JP5266695B2 - Method and apparatus for detecting magnetic property fluctuation site of grain-oriented electrical steel sheet - Google Patents

Method and apparatus for detecting magnetic property fluctuation site of grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP5266695B2
JP5266695B2 JP2007241683A JP2007241683A JP5266695B2 JP 5266695 B2 JP5266695 B2 JP 5266695B2 JP 2007241683 A JP2007241683 A JP 2007241683A JP 2007241683 A JP2007241683 A JP 2007241683A JP 5266695 B2 JP5266695 B2 JP 5266695B2
Authority
JP
Japan
Prior art keywords
magnetic
steel sheet
electrical steel
grain
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007241683A
Other languages
Japanese (ja)
Other versions
JP2009074813A (en
Inventor
宏晴 加藤
章生 長棟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007241683A priority Critical patent/JP5266695B2/en
Publication of JP2009074813A publication Critical patent/JP2009074813A/en
Application granted granted Critical
Publication of JP5266695B2 publication Critical patent/JP5266695B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for detecting a magnetic characteristic fluctuation portion of a magnetic material for detecting a local fluctuation portion of a magnetic characteristic, capable of reducing highly accurately a dead zone of a magnetic material edge, even if the magnetic material is moving relatively to a detection device, and a device. <P>SOLUTION: In this detection method of the magnetic characteristic fluctuation portion of the magnetic material for detecting the local fluctuation portion of the magnetic characteristic in the prescribed direction of the magnetic material by applying AC magnetic flux, the AC magnetic flux is applied to a direction orthogonal to the prescribed direction, and a magnetic field generated by interaction between the AC magnetic flux and the magnetic material is measured. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、電磁鋼板などの磁性材料が検出装置に対して相対的に移動している場合に、その所定方向、例えば移動方向や圧延方向に関する磁気特性の局所的変動部位を検出する磁性材料の磁気特性変動部位の検出方法および装置に関するものである。   The present invention provides a magnetic material for detecting a local variation portion of a magnetic property in a predetermined direction, for example, a moving direction or a rolling direction, when a magnetic material such as an electromagnetic steel sheet is moving relative to a detection device. The present invention relates to a method and an apparatus for detecting a magnetic characteristic fluctuation site.

金属材料の透磁率、鉄損、導電率などの電磁気的特性あるいは電磁気的特性と相関のある量の非接触での測定は、様々な目的に使用されている。たとえば、特許文献1の段落番号[0015]には、電磁鋼帯製造ライン内に鉄損測定用の大型の1次コイルおよび2次コイルを設置し、この中に鋼板を通して交流磁束を用いて鋼帯幅方向の平均的な鉄損を測定する例に言及している。   Electromagnetic characteristics such as magnetic permeability, iron loss, and electrical conductivity of metal materials, or a non-contact measurement of an amount correlated with the electromagnetic characteristics are used for various purposes. For example, in paragraph [0015] of Patent Document 1, large primary coils and secondary coils for measuring iron loss are installed in an electromagnetic steel strip production line, and steel is used by using AC magnetic flux through steel plates. An example of measuring the average iron loss in the width direction is mentioned.

また、特許文献2には、測定対象(鋼)に交流磁束を印加し、その磁束と測定対象との相互作用により生じる磁場を測定することで、導電率や透磁率の、測定対象の温度による変化を測定し、最終的には温度を測定する方法について述べられている。   Further, in Patent Document 2, an AC magnetic flux is applied to a measurement object (steel), and a magnetic field generated by the interaction between the magnetic flux and the measurement object is measured, whereby the conductivity and permeability depend on the temperature of the measurement object. It describes how to measure change and ultimately temperature.

このような測定を行うためのセンサとしては様々な形態があり得るが、その中でコの字形コアを持つセンサは一般的なものの一つである。   There are various types of sensors for performing such measurement, and among them, a sensor having a U-shaped core is one of the common ones.

コの字形コアが一般的に使用される理由としては、主に強磁性体コア脚部間で磁束が流れるため、(1)被検体の局所的な部位に磁束の流れる範囲を限定でき、局所的な電磁気特性が測定できる、(2)磁束の流れる方向が限定でき、異方性のある材料の特定方向の電磁気特性が測定できる、などがある。適用例としては、たとえば、特許文献3に開示されている。すなわち、浸炭に伴い磁気的性質が変化することから、コの字形強磁性体コアに励磁用コイルと検出用コイルを巻き、脚部を測定対象に対向させ、センサの出力から浸炭深さを求めるものである。
特許2519615号公報 特開昭53−20986号公報 特開2004−279055号公報
The reason why U-shaped cores are generally used is because magnetic flux flows mainly between the legs of the ferromagnetic core. (1) The range in which the magnetic flux flows can be limited to the local part of the subject. And (2) the direction in which the magnetic flux flows can be limited, and the electromagnetic characteristics in a specific direction of an anisotropic material can be measured. An application example is disclosed in Patent Document 3, for example. That is, since the magnetic properties change with carburizing, an exciting coil and a detecting coil are wound around a U-shaped ferromagnetic core, the leg is made to face the object to be measured, and the carburizing depth is obtained from the output of the sensor. Is.
Japanese Patent No. 2519615 JP-A-53-20986 JP 2004-279055 A

例えば、コの字形コアを持つ磁気センサにて測定する様子を示す図6のような場合には、磁性材料の所定方向(磁気特性を評価したい方向や評価する際に基準とする方向であり、例えば、図6では圧延方向である。以下、圧延方向を例にあげて説明する。)に関する磁気特性(鉄損、透磁率など)を定量的に測定する場合には、被検体である磁性材料の所定方向(鋼板の圧延方向や鋼板1の移動方向)に主に磁束を印加する必要がある。   For example, in the case of FIG. 6 showing a state of measurement by a magnetic sensor having a U-shaped core, a predetermined direction of the magnetic material (a direction in which magnetic characteristics are to be evaluated or a direction to be used as a reference when evaluating, For example, in the case of measuring quantitatively magnetic characteristics (iron loss, magnetic permeability, etc.) relating to the rolling direction in Fig. 6. Hereinafter, the rolling direction will be described as an example. It is necessary to apply a magnetic flux mainly in the predetermined direction (the rolling direction of the steel plate and the moving direction of the steel plate 1).

