 70 applies an alternating current magnetic field 2 to the rope 1 by supplying a constant alternating current to the circumferential coil 41 from the alternating current source 51.
 次に、ステップS902において、コントローラ70は、周方向コイル41の電圧V2を、電圧測定器61を介して検出することで、破断検出を実行する。具体的には、コントローラ70は、電圧V2が、渦電流磁界の許容変化量に相当する電圧レベルを超えている場合には、破断が発生していると判断する。 Next, in step S <b> 902, the controller 70 detects the voltage V <b> 2 of the circumferential coil 41 via the voltage measuring device 61, thereby executing break detection. Specifically, the controller 70 determines that a break has occurred when the voltage V2 exceeds a voltage level corresponding to the allowable change amount of the eddy current magnetic field.
 次に、ステップS903において、コントローラ70は、交流電流源51から周方向コイル41に対して交流の一定電流を供給することを停止し、破断検出処理を終了し、ステップS911以降の断面積計測処理に移行する。 Next, in step S903, the controller 70 stops supplying an AC constant current from the AC current source 51 to the circumferential coil 41, ends the break detection process, and performs a cross-sectional area measurement process after step S911. Migrate to
 そして、ステップS911において、コントローラ70は、交流電流源50から軸方向コイル30に対して交流の一定電流を供給させることで、ロープ1に対して交流磁界1を印加させる。 In step S911, the controller 70 supplies the AC magnetic field 1 to the rope 1 by supplying an AC constant current from the AC current source 50 to the axial coil 30.
 次に、ステップS912において、コントローラ70は、軸方向コイル30の電圧V1を、電圧測定器60を介して検出することで、断面積計測を実行する。具体的には、コントローラ70は、上述した数式(1)に基づいて、断面積を計測する。 Next, in step S912, the controller 70 detects the voltage V1 of the axial coil 30 through the voltage measuring device 60, thereby executing cross-sectional area measurement. Specifically, the controller 70 measures the cross-sectional area based on the mathematical formula (1) described above.
 次に、ステップS913において、コントローラ70は、交流電流源50から軸方向コイル30に対して交流の一定電流を供給することを停止し、断面積計測処理を終了し、ステップS901以降の破断処理に戻る。 Next, in step S913, the controller 70 stops supplying the constant AC current from the AC current source 50 to the axial coil 30, ends the cross-sectional area measurement process, and performs the break process after step S901. Return.
 ロープ1の破断による欠損は、周方向で発生するため、軸方向の渦電流を妨げやすくなる。この結果、周方向コイル41を活用する本実施の形態2による破断検出処理によれば、磁気センサアレイ40を活用して破断処理を行っていた先の実施の形態1よりも、破断による渦電流の流路変化が大きくなって現れるため、電圧V2の出力がより大きくなる。この結果、破断検出精度のさらなる向上を図ることができる。 Since defects due to the breakage of the rope 1 occur in the circumferential direction, it becomes easy to disturb the eddy current in the axial direction. As a result, according to the break detection process according to the second embodiment using the circumferential coil 41, the eddy current due to the break is higher than in the first embodiment in which the break process is performed using the magnetic sensor array 40. Therefore, the output of the voltage V2 becomes larger. As a result, the breakage detection accuracy can be further improved.
 以上のように、実施の形態2によれば、ロープの形状異常を検出する際に、ロープに対して直流磁界を印加し、ロープの内部磁束を飽和状態としている。そして、この飽和状態のロープに対して交流磁界を印加することで、ロープの破断検出および断面積計測を実行している。この結果、個々で異なる磁気特性を有するロープに対して、磁気特性の違いによる影響を抑制した上で、破断検出および断面積計測の精度向上を実現できる。さらに、破断検出を行う際に、周方向コイルを用いている。この結果、先の実施の形態1と比較して、破断の検出精度をさらに向上させることが可能になる。 