JPH05281063A - Measuring device for tension of steel material - Google Patents

Measuring device for tension of steel material

Info

Publication number
JPH05281063A
JPH05281063A JP4080728A JP8072892A JPH05281063A JP H05281063 A JPH05281063 A JP H05281063A JP 4080728 A JP4080728 A JP 4080728A JP 8072892 A JP8072892 A JP 8072892A JP H05281063 A JPH05281063 A JP H05281063A
Authority
JP
Japan
Prior art keywords
coil
tension
signal
exciting coil
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4080728A
Other languages
Japanese (ja)
Inventor
Hajime Suzuki
木 肇 鈴
Satoshi Hayama
山 聡 葉
Susumu Kamio
尾 進 神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4080728A priority Critical patent/JPH05281063A/en
Publication of JPH05281063A publication Critical patent/JPH05281063A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PURPOSE:To provide a steel material tension measuring device which can continuously noncontactedly measure tension acting on bar steel or wire material in a rolling process even under bad environment. CONSTITUTION:A steel material tension measuring device has a detecting section S composed of an exciting coil 5 wound on a concentric shaft, a detecting coil 4 concentrically wound inside the exciting coil 5, and a magnetizing coil 6 to magnetize a material M to be inspected set on the outer periphery of the exciting coil 5, a full wave commutating section 8 to convert a signal issued from the detecting coil 4 into a d.c. current, a computing section 11 to execute fixed compensating computation on the measured value of temperature of the material M to be inspected, and a difference computing section 12 to compute a difference between a d.c. signal issued from a commutating section 8 and a compensating signal issued from the computing section 11. Thus a measuring signal which is not practically influenced by the temperature change of the material M can be accurately obtained even under bad environment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧延中における棒鋼あ
るいは線材にかかる張力を、被検材と電気コイルの間の
電磁的特性を利用し非接触で連続して測定する装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for continuously measuring the tension applied to a steel bar or wire rod during rolling in a non-contact manner by utilizing the electromagnetic characteristics between the material to be tested and the electric coil. ..

【0002】[0002]

【従来技術】一般に圧延機等における鋼材の寸法精度の
良否は、鋼材の歩留まり,品質を左右する要素であり、
それを決定するのは特に熱間圧延中における圧下制御の
他に被検材張力を常に把握し一定に制御する事が最良の
手段であることが認識され、圧延中の鋼材の張力を精度
良く検出する方式の開発が要望されている。
2. Description of the Related Art Generally, the dimensional accuracy of steel materials in rolling mills is a factor that affects the yield and quality of steel materials.
It was recognized that the best way to determine this is to constantly grasp and constantly control the tension of the material to be tested in addition to the rolling reduction control during hot rolling, and to accurately measure the tension of the steel material during rolling. Development of the detection method is desired.

【0003】たとえば特開昭57−197434号公報
には、検出コイルと鋼材により磁気回路を構成してお
き、鋼材に掛かる張力により鋼材の透磁率が変化する性
質を利用した張力測定装置が提案されている。これは測
定対象鋼材すなわち被検材の張力あるいは圧縮力による
透磁率を検出し検出した透磁率より張力を算出するもの
であり、透磁率測定素子と測定対象鋼材との間隔をいか
に一定に維持するかが測定上の大きな問題であって、押
圧力センサで間隔を検出し該間隔を一定に維持する。
For example, Japanese Patent Application Laid-Open No. 57-197434 proposes a tension measuring device which has a magnetic circuit composed of a detection coil and a steel material and utilizes the property that the magnetic permeability of the steel material changes due to the tension applied to the steel material. ing. This is to detect the magnetic permeability due to the tension or compression force of the steel material to be measured, that is, the material to be measured, and calculate the tension from the detected magnetic permeability, and how to maintain a constant gap between the magnetic permeability measuring element and the steel material to be measured. A major problem in measurement is that the pressing force sensor detects the interval and maintains the interval constant.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前述の
張力測定装置によれば透磁率測定素子と対象物との設置
精度すなわち間隔設定精度は重要な要素の一つである
が、移動する測定対象鋼材を連続測定する際に、一定の
間隙,押圧力の維持が困難であり、間隔が動揺して正確
な測定ができない。また透磁率を検出原理としているた
め非磁性体金属の測定は、不可能である。また、強磁性
体金属の透磁率は温度変化による影響が大きくしかも複
雑に変化するのでそれを補償する方法を適用するための
装置がなく、実用上信頼性の良い測定は困難であった。
However, according to the above-mentioned tension measuring device, the installation accuracy between the magnetic permeability measuring element and the object, that is, the interval setting accuracy is one of the important factors. During continuous measurement, it is difficult to maintain a constant gap and pressing force, and the gap fluctuates, making accurate measurement impossible. Further, since the magnetic permeability is the detection principle, it is impossible to measure non-magnetic metal. Further, the magnetic permeability of the ferromagnetic metal is greatly affected by the temperature change and changes in a complicated manner. Therefore, there is no apparatus for applying the method for compensating for it, and it is difficult to measure with good reliability in practical use.