よって、センサ6(ここでは、コアのみ図示し、コイル部は省略している)の両脚部の間を磁束が流れるため、磁束が圧延方向になるように、両脚部を圧延方向に沿って配置する。しかし、この場合、磁束11は、主に圧延方向に流れるものの、幅方向にも膨らむ(図6参照)ため、鋼板幅エッジ10近傍にセンサ6が近づくと、エッジの存在により磁束、あるいは渦電流が大きく乱される。その結果、センサ6の出力信号が乱れることから測定が困難となり、エッジ近傍では不感帯が生じる。   Therefore, since the magnetic flux flows between both leg portions of the sensor 6 (here, only the core is shown and the coil portion is omitted), the both leg portions are arranged along the rolling direction so that the magnetic flux is in the rolling direction. To do. However, in this case, although the magnetic flux 11 mainly flows in the rolling direction but also expands in the width direction (see FIG. 6), when the sensor 6 approaches the vicinity of the steel plate width edge 10, the magnetic flux or eddy current is generated due to the presence of the edge. Is greatly disturbed. As a result, since the output signal of the sensor 6 is disturbed, measurement becomes difficult, and a dead zone occurs in the vicinity of the edge.

これを回避するための手段の一つは、磁束を流す圧延方向の範囲を小さくし、幅方向の磁束のふくらみを小さくすることである。そのためには、コの字形コアセンサの両脚部間の距離を小さくすればよい。しかしながら、センサに対する鋼帯の相対的移動速度に比べて低い周波数における磁気特性を対象にする場合、鉄損などB-Hカーブの原点近傍での磁気特性だけでは評価しにくいので励磁磁束の振幅を大きくする必要がある場合については、この対処方法では以下の問題点がある。   One means for avoiding this is to reduce the range in the rolling direction in which the magnetic flux flows, and to reduce the bulge of the magnetic flux in the width direction. For this purpose, the distance between the legs of the U-shaped core sensor may be reduced. However, when targeting magnetic characteristics at a frequency lower than the relative movement speed of the steel strip relative to the sensor, it is difficult to evaluate the magnetic characteristics in the vicinity of the origin of the BH curve such as iron loss. When it is necessary to increase the size, this method has the following problems.

[問題点1]
センサと鋼板が圧延方向に相対的に移動する際、低い周波数における磁気特性を測定する必要がある場合には、センサがそれぞれの測定部位を移動する間に、交流磁束がB−Hカーブのループを繰り返すサイクル数が、数サイクル以上となるようにする必要がある。
[Problem 1]
When it is necessary to measure magnetic characteristics at a low frequency when the sensor and the steel plate move relative to each other in the rolling direction, the alternating magnetic flux is looped in the BH curve while the sensor moves through each measurement site. It is necessary that the number of cycles for repeating the above is several cycles or more.

たとえば、圧延方向の磁束の存在範囲(測定対象範囲)がa[m]、鋼板の相対的移動速度がv[m/s]、とすると、v/a[Hz]以下の交流磁束の周波数では、交流磁束のサイクル(B−Hループ)の途中で測定範囲からはずれてしまうことになり、励磁周波数で決まる周波数の磁気特性を正確に測定できないことになる。そのため、正確に測定するためには、与えられた移動速度と周波数に対し、磁束の存在範囲(測定対象範囲)を十分長くする必要がある。   For example, if the existing range of magnetic flux in the rolling direction (measurement target range) is a [m] and the relative moving speed of the steel sheet is v [m / s], the frequency of AC magnetic flux below v / a [Hz] In other words, the magnetic flux is deviated from the measurement range in the middle of the AC magnetic flux cycle (BH loop), and the magnetic characteristics of the frequency determined by the excitation frequency cannot be measured accurately. Therefore, in order to measure accurately, it is necessary to sufficiently lengthen the magnetic flux existence range (measurement target range) for a given moving speed and frequency.

一方で既に述べたように、エッジの不感帯を小さくする場合には、磁束の存在範囲を小さくする必要があるという制約もあり、磁束存在範囲に関し、相反する要請であるため、適切な値の選定が場合によっては困難となる。   On the other hand, as already mentioned, in order to reduce the dead zone of the edge, there is a restriction that it is necessary to reduce the existing range of the magnetic flux. However, it becomes difficult in some cases.

[問題点2]
励磁磁束の振幅を大きくする必要がある場合には、基本的には(1)励磁コイルに流れる電流を増す、(2)励磁コイルの巻数を増す必要がある。前者の(1)に関しては、コイル自体の抵抗が大きいと電流が流しづらく、発熱もしやすいため、線径の大きなコイルが用いられる。
[Problem 2]
When it is necessary to increase the amplitude of the exciting magnetic flux, it is basically necessary to (1) increase the current flowing through the exciting coil and (2) increase the number of turns of the exciting coil. With regard to the former (1), if the resistance of the coil itself is large, it is difficult for current to flow and heat is easily generated, so a coil with a large wire diameter is used.