As described above, according to the second embodiment, when an abnormal shape of the rope is detected, a DC magnetic field is applied to the rope so that the internal magnetic flux of the rope is saturated. Then, by applying an alternating magnetic field to the saturated rope, rope breakage detection and cross-sectional area measurement are performed. As a result, it is possible to realize an improvement in the accuracy of breakage detection and cross-sectional area measurement while suppressing the influence due to the difference in magnetic characteristics for ropes having different magnetic characteristics. Furthermore, a circumferential coil is used when detecting breakage. As a result, it becomes possible to further improve the detection accuracy of breakage as compared with the first embodiment.
 実施の形態3.
 本実施の形態3では、先の実施の形態1、2とは異なる構成により、上述した特徴1、特徴2を実現するロープ損傷診断検査装置について説明する。
Embodiment 3 FIG.
In the third embodiment, a rope damage diagnostic inspection apparatus that realizes the above-described feature 1 and feature 2 with a configuration different from that of the first and second embodiments will be described.
 図10は、本発明の実施の形態3におけるロープ損傷診断検査装置の構成図である。本実施の形態3におけるロープ損傷診断検査装置は、第1ヨーク10、軸方向コイル31、磁気センサアレイ40、交流電流源50、および電圧測定器60を備えて構成されている。 FIG. 10 is a configuration diagram of a rope damage diagnostic inspection apparatus according to Embodiment 3 of the present invention. The rope damage diagnosis and inspection apparatus according to the third embodiment includes a first yoke 10, an axial coil 31, a magnetic sensor array 40, an AC current source 50, and a voltage measuring device 60.
 先の実施の形態1との構成上の違いとして、本実施の形態3におけるロープ損傷診断検査装置は、第2ヨーク20に巻回されていた軸方向コイル30の代わりに、ロープ1の周囲に配置された軸方向コイル31を備えている。 As a structural difference from the first embodiment, the rope damage diagnosis and inspection apparatus according to the third embodiment is arranged around the rope 1 instead of the axial coil 30 wound around the second yoke 20. An axial coil 31 is provided.
 破断検出、および断面積計測に関する具体的な原理、手法は、先の実施の形態1と同じであり、説明を省略する。 The specific principle and method regarding break detection and cross-sectional area measurement are the same as those in the first embodiment, and a description thereof will be omitted.
 本実施の形態3では、軸方向コイル31をロープ1の周囲に配置した構成とすることで、第2ヨーク20を不要としている。この結果、ヨークによる直流磁界の吸収を排除することができ、透磁率μのばらつきを抑えることができる。 In the third embodiment, the second yoke 20 is not required by adopting a configuration in which the axial coil 31 is disposed around the rope 1. As a result, the absorption of the DC magnetic field by the yoke can be eliminated, and variations in the magnetic permeability μ can be suppressed.
 図11は、本発明の実施の形態3における軸方向コイル31の斜視図である。この図11とともに、先の図10の右側にも示したように、軸方向コイル31は、2分割構成とすることで、ロープ1に対する着脱を容易に行うことが可能となる。 FIG. 11 is a perspective view of the axial coil 31 according to the third embodiment of the present invention. As shown on the right side of FIG. 10 together with FIG. 11, the axial coil 31 can be easily attached to and detached from the rope 1 by adopting a two-part configuration.
 以上のように、実施の形態3によれば、軸方向コイルをロープ周囲に配置し、交流磁界を印加するための第2ヨークを不要とした構成を備えている。この結果、ヨークによる直流磁界の吸収を排除し、透磁率μのばらつきの影響を抑制することができ、破断検出および断面積計測のさらなる精度向上を実現できる。 As described above, according to the third embodiment, the configuration is such that the axial coil is arranged around the rope and the second yoke for applying the alternating magnetic field is not required. As a result, the absorption of the DC magnetic field by the yoke can be eliminated, the influence of the variation of the magnetic permeability μ can be suppressed, and further improvement in the accuracy of fracture detection and cross-sectional area measurement can be realized.

Claims (9)

  1.  エレベータのかごを吊すロープの形状異常を検査するロープ損傷診断検査装置であって、
     前記ロープに装着され、前記ロープを磁気飽和状態とするための磁界を前記ロープに対して印加する第1のヨークと、
     交流の一定電流を出力する第1の交流電流源と、
     軸方向コイルを有して構成され、前記第1の交流電流源から前記軸方向コイルに一定電流が供給されることで、前記ロープの軸方向に対して交流磁界を印加し、前記ロープ内に渦電流および渦電流磁界を発生させる交流磁界印加器と、
     前記交流磁界の印加中における前記ロープの漏れ磁束を計測する漏れ磁束計測器と、
     前記交流磁界の印加中における前記軸方向コイルの電圧を測定する第1の電圧測定器と、
     前記第1のヨークにより前記磁気飽和状態となった前記ロープに対して、前記交流磁界印加器を制御することで前記交流磁界を印加させ、前記漏れ磁束計測器により計測された前記漏れ磁束の大きさから前記ロープの破断の有無を検出し、前記第1の電圧測定器により測定された前記電圧から、前記電圧に比例する値として前記ロープの断面積を算出し、前記破断の有無および前記断面積から前記ロープの形状異常を検査するコントローラと
     を備えたロープ損傷診断検査装置。
    A rope damage diagnostic inspection device for inspecting the shape abnormality of a rope for hanging an elevator car,
    A first yoke attached to the rope and applying a magnetic field to the rope to bring the rope into a magnetic saturation state;
    A first alternating current source that outputs a constant alternating current;
    An axial coil is configured, and a constant current is supplied from the first alternating current source to the axial coil, so that an alternating magnetic field is applied to the axial direction of the rope, An alternating magnetic field applicator for generating eddy currents and eddy current magnetic fields;
    A leakage flux measuring instrument for measuring the leakage flux of the rope during application of the alternating magnetic field;
    A first voltage measuring device for measuring a voltage of the axial coil during application of the alternating magnetic field;
    The AC magnetic field is applied to the rope that is in the magnetic saturation state by the first yoke by controlling the AC magnetic field applicator, and the magnitude of the leakage magnetic flux measured by the leakage magnetic flux measuring instrument. Then, the presence or absence of breakage of the rope is detected, and the cross-sectional area of the rope is calculated as a value proportional to the voltage from the voltage measured by the first voltage measuring device. A rope damage diagnosis and inspection device comprising: a controller that inspects the rope shape abnormality from the area.
  2.  前記交流磁界印加器は、前記軸方向コイルが巻回された第2のヨークとして構成され、前記コントローラによる制御に基づいて前記軸方向コイルに対して前記第1の交流電流源から一定電流が供給されることで、前記ロープに装着された前記第2のヨークを介して前記ロープに対して前記交流磁界を印加する
     請求項1に記載のロープ損傷診断検査装置。
    The AC magnetic field applicator is configured as a second yoke around which the axial coil is wound, and a constant current is supplied from the first AC current source to the axial coil based on control by the controller. The rope damage diagnosis and inspection apparatus according to claim 1, wherein the AC magnetic field is applied to the rope via the second yoke attached to the rope.
  3.  前記交流磁界印加器は、前記ロープに対して前記軸方向コイルを巻回するように装着して構成され、前記コントローラによる制御に基づいて前記軸方向コイルに対して前記第1の交流電流源から一定電流が供給されることで、前記ロープに対して前記交流磁界を印加する
     請求項1に記載のロープ損傷診断検査装置。
    The AC magnetic field applicator is configured to be mounted so as to wind the axial coil around the rope, and from the first AC current source to the axial coil based on control by the controller. The rope damage diagnostic inspection apparatus according to claim 1, wherein the AC magnetic field is applied to the rope by supplying a constant current.