さらに後者の(2)に関しては、巻数を増やすと、線径という意味でも、巻数という意味でもコイルを巻くためのスペースは大きくなってしまう。このことは一般にセンサのサイズ増大に繋がるが、これはエッジ不感帯を小さくするために、センサを小さくする必要があるという制約と相反するため、両制約を満足する適切な仕様を選定することが場合によっては困難になる。   Further, regarding the latter (2), when the number of turns is increased, the space for winding the coil becomes large in terms of both the wire diameter and the number of turns. This generally leads to an increase in the size of the sensor, but this conflicts with the restriction that the sensor needs to be made small in order to reduce the edge dead zone, so it is necessary to select an appropriate specification that satisfies both restrictions Depending on the situation.

本発明は、このような問題を鑑みなされたものであり、電磁鋼板などの磁性材料が検出装置に対して相対的に移動している場合にも、高精度で、かつ、磁性材料のエッジ部の不感帯を小さくすることが可能な、所定方向(例えば、移動方向、圧延方向など)の磁気特性の局所的変動部位を検出する、磁性材料の磁気特性変動部位の検出方法および装置を提供することを目的とする。   The present invention has been made in view of such problems, and even when a magnetic material such as an electromagnetic steel plate is moved relative to a detection device, the edge portion of the magnetic material is highly accurate. To provide a method and an apparatus for detecting a magnetic property variation part of a magnetic material, which can detect a local variation part of a magnetic property in a predetermined direction (for example, a moving direction, a rolling direction, etc.) capable of reducing the dead zone of the magnetic material. With the goal.

上記課題は、以下に示す手段により解決される。
[1]方向性電磁鋼板圧延方向に関する磁気特性の局所的変動部位を交流磁束を印加することで検出する方向性電磁鋼板の磁気特性変動部位の検出方法であって、
前記圧延方向に対して略直交方向に磁壁移動領域の交流磁束を印加し、該交流磁束と方向性電磁鋼板との相互作用により生じる磁場を測定することを特徴とする方向性電磁鋼板の磁気特性変動部位の検出方法。
The above problems are solved by the following means.
[1] A method for detecting magnetic properties change site-oriented electrical steel sheet to be detected by applying an AC magnetic flux to local variations sites of the magnetic characteristics for the rolling direction of the grain-oriented electrical steel sheet,
AC magnetic flux of the magnetic domain wall moving region is applied in a substantially perpendicular direction relative to the rolling direction, the magnetic properties of grain-oriented electrical steel sheet and measuring the magnetic field caused by the interaction of the AC magnetic flux and the grain-oriented electrical steel sheet Detection method of the fluctuation part.

[2]方向性電磁鋼板圧延方向に関する磁気特性の局所的変動部位を交流磁束を印加することで検出する方向性電磁鋼板の磁気特性変動部位の検出方法であって、
励磁コイルおよび検出コイルが巻かれたコの字形コアセンサの両脚部を前記圧延方向に対して略直交方向に並ぶように、かつ前記コアセンサの脚部端部を方向性電磁鋼板に対して対向するように配置して、方向性電磁鋼板に励磁コイルにより磁壁移動領域の交流磁場を印加し、発生する磁場を検出コイルにより測定することを特徴とする方向性電磁鋼板の磁気特性変動部位の検出方法。
[2] A method for detecting magnetic properties change site-oriented electrical steel sheet to be detected by applying an AC magnetic flux to local variations sites of the magnetic characteristics for the rolling direction of the grain-oriented electrical steel sheet,
The leg portions of the U-shaped core sensor around which the exciting coil and the detection coil are wound are arranged in a direction substantially orthogonal to the rolling direction , and the leg end portions of the core sensor are opposed to the directional electrical steel sheet . A method for detecting a magnetic property variation portion of a directional electrical steel sheet , wherein an alternating magnetic field in a domain wall motion region is applied to the directional electrical steel sheet by an excitation coil, and the generated magnetic field is measured by a detection coil.

方向性電磁鋼板圧延方向に関する磁気特性の局所的変動部位を磁壁移動領域の交流磁束を印加することで検出する方向性電磁鋼板の磁気特性変動部位の検出装置であって、
励磁コイルおよび検出コイルが巻かれたコの字形コアセンサと、
励磁コイルに所定周波数の交流電流を流す交流電源と、
検出コイルで検出された誘導電圧信号を増幅するロックインアンプと、
該ロックインアンプで増幅された信号に信号処理を行い最終的な測定値を得る信号処理装置とを備え、
前記コアセンサの両脚部を前記圧延方向に対して略直交方向に並ぶように、かつ前記コアセンサの脚部端部を方向性電磁鋼板に対して対向するように配置することを特徴とする方向性電磁鋼板の磁気特性変動部位の検出装置。
[ 3 ] An apparatus for detecting a magnetic property variation part of a directional electromagnetic steel sheet for detecting a local variation part of the magnetic property related to the rolling direction of the grain-oriented electrical steel sheet by applying an alternating magnetic flux in the domain wall motion region,
A U-shaped core sensor around which an excitation coil and a detection coil are wound;
An AC power source for supplying an AC current of a predetermined frequency to the excitation coil;
A lock-in amplifier that amplifies the induced voltage signal detected by the detection coil; and
A signal processing device that performs signal processing on the signal amplified by the lock-in amplifier to obtain a final measurement value,
Oriented electromagnetic characterized by arranging the legs of the core sensor such that said to be aligned in a direction substantially perpendicular to the rolling direction, and the opposing leg end of the core sensor relative to oriented electrical steel sheet A device for detecting the magnetic property fluctuation part of a steel sheet