  4.  前記軸方向コイルは、2分割されたコイルで構成されている
     請求項3に記載のロープ損傷診断検査装置。
    The rope damage diagnostic inspection apparatus according to claim 3, wherein the axial coil is configured by a coil divided into two.
  5.  前記漏れ磁束計測器は、磁気センサアレイで構成され、前記ロープの径方向、軸方向、周方向のいずれかの方向における前記漏れ磁束を計測するように配置されている
     請求項1から4のいずれか1項に記載のロープ損傷診断検査装置。
    The leakage magnetic flux measuring device is configured by a magnetic sensor array, and is arranged to measure the leakage magnetic flux in any one of a radial direction, an axial direction, and a circumferential direction of the rope. The rope damage diagnostic inspection apparatus according to claim 1.
  6.  前記漏れ磁束計測器は、周方向コイルで構成され、
     前記周方向コイルに対して交流の一定電流を出力するために第2の交流電流源と、
     前記周方向コイルの電圧を測定する第2の電圧測定器と
     をさらに備え、
     前記交流磁界印加器は、
      前記軸方向コイルが巻回された第2のヨークを有し、前記断面積を測定する際に、前記コントローラによる制御に基づいて前記第1の交流電流源から前記軸方向コイルに一定電流が供給されることで、前記ロープに装着された前記第2のヨークを介して前記ロープに対して前記交流磁界として第1交流磁界を印加する第1交流磁界印加器と、
      前記破断の有無を判断する際に、前記コントローラによる制御に基づいて前記第2の交流電流源から前記周方向コイルに一定電流が供給されることで、前記ロープに対して前記交流磁界として第2交流磁界を印加する第2交流磁界印加器と
     を含んで構成され、
     前記コントローラは、
      前記断面積を測定する際には、前記第1のヨークにより前記磁気飽和状態となった前記ロープに対して、前記第1交流磁界印加器を制御することで前記第1交流磁界を印加させ、前記第1の電圧測定器により測定された電圧から、前記電圧に比例する値として前記ロープの断面積を算出し、
      前記破断の有無を判断する際には、前記第1のヨークにより前記磁気飽和状態となった前記ロープに対して、前記第2交流磁界印加器を制御することで前記第2交流磁界を印加させ、前記第2の電圧測定器により測定された電圧から前記ロープの破断の有無を検出する
     請求項1に記載のロープ損傷診断検査装置。
    The leakage flux measuring instrument is composed of a circumferential coil,
    A second alternating current source for outputting an alternating constant current to the circumferential coil;
    A second voltage measuring device that measures the voltage of the circumferential coil; and
    The AC magnetic field applicator is:
    A second yoke around which the axial coil is wound, and when measuring the cross-sectional area, a constant current is supplied from the first alternating current source to the axial coil based on control by the controller A first AC magnetic field applicator that applies a first AC magnetic field as the AC magnetic field to the rope via the second yoke attached to the rope;
    When determining the presence or absence of the breakage, a second current is supplied as the AC magnetic field to the rope by supplying a constant current from the second AC current source to the circumferential coil based on the control by the controller. A second AC magnetic field applicator for applying an AC magnetic field,
    The controller is
    When measuring the cross-sectional area, the first AC magnetic field is applied to the rope that has been saturated with the first yoke by controlling the first AC magnetic field applicator, From the voltage measured by the first voltage measuring device, calculate the cross-sectional area of the rope as a value proportional to the voltage,
    When determining the presence or absence of the break, the second AC magnetic field is applied to the rope that has been saturated with the first yoke by controlling the second AC magnetic field applicator. The rope damage diagnosis and inspection device according to claim 1, wherein presence or absence of breakage of the rope is detected from a voltage measured by the second voltage measuring device.
  7.  前記第1のヨークは、永久磁石を有し、前記ロープに対して直流磁界を印加する
     請求項1から6のいずれか1項に記載のロープ損傷診断検査装置。
    The rope damage diagnostic inspection apparatus according to any one of claims 1 to 6, wherein the first yoke has a permanent magnet and applies a DC magnetic field to the rope.
  8.  前記第1のヨークは、電磁石を有し、前記ロープに対してパルス磁界を印加する
     請求項1から6のいずれか1項に記載のロープ損傷診断検査装置。
    The rope damage diagnostic inspection apparatus according to any one of claims 1 to 6, wherein the first yoke includes an electromagnet and applies a pulse magnetic field to the rope.
  9.  エレベータのかごを吊すロープの形状異常を検査するロープ損傷診断検査方法であって、
     前記ロープを磁気飽和状態とするための磁界を前記ロープに対して印加する第1ステップと、
     前記磁気飽和状態となった前記ロープに対して、交流磁界を印加させる第2ステップと、
     前記交流磁界の印加中における前記ロープの漏れ磁束を計測する第3ステップと、
     計測された前記漏れ磁束の大きさから前記ロープの破断の有無を検出する第4ステップと、
     前記交流磁界の印加中において、前記ロープの軸方向に発生する渦電流磁界により変動する電圧を測定する第5ステップと、
     測定された前記電圧に比例する値として前記ロープの断面積を算出する第6ステップと、
     前記第4ステップによる前記破断の有無の検出結果、および前記ステップ6による前記断面積の算出結果から、前記ロープの形状異常を判断する第7ステップと
     を有するロープ損傷診断検査方法。
    A rope damage diagnostic inspection method for inspecting an abnormal shape of a rope for hanging an elevator car,
    Applying a magnetic field to the rope to bring the rope into a magnetic saturation state;
    A second step of applying an alternating magnetic field to the rope in the magnetic saturation state;
    A third step of measuring leakage flux of the rope during application of the alternating magnetic field;
    A fourth step of detecting presence or absence of breakage of the rope from the measured magnitude of the leakage magnetic flux;
    A fifth step of measuring a voltage that fluctuates due to an eddy current magnetic field generated in the axial direction of the rope during application of the alternating magnetic field;
    A sixth step of calculating a cross-sectional area of the rope as a value proportional to the measured voltage;
    A rope damage diagnosis and inspection method comprising: a seventh step of determining an abnormality in the shape of the rope from the detection result of the presence or absence of the fracture in the fourth step and the calculation result of the cross-sectional area in the step 6.
PCT/JP2015/057145 2015-03-11 2015-03-11 Rope damage diagnostic examination device and rope damage diagnostic examination method WO2016143088A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177027266A KR102020974B1 (en) 2015-03-11 2015-03-11 Rope damage diagnostic test device and rope damage diagnostic test method
JP2017504499A JP6289732B2 (en) 2015-03-11 2015-03-11 Rope damage diagnostic inspection apparatus and rope damage diagnostic inspection method
CN201580077392.4A CN107430090B (en) 2015-03-11 2015-03-11 Rope damage diagnosis and inspection device and rope damage diagnosis and inspection method
PCT/JP2015/057145 WO2016143088A1 (en) 2015-03-11 2015-03-11 Rope damage diagnostic examination device and rope damage diagnostic examination method
DE112015006279.3T DE112015006279B4 (en) 2015-03-11 2015-03-11 Rope damage diagnosis examination device and rope damage diagnosis examination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/057145 WO2016143088A1 (en) 2015-03-11 2015-03-11 Rope damage diagnostic examination device and rope damage diagnostic examination method