本発明により、これまで困難であった、電磁鋼板などの磁性材料が検出装置に対して相対的に移動している場合にも、高精度にかつ磁性材料の幅エッジの不感帯を小さくすることが可能となった。またこれにより、特に、エッジ部不感帯を小さくして磁気特性を管理する必要がある鉄鋼連続生産ラインにて、広い幅範囲において局所的な磁気特性の変動量を管理することが可能となるため、均質な磁気特性を持つ、高品質な電磁鋼板の製造に大きく寄与することができる。   According to the present invention, even when a magnetic material such as an electromagnetic steel plate, which has been difficult until now, moves relatively with respect to the detection device, the dead band of the width edge of the magnetic material can be reduced with high accuracy. It has become possible. In addition, this makes it possible to manage the amount of local magnetic property fluctuation in a wide range, especially in steel continuous production lines where it is necessary to manage the magnetic properties by reducing the edge dead zone. It can greatly contribute to the production of high-quality electrical steel sheets with homogeneous magnetic properties.

本発明では上記課題を解決するため、磁性材料の「磁気特性変動を評価したい方向や評価するための基準方向に対して直交する方向の磁気特性変動から検知しうる」という発明者らの知見を利用した。例えば、鋼板であれば「圧延方向磁気特性変動が、幅方向磁気特性変動から検知しうる」ということである。ここで、幅方向磁気特性を測定するということは磁束を幅方向に印加することになるが、そのような幅方向磁化を実現するセンサ配置、構成においては、上記問題点に示した、相反する複数の制約条件を満たす測定装置の仕様を選定することが非常に難しいという状況が大幅に緩和されることを見いだし、本発明に想到した。   In the present invention, in order to solve the above problems, the inventors have found that magnetic materials can be detected from magnetic property fluctuations in a direction orthogonal to a direction in which magnetic characteristic fluctuations are to be evaluated and a reference direction for evaluation. used. For example, in the case of a steel plate, “rolling direction magnetic property variation can be detected from width direction magnetic property variation”. Here, measuring the magnetic characteristics in the width direction means that magnetic flux is applied in the width direction, but the sensor arrangement and configuration that realizes such magnetization in the width direction conflicts with the above-mentioned problems. The present inventors have found that the situation that it is very difficult to select the specifications of a measuring device that satisfies a plurality of constraint conditions is greatly eased, and have arrived at the present invention.

以下、図面を参照しながら、本発明を具体的に説明してゆく。図3は、本発明で用いるコの字形コアセンサの基本的構成を示す図である。図中、2は検出コイル(二次コイル)、3は励磁コイル(一次コイル)、4は金属被検体(磁性材料)、5はコの字形強磁性体コア、6は磁気センサ、7は交流電源、8はロックインアンプ、および9は信号処理装置をそれぞれ表す。   Hereinafter, the present invention will be specifically described with reference to the drawings. FIG. 3 is a diagram showing a basic configuration of a U-shaped core sensor used in the present invention. In the figure, 2 is a detection coil (secondary coil), 3 is an excitation coil (primary coil), 4 is a metal object (magnetic material), 5 is a U-shaped ferromagnetic core, 6 is a magnetic sensor, and 7 is an alternating current. A power source, 8 is a lock-in amplifier, and 9 is a signal processing device.

まず図3を用いて、その動作を説明する。コの字形強磁性体コア5の2つの脚部を、金属被検体4に対向して配置する。コの字形強磁性体コア5には、検出コイル2と励磁コイル3が巻回されている。励磁コイル3には、交流電源7により所定周波数の交流電流が流されており、それにより、交流磁束が発生する。発生した交流磁束は、主にコの字形強磁性体コア5に沿って流れ、一方のコア脚部の、金属被検体4に対向する端部からコア外部に流れ出し、もう一方のコア脚部に戻り、再びコの字形強磁性体コア5に沿って流れ、励磁コイル3に戻るループとなる。そのループの途中に検出コイル2が設置され、交流磁束による誘導電圧信号を検出する。   First, the operation will be described with reference to FIG. Two legs of the U-shaped ferromagnetic core 5 are arranged to face the metal subject 4. A detection coil 2 and an excitation coil 3 are wound around a U-shaped ferromagnetic core 5. An alternating current having a predetermined frequency is passed through the exciting coil 3 by an alternating current power source 7, thereby generating an alternating magnetic flux. The generated AC magnetic flux mainly flows along the U-shaped ferromagnetic core 5, flows out of the core from one end of the core leg facing the metal object 4, and flows into the other core leg. Returning again, it flows along the U-shaped ferromagnetic core 5 again and becomes a loop returning to the exciting coil 3. A detection coil 2 is installed in the middle of the loop to detect an induced voltage signal due to an alternating magnetic flux.

その誘導電圧信号は、ロックインアンプ8で増幅された後、信号処理装置9で最終的に求めたい量に対応付ける検量線処理など適当な信号処理を経て、センサシステムとしての測定値が得られることになる。一方のコア脚部からコア外部に流れ出す磁束は、空中を通り、もう一方の脚部に到達するものもあるが、ある割合は、コア5と金属被検体4の間のギャップを介して、金属被検体4内部に入り、その表層部を通って、再びコア5と金属被検体4の間のギャップを介してもう一方のコア脚部に向かう。   The induced voltage signal is amplified by the lock-in amplifier 8 and then subjected to an appropriate signal processing such as a calibration curve process corresponding to the amount finally obtained by the signal processing device 9 to obtain a measurement value as a sensor system. become. The magnetic flux that flows from one core leg to the outside of the core passes through the air and reaches the other leg. However, a certain proportion of the magnetic flux flows through the gap between the core 5 and the metal object 4 through the metal. It enters the inside of the subject 4, passes through the surface layer portion thereof, and again goes to the other core leg through the gap between the core 5 and the metal subject 4.

交流磁束が金属被検体4の内部(表層部)を通過する際には、渦電流効果などにより、金属被検体4の電磁気的特性(透磁率、導電率、形状、損失など)の影響を受け、交流磁束の振幅、位相、波形が変化する。この変化を検出することで、金属被検体4の電磁気的特性、ひいては電磁気的特性と相関のある諸量(結晶粒径、温度など)を検量線などを用いて求めることができる。   When the AC magnetic flux passes through the inside (surface layer portion) of the metal specimen 4, it is affected by the electromagnetic characteristics (permeability, conductivity, shape, loss, etc.) of the metal specimen 4 due to the eddy current effect and the like. The amplitude, phase, and waveform of the AC magnetic flux change. By detecting this change, it is possible to obtain various quantities (crystal grain size, temperature, etc.) correlated with the electromagnetic characteristics of the metal specimen 4, and thus the electromagnetic characteristics, using a calibration curve or the like.

次に電磁鋼板を例に、鋼板の圧延方向の磁気特性変動部位が幅方向磁気特性変動と相関がある例について示す。鋼板の磁気特性は、結晶粒、磁区の大きさ、結晶粒の向き、成分、析出物、歪みなどにより影響を受ける。   Next, taking an electromagnetic steel sheet as an example, an example in which a magnetic property variation part in the rolling direction of the steel plate has a correlation with a width direction magnetic property variation will be described. The magnetic properties of the steel sheet are affected by crystal grains, magnetic domain size, crystal grain orientation, components, precipitates, strain, and the like.

圧延方向に関し、磁気特性が何らかの事情により変動する場合には、上に列挙した影響パラメータの性質から考えて、幅方向磁気特性に関しても何らかの変動が起こる可能性がある。   In the case where the magnetic characteristics change due to some circumstances with respect to the rolling direction, some fluctuations may also occur with respect to the width direction magnetic characteristics in view of the properties of the influence parameters listed above.

図2は、方向性電磁鋼板における圧延方向磁気特性変動が幅方向磁気特性に影響を与える例を示す図である。2つのプロットのうち、白抜き四角印は圧延方向の磁気特性が通常レベルの場合の幅方向の磁気特性を示し、もう一方の黒抜き丸印は、圧延方向の磁気特性が通常レベルから変動している部位での幅方向の磁気特性を示している。   FIG. 2 is a diagram showing an example in which the rolling direction magnetic property fluctuation in the grain-oriented electrical steel sheet affects the width direction magnetic property. Of the two plots, the white squares indicate the magnetic properties in the width direction when the magnetic properties in the rolling direction are normal, and the other black circles indicate that the magnetic properties in the rolling direction vary from the normal levels. The magnetic characteristics in the width direction are shown in the region where

全体的に両者に差があることが見て取れるが、特にHが300[A/m]以下の範囲では大きな差があることが分かる。このような相関を利用することで、幅方向の磁気特性を測定することで、圧延方向の磁気特性の変動部位を知ることができる。幅方向励磁は、一般に、いわゆる磁壁移動領域が好ましく、図2の例では、50〜300[A/m]が望ましい。   Although it can be seen that there is a difference between the two as a whole, it can be seen that there is a large difference especially in the range where H is 300 [A / m] or less. By utilizing such a correlation, it is possible to know the fluctuation part of the magnetic property in the rolling direction by measuring the magnetic property in the width direction. In general, the so-called domain wall motion region is preferable for the width direction excitation, and in the example of FIG. 2, 50 to 300 [A / m] is desirable.

次に、幅方向の磁気特性を測定する場合に、圧延方向磁化の場合に存在していた相反する複数の制約条件がどのように緩和されるかを説明する。   Next, how to measure a plurality of conflicting constraints existing in the case of magnetization in the rolling direction when the magnetic properties in the width direction are measured will be described.

幅方向の磁気特性を測定するということは、幅方向に磁束を印加すると言うことであり、それはコの字形コアを持つセンサを使用する場合には、両脚部を幅方向に並べて配置することを意味する。図1は、本発明に係るコの字形コアと鋼帯の位置関係を示す図である。   Measuring magnetic characteristics in the width direction means applying magnetic flux in the width direction, which means that when using a sensor with a U-shaped core, both legs are arranged side by side in the width direction. means. FIG. 1 is a diagram showing the positional relationship between a U-shaped core and a steel strip according to the present invention.

圧延方向にコの字形コアの両脚部を並べた場合と同様、コの字形コア両脚部間に流れる磁束は両脚部の並び方向に主に流れるものの、やはり両脚部の並び方向とは垂直方向に膨らむ成分が存在する。   Similar to the case where the legs of the U-shaped core are arranged in the rolling direction, the magnetic flux flowing between the legs of the U-shaped core flows mainly in the direction of alignment of the legs, but is still perpendicular to the direction of alignment of the legs. Ingredients exist.