Publications (1)

Publication Number Publication Date
WO2016143088A1 true WO2016143088A1 (en) 2016-09-15

Family

ID=56878820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057145 WO2016143088A1 (en) 2015-03-11 2015-03-11 Rope damage diagnostic examination device and rope damage diagnostic examination method

Country Status (5)

Country Link
JP (1) JP6289732B2 (en)
KR (1) KR102020974B1 (en)
CN (1) CN107430090B (en)
DE (1) DE112015006279B4 (en)
WO (1) WO2016143088A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3438657A1 (en) * 2017-08-02 2019-02-06 Eddyfi NDT Inc. Device for pulsed eddy current testing of ferromagnetic structures covered with ferromagnetic protective jacket
CN110234988A (en) * 2017-01-26 2019-09-13 株式会社岛津制作所 The check device of magnetic substance and the inspection method of magnetic substance
CN112119301A (en) * 2018-05-15 2020-12-22 株式会社岛津制作所 Magnetic material inspection device and magnetic material inspection method
WO2021176835A1 (en) * 2020-03-05 2021-09-10 株式会社小松製作所 Power transmission device
US11884516B2 (en) 2018-06-25 2024-01-30 Otis Elevator Company Health monitoring of elevator system tension members

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111542753B (en) * 2018-02-01 2024-01-30 株式会社岛津制作所 Wire rope inspection device, wire rope inspection system, and wire rope inspection method
EP3764094B1 (en) * 2018-03-08 2023-12-27 Shimadzu Corporation Magnetic body inspection device
FR3098915B1 (en) * 2019-07-19 2022-07-29 Framatome Sa Magnetic flux leakage testing device and associated method
KR102265940B1 (en) * 2019-12-04 2021-06-17 한국표준과학연구원 Cable defect inspection apparatus
CN112326781A (en) * 2021-01-04 2021-02-05 四川大学 Bearing needle magnetic leakage detection device
CN113484408A (en) * 2021-07-06 2021-10-08 兰州空间技术物理研究所 Nondestructive testing device for steel wire rope

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04151551A (en) * 1990-10-15 1992-05-25 Hitachi Building Syst Eng & Service Co Ltd Magnetic flaw detecting device for wire rope
JPH09210968A (en) * 1996-02-06 1997-08-15 Electron Kiyooto:Kk Damage sensor for wire rope
JPH1019852A (en) * 1996-07-03 1998-01-23 Hitachi Building Syst Co Ltd Flaw detecting apparatus for wire rope
JPH10170481A (en) * 1996-12-13 1998-06-26 Sumitomo Metal Ind Ltd Eddy current flaw detector
US20130147471A1 (en) * 2011-12-07 2013-06-13 Ndt Technologies, Inc. Magnetic inspection device and method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0286712A3 (en) 1987-04-16 1990-03-14 Westfälische Berggewerkschaftskasse Device for testing of ferromagnetic steel wire cable, in particular of haulage cables for undergroud working
DE4413924A1 (en) 1994-04-21 1995-10-26 Brandt Gmbh Dr Measuring device for indicating splice in stranded steel funicular cable
DE4413921A1 (en) 1994-04-21 1995-10-26 Bayerische Motoren Werke Ag Foldable vehicle roof
JP2001153845A (en) * 1999-11-24 2001-06-08 Kyosan Electric Mfg Co Ltd Wire rope flaw detector
JP4378033B2 (en) * 2000-06-26 2009-12-02 東芝エレベータ株式会社 Wire rope flaw detector
KR100523686B1 (en) * 2003-07-21 2005-10-25 충남대학교산학협력단 The Nondestructive Testing Apparatus for Wire Rope
CN101978261B (en) * 2008-04-14 2012-06-13 三菱电机株式会社 Wire rope flaw detector
KR101192286B1 (en) * 2011-02-09 2012-10-17 한국표준과학연구원 Device for detecting LF and LMA of wire rope
CN103733060B (en) * 2011-08-18 2016-08-31 新日铁住金株式会社 Magnetic method of detection and magnetic fault detector
CN103149272A (en) * 2013-02-28 2013-06-12 厦门大学 Sub-saturated time-division and multi-frequency magnetic flux leakage testing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04151551A (en) * 1990-10-15 1992-05-25 Hitachi Building Syst Eng & Service Co Ltd Magnetic flaw detecting device for wire rope
JPH09210968A (en) * 1996-02-06 1997-08-15 Electron Kiyooto:Kk Damage sensor for wire rope
JPH1019852A (en) * 1996-07-03 1998-01-23 Hitachi Building Syst Co Ltd Flaw detecting apparatus for wire rope
JPH10170481A (en) * 1996-12-13 1998-06-26 Sumitomo Metal Ind Ltd Eddy current flaw detector
US20130147471A1 (en) * 2011-12-07 2013-06-13 Ndt Technologies, Inc. Magnetic inspection device and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHINJI YOSHIMOTO ET AL.: "Numerical Models for Magnetic Flux Leakage Testing of a Wire Rope", JOURNAL OF JSNDI, vol. 59, no. 3, 1 March 2010 (2010-03-01), pages 131 - 137, XP055308877 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110234988A (en) * 2017-01-26 2019-09-13 株式会社岛津制作所 The check device of magnetic substance and the inspection method of magnetic substance
EP3438657A1 (en) * 2017-08-02 2019-02-06 Eddyfi NDT Inc. Device for pulsed eddy current testing of ferromagnetic structures covered with ferromagnetic protective jacket
CN112119301A (en) * 2018-05-15 2020-12-22 株式会社岛津制作所 Magnetic material inspection device and magnetic material inspection method
CN112119301B (en) * 2018-05-15 2024-04-26 株式会社岛津制作所 Magnetic substance inspection device and magnetic substance inspection method
US11884516B2 (en) 2018-06-25 2024-01-30 Otis Elevator Company Health monitoring of elevator system tension members
WO2021176835A1 (en) * 2020-03-05 2021-09-10 株式会社小松製作所 Power transmission device
JP7432397B2 (en) 2020-03-05 2024-02-16 株式会社小松製作所 power transmission device

Also Published As

Publication number Publication date
CN107430090A (en) 2017-12-01
KR20170120167A (en) 2017-10-30
KR102020974B1 (en) 2019-09-11
JPWO2016143088A1 (en) 2017-06-08
JP6289732B2 (en) 2018-03-07
CN107430090B (en) 2020-06-23
DE112015006279B4 (en) 2024-03-28
DE112015006279T5 (en) 2018-01-11

Similar Documents

Publication Publication Date Title
JP6289732B2 (en) Rope damage diagnostic inspection apparatus and rope damage diagnostic inspection method
JP6060278B2 (en) Apparatus and method for detecting internal defects in steel sheet
WO2018138850A1 (en) Magnetic body inspection device and magnetic body inspection method
JP5946086B2 (en) Eddy current inspection device, eddy current inspection probe, and eddy current inspection method
JP5201495B2 (en) Magnetic flaw detection method and magnetic flaw detection apparatus
WO2010050155A1 (en) Barkhausen noise inspection apparatus and inspection method
WO2015145833A1 (en) Surface characteristic inspection method and surface characteristic inspection device
KR20110050909A (en) Nondestructive flaw test apparatus by measuring magnetic flux leakage
Cheng Nondestructive testing of back-side local wall-thinning by means of low strength magnetization and highly sensitive magneto-impedance sensors
KR101746072B1 (en) Nondestructive inspection apparatus for ferromagnetic steam generator tubes and method thereof
JP5266695B2 (en) Method and apparatus for detecting magnetic property fluctuation site of grain-oriented electrical steel sheet
WO2019220953A1 (en) Magnetic body inspection device and magnetic body inspection method
JP2007187551A (en) Apparatus for measuring complex magnetic characteristics and method for measuring crystal particle size of magnetic substance
KR101254300B1 (en) Apparatus for detecting thickness of the conductor using dual core
JP2014066688A (en) Eddy current flaw detection probe, and eddy current flaw detection device
JP2016197085A (en) Magnetic flaw detection method
JP2010164483A (en) Nondestructive inspection apparatus and nondestructive inspection method
KR20100108034A (en) Apparatus and method for measuring the strength of quality of steel plate
KR101584464B1 (en) Magnetizing device for magnetic particle inspection of wheel
JP2011257223A (en) Hardening quality inspection device
JP3530472B2 (en) Bar detection system
RU103926U1 (en) ELECTROMAGNETIC CONVERTER TO DEFECTOSCOPE
KR20180071584A (en) Tensile stress measurement apparatus of tendon by means of non-contact method
JP2011252787A (en) Hardening quality inspection device
WO2015194428A1 (en) Non-destructive inspection device and non-destructive inspection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884579

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017504499

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015006279

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20177027266

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15884579

Country of ref document: EP

Kind code of ref document: A1