しかしながら、このような幅方向に両脚部を並べる配置においては、コアの圧延方向のサイズと、「膨らむ成分」の膨らむ範囲とはあまり関係がなく、また「膨らむ成分」は、幅エッジ方向には膨らまないため、エッジ不感帯の大小とは直接関係がない。そのため、[発明が解決しようとする課題]の問題点1に示した、励磁周波数と鋼帯の移動速度から決められる制約条件と、エッジ不感帯の強い相関も解消できることになる。   However, in such an arrangement in which both legs are arranged in the width direction, the size in the rolling direction of the core and the bulging range of the “bulging component” are not so much related, and the “bulging component” is not in the width edge direction. Since it does not swell, it is not directly related to the size of the edge dead zone. Therefore, the strong correlation between the constraint condition determined from the excitation frequency and the moving speed of the steel strip and the edge dead zone shown in Problem 1 of [Problem to be Solved by the Invention] can be eliminated.

また、「膨らむ成分」自体とエッジ不感帯が直接の関係がないことから、問題点2に上げた、強く励磁する場合のセンサの大型化と「膨らむ」範囲との強い相関も解消できることになる。   In addition, since there is no direct relationship between the “bulging component” itself and the edge dead zone, it is possible to eliminate the strong correlation between the increase in the size of the sensor when strongly excited and the “bulging” range, which has been raised to Problem 2.

なお、上記説明は、方向性電磁鋼板を測定対象として説明したが、それに限定されるものでなく、磁性材料であれば同様に測定可能である。また、圧延方向に対する磁気特性を測定する例を説明したが、特に圧延方向に限定されず、磁性材料が移動する場合には、移動方向としてもよく、磁気特性を評価したい方向に適用可能である。   In addition, although the said description demonstrated the grain-oriented electrical steel plate as a measuring object, it is not limited to it, If it is a magnetic material, it can measure similarly. Moreover, although the example which measures the magnetic characteristic with respect to a rolling direction was demonstrated, it is not limited to a rolling direction in particular, When a magnetic material moves, it is good also as a moving direction and is applicable to the direction which wants to evaluate a magnetic characteristic. .

方向性電磁鋼板の製造ライン(ライン通板速度1m/s)にて、結晶方向の局所的な異常により、透磁率、鉄損などの電磁気的品質に関し、基準値よりも悪い部位の幅方向分布を幅1000mmの鋼帯全長にわたり測定した実施例について、以下に説明する。   In the production line of grain-oriented electrical steel sheets (line passing speed 1m / s), due to local abnormalities in the crystal direction, the distribution in the width direction of the parts that are worse than the standard values in terms of electromagnetic quality such as permeability and iron loss. An example in which is measured over the entire length of a steel strip having a width of 1000 mm will be described below.

図4は、本実施例におけるコの字形コアと鋼帯の位置関係を示す図である。磁気センサ6は、幅方向全体の異常部分布を測定するため、鋼帯1の幅方向にアレイ状に配置する。   FIG. 4 is a diagram showing the positional relationship between the U-shaped core and the steel strip in the present embodiment. The magnetic sensor 6 is arranged in an array in the width direction of the steel strip 1 in order to measure the abnormal portion distribution in the entire width direction.

各センサは、脚部間サイズは20mm、圧延方向サイズは100mmとした。また鋼帯とセンサ下面との距離(リフトオフ)は5mm、励磁周波数は50Hzとした。その際、幅方向に関し、測定できない部位が存在しないように、2列の千鳥配置とした。異なる列に置かれ、かつ相互に近接しているセンサ間の圧延方向の距離は、干渉しないよう100mmとした。センサの検出コイルの出力はロックインアンプに接続され、同期検波される。ロックインアンプ出力を用いて、予め決定しておいた閾値をもとに、健全部位か、異常部位かを判定した。   Each sensor had a leg size of 20 mm and a rolling direction size of 100 mm. The distance between the steel strip and the lower surface of the sensor (lift-off) was 5 mm, and the excitation frequency was 50 Hz. At that time, a two-row staggered arrangement was adopted so that there were no sites that could not be measured in the width direction. The distance in the rolling direction between sensors placed in different rows and close to each other was set to 100 mm so as not to interfere. The output of the detection coil of the sensor is connected to a lock-in amplifier and subjected to synchronous detection. Using the lock-in amplifier output, it was determined whether the site was healthy or abnormal based on a predetermined threshold value.

図5は、本実施例における測定結果の一例を示す図である。図から、エッジ不感帯も小さく(20mm以下)、異常部幅方向分布が測定されていることが分かる。なお、本実施例では、センサ仕様は同じものを使用したが、詳細な(空間分解能の高い)検出を行いたい部分がある場合には、部分的に脚部間サイズを小さくするなど仕様(サイズ、測定条件)を変更してもよい。また、本実施例では、ライン通板速度1m/sで移動している場合について述べているが、鋼帯が止まっている場合にも、本発明は当然適用可能である。   FIG. 5 is a diagram illustrating an example of a measurement result in the present example. From the figure, it can be seen that the edge dead zone is also small (20 mm or less), and the abnormal part width direction distribution is measured. In this example, the same sensor specifications were used. However, if there is a part where detailed (high spatial resolution) detection is desired, specifications such as partially reducing the size between the legs (size) Measurement conditions) may be changed. In the present embodiment, the case where the wire is moving at a line passing speed of 1 m / s is described. However, the present invention is naturally applicable even when the steel strip is stopped.

本発明に係るコの字形コアと鋼帯の位置関係を示す図である。It is a figure which shows the positional relationship of the U-shaped core which concerns on this invention, and a steel strip. 方向性電磁鋼板における圧延方向磁気特性変動が幅方向磁気特性に影響を与える例を示す図である。It is a figure which shows the example in which the rolling direction magnetic characteristic fluctuation | variation in a grain-oriented electrical steel sheet affects the width direction magnetic characteristic. 本発明で用いるコの字形コアセンサの基本的構成を示す図である。It is a figure which shows the basic composition of the U-shaped core sensor used by this invention. 本実施例におけるコの字形コアと鋼帯の位置関係を示す図である。It is a figure which shows the positional relationship of the U-shaped core and steel strip in a present Example. 本実施例における測定結果の一例を示す図である。It is a figure which shows an example of the measurement result in a present Example. コの字形コアを持つセンサにて測定する様子を模式的に示す図である。It is a figure which shows typically a mode that it measures with a sensor with a U-shaped core.

符号の説明Explanation of symbols

1 電磁鋼板(鋼帯)
2 検出コイル(二次コイル)
3 励磁コイル(一次コイル)
4 金属被検体
5 コの字形強磁性体コア
6 磁気センサ
7 交流電源
8 ロックインアンプ
9 信号処理装置
10 鋼帯幅方向エッジ
11 磁束
1 Electrical steel sheet (steel strip)
2 Detection coil (secondary coil)
3 Excitation coil (primary coil)
DESCRIPTION OF SYMBOLS 4 Metal object 5 U-shaped ferromagnetic core 6 Magnetic sensor 7 AC power supply 8 Lock-in amplifier 9 Signal processing device 10 Steel strip width direction edge 11 Magnetic flux

Claims (3)

方向性電磁鋼板圧延方向に関する磁気特性の局所的変動部位を交流磁束を印加することで検出する方向性電磁鋼板の磁気特性変動部位の検出方法であって、
前記圧延方向に対して略直交方向に磁壁移動領域の交流磁束を印加し、該交流磁束と方向性電磁鋼板との相互作用により生じる磁場を測定することを特徴とする方向性電磁鋼板の磁気特性変動部位の検出方法。
A method for detecting a magnetic property variation part of a grain- oriented electrical steel sheet by detecting a local variation part of a magnetic property related to a rolling direction of the grain-oriented electrical steel sheet by applying an alternating magnetic flux,
AC magnetic flux of the magnetic domain wall moving region is applied in a substantially perpendicular direction relative to the rolling direction, the magnetic properties of grain-oriented electrical steel sheet and measuring the magnetic field caused by the interaction of the AC magnetic flux and the grain-oriented electrical steel sheet Detection method of the fluctuation part.
方向性電磁鋼板圧延方向に関する磁気特性の局所的変動部位を交流磁束を印加することで検出する方向性電磁鋼板の磁気特性変動部位の検出方法であって、
励磁コイルおよび検出コイルが巻かれたコの字形コアセンサの両脚部を前記圧延方向に対して略直交方向に並ぶように、かつ前記コアセンサの脚部端部を方向性電磁鋼板に対して対向するように配置して、方向性電磁鋼板に励磁コイルにより磁壁移動領域の交流磁場を印加し、発生する磁場を検出コイルにより測定することを特徴とする方向性電磁鋼板の磁気特性変動部位の検出方法。
A method for detecting a magnetic property variation part of a grain- oriented electrical steel sheet by detecting a local variation part of a magnetic property related to a rolling direction of the grain-oriented electrical steel sheet by applying an alternating magnetic flux,
The leg portions of the U-shaped core sensor around which the exciting coil and the detection coil are wound are arranged in a direction substantially orthogonal to the rolling direction , and the leg end portions of the core sensor are opposed to the directional electrical steel sheet . A method for detecting a magnetic property variation portion of a directional electrical steel sheet , wherein an alternating magnetic field in a domain wall motion region is applied to the directional electrical steel sheet by an excitation coil, and the generated magnetic field is measured by a detection coil.
方向性電磁鋼板圧延方向に関する磁気特性の局所的変動部位を磁壁移動領域の交流磁束を印加することで検出する方向性電磁鋼板の磁気特性変動部位の検出装置であって、
励磁コイルおよび検出コイルが巻かれたコの字形コアセンサと、
励磁コイルに所定周波数の交流電流を流す交流電源と、
検出コイルで検出された誘導電圧信号を増幅するロックインアンプと、
該ロックインアンプで増幅された信号に信号処理を行い最終的な測定値を得る信号処理装置とを備え、
前記コアセンサの両脚部を前記圧延方向に対して略直交方向に並ぶように、かつ前記コアセンサの脚部端部を方向性電磁鋼板に対して対向するように配置することを特徴とする方向性電磁鋼板の磁気特性変動部位の検出装置。
An apparatus for detecting a magnetic property variation part of a grain- oriented electrical steel sheet for detecting a local variation part of a magnetic property related to a rolling direction of the grain-oriented electrical steel sheet by applying an alternating magnetic flux in a domain wall moving region,
A U-shaped core sensor around which an excitation coil and a detection coil are wound;
An AC power source for supplying an AC current of a predetermined frequency to the excitation coil;
A lock-in amplifier that amplifies the induced voltage signal detected by the detection coil; and
A signal processing device that performs signal processing on the signal amplified by the lock-in amplifier to obtain a final measurement value,
Oriented electromagnetic characterized by arranging the legs of the core sensor such that said to be aligned in a direction substantially perpendicular to the rolling direction, and the opposing leg end of the core sensor relative to oriented electrical steel sheet A device for detecting the magnetic property fluctuation part of a steel sheet .
JP2007241683A 2007-09-19 2007-09-19 Method and apparatus for detecting magnetic property fluctuation site of grain-oriented electrical steel sheet Active JP5266695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007241683A JP5266695B2 (en) 2007-09-19 2007-09-19 Method and apparatus for detecting magnetic property fluctuation site of grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007241683A JP5266695B2 (en) 2007-09-19 2007-09-19 Method and apparatus for detecting magnetic property fluctuation site of grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2009074813A JP2009074813A (en) 2009-04-09
JP5266695B2 true JP5266695B2 (en) 2013-08-21

Family

ID=40609950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007241683A Active JP5266695B2 (en) 2007-09-19 2007-09-19 Method and apparatus for detecting magnetic property fluctuation site of grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP5266695B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5542466B2 (en) * 2010-02-05 2014-07-09 日本電産サンキョー株式会社 Magnetic sensor device
JP5450175B2 (en) * 2010-03-10 2014-03-26 本田技研工業株式会社 Nondestructive inspection equipment
JP5387718B2 (en) * 2011-05-30 2014-01-15 Jfeスチール株式会社 Magnetic characteristic measuring method and magnetic characteristic measuring apparatus
KR101447857B1 (en) 2013-04-08 2014-10-06 한국영상기술(주) Particle inspectiing apparatus for lens module
JP7252466B2 (en) * 2018-12-12 2023-04-05 日本製鉄株式会社 Iron loss measurement method and iron loss measurement system
DE102019109337B8 (en) 2019-04-09 2020-06-04 Dr. Brockhaus Messtechnik GmbH & Co. KG Device and method for measuring magnetic properties of a ferromagnetic endless belt
KR102326685B1 (en) * 2019-12-20 2021-11-17 주식회사 포스코 Apparatus and Method for Sensing Quality of Steel Plate Surface

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320986A (en) * 1976-08-11 1978-02-25 Toshiba Corp Measuring apparatus for temperature of conductive body
JPS5399500A (en) * 1977-02-10 1978-08-30 Hitachi Ltd Method of evaluating insulation property of iron oxide coating film
JP2519615B2 (en) * 1991-09-26 1996-07-31 新日本製鐵株式会社 Method for producing grain-oriented electrical steel sheet with excellent magnetic properties
JPH06213872A (en) * 1993-01-18 1994-08-05 Kobe Steel Ltd Method for measuring crystal grain diameter of steel plate
JPH07190991A (en) * 1993-12-27 1995-07-28 Nkk Corp Transformation rate-measuring method and device
JPH10132913A (en) * 1996-10-28 1998-05-22 Nippon Steel Corp Easy magnetostriction measuring method
JP3755403B2 (en) * 2000-01-20 2006-03-15 Jfeスチール株式会社 Method for measuring transformation state of magnetic material and measuring device for transformation state of magnetic material
JP2005257701A (en) * 2000-01-20 2005-09-22 Jfe Steel Kk Method and apparatus for measuring material characteristics of magnetic substance material
JP3863802B2 (en) * 2001-04-27 2006-12-27 新日本製鐵株式会社 Ferromagnetic material diagnosis method and Barkhausen noise voltage pulse width measurement system
JP2004279055A (en) * 2003-03-12 2004-10-07 Sumitomo Metal Ind Ltd Method and apparatus for measuring carburization depth on inner surface of steel pipe
JP2006284191A (en) * 2005-03-31 2006-10-19 Jfe Steel Kk Surface defect detecting method by eddy current type sensor

Also Published As

Publication number Publication date
JP2009074813A (en) 2009-04-09

Similar Documents

Publication Publication Date Title
JP5266695B2 (en) Method and apparatus for detecting magnetic property fluctuation site of grain-oriented electrical steel sheet
JP5262436B2 (en) Magnetic measurement method and apparatus
KR101941241B1 (en) Electromagnetic sensor and calibration thereof
KR102020974B1 (en) Rope damage diagnostic test device and rope damage diagnostic test method
WO2010050155A1 (en) Barkhausen noise inspection apparatus and inspection method
JP4512079B2 (en) Apparatus and method for measuring magnetic properties and mechanical strength of thin steel sheet
JP6607242B2 (en) Processing state evaluation method, processing state evaluation device, and manufacturing method of grain-oriented electrical steel sheet
JP6562055B2 (en) Processing state evaluation method, processing state evaluation device, and manufacturing method of grain-oriented electrical steel sheet
JP2009204342A (en) Eddy current type sample measurement method and eddy current sensor
JP2009047664A (en) Method and apparatus for nondestructive measurement
Cheng Nondestructive testing of back-side local wall-thinning by means of low strength magnetization and highly sensitive magneto-impedance sensors
JP2004279055A (en) Method and apparatus for measuring carburization depth on inner surface of steel pipe
JP4736811B2 (en) Method for determining leg interval of complex magnetic permeability measuring device of magnetic material
JP5293755B2 (en) Apparatus for measuring complex permeability of magnetic material and method for measuring crystal grain size of magnetic material using the same
JP2008185436A (en) Method and apparatus for measuring electromagnetic characteristic of metal analyte
JP4192708B2 (en) Magnetic sensor
KR100711471B1 (en) On-line transformation ratio determination device of hot rolled steel sheet
JPH11352109A (en) Device and method for inspecting eddy current
JPH05281063A (en) Measuring device for tension of steel material
CN111796223A (en) Device for measuring magnetism of ferromagnetic annular belt and method thereof
JP3755403B2 (en) Method for measuring transformation state of magnetic material and measuring device for transformation state of magnetic material
JP2522732Y2 (en) Iron loss value measuring device
JP2005315732A (en) Instrument for measuring displacement of ferromagnetic body
JP4005765B2 (en) Magnetic measurement method
JP2005188948A (en) Method and apparatus for measuring hardness of stainless steel material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130422

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5266695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250