【0005】本発明の目的は、被検材を磁化コイルによ
り磁気飽和させ実質的に比透磁率を一とし、温度による
導電率変動を補正し張力による被検材の導電率の変化成
分のみを抽出する事により鉄,非金属に関わらず測定可
能な張力測定装置を提供する事にある。
An object of the present invention is to magnetically saturate the material to be tested with a magnetizing coil so that the relative permeability is substantially one, to correct the variation in the conductivity due to temperature, and to adjust only the change component of the conductivity of the material to be tested due to the tension. It is to provide a tension measuring device that can measure iron or non-metals by extracting.

【0006】[0006]

【課題を解決するための手段】本発明の棒鋼あるいは線
材の張力測定装置は、同芯軸上に巻かれた励磁コイル
(5)と該励磁コイル(5)の内側に巻かれた検出コイル(4)
と、前記励磁コイル(5)の外側周に設けた被検材(M)を磁
化するための磁化コイル(6)からなる検出部(S)と、検出
コイル(4)からの信号を直流に変換する全波整流部(8)と
被検材(M)の測温値を基に補正演算を行う演算部(11)と
前記直流信号と補正演算信号との差分演算を行う差分演
算部(12)とから構成される事を特徴とする。なお、カッ
コ内の記号は、図面に示し後述する実施例の対応要素を
示す。
DISCLOSURE OF THE INVENTION A tension measuring device for a steel bar or a wire according to the present invention comprises an exciting coil wound around a concentric shaft.
(5) and the detection coil (4) wound inside the exciting coil (5)
And a detection unit (S) consisting of a magnetizing coil (6) for magnetizing the material to be tested (M) provided on the outer circumference of the exciting coil (5), and a signal from the detecting coil (4) is converted to DC. A full-wave rectification unit (8) to be converted and a calculation unit (11) for performing a correction calculation based on the temperature measurement value of the test material (M), and a difference calculation unit (D) for performing a difference calculation between the DC signal and the correction calculation signal. It is characterized by consisting of 12) and. The symbols in parentheses indicate the corresponding elements in the embodiments shown in the drawings and described later.

【0007】[0007]

【作用】検出部(S)に被検材(M)を貫通させた状態で磁化
コイル(6)が被検材(M)を磁気飽和させ被検材(M)の比透
磁率を実質的に一とする。励磁コイル(5)が被検材(M)を
磁化する。この磁化に対応して検出コイル(4)が電圧を
発生するが、この電圧は、被検材(M)の導電率に対応
し、該導電率は被検材(M)の張力の影響を受ける。すな
わち、検出コイル(4)が発生する電圧は被検材(M)の張力
に依存する。この電圧すなわち検出信号を、全波整流部
(8)が直流に変換する。この直流と被検材(M)の測温値か
ら、演算部(11)が導電率の温度補正演算を行し、差分演
算部(12)が、温度補正演算出力信号と全波整流部(8)の
直流出力信号との差分をとりその出力を張力信号とす
る。
[Operation] The magnetizing coil (6) magnetically saturates the test material (M) with the test material (M) penetrating the detection part (S) to substantially reduce the relative magnetic permeability of the test material (M). Every second. The exciting coil (5) magnetizes the material under test (M). The detection coil (4) generates a voltage corresponding to this magnetization, and this voltage corresponds to the conductivity of the test material (M), and the conductivity is affected by the tension of the test material (M). receive. That is, the voltage generated by the detection coil (4) depends on the tension of the test material (M). This voltage, that is, the detection signal
(8) converts to DC. From this direct current and the temperature measurement value of the test material (M), the calculation unit (11) performs temperature correction calculation of the conductivity, and the difference calculation unit (12) outputs the temperature correction calculation output signal and the full-wave rectification unit ( Take the difference from the DC output signal in 8) and use that output as the tension signal.

【0008】より具体的に説明すると、被検材(M)は、
中空円筒構造の検出部(S)の中心位置を貫通している。
交番電流を励磁コイル(5)に通電すると共に、磁化コイ
ル(6)に直流電流を通電し被検材(M)を完全に磁気飽和さ
せる。このとき励磁コイル(5)で生成された磁界が、被
検材(M)に作用し渦電流が流れそれによる二次磁界が生
成され合成された磁界が検出コイル(4)と鎖交し、検出
コイル(4)には、交番電圧が誘起される。この誘起電圧
は、被検材(M)の導電率,透磁率および励振周波数に比
例し、さらに充填率(被検材Mの半径b/検出コイル4の
半径a)の二乗に反比例する電圧信号である。すなわち
被検材(M)を同心に含む場合、被検材(M)内の渦流損によ
って抵抗成分あるいはリアクタンス成分が変化するが、
その変化要因として独立なパラメータは、正規化周波数
Fと充填率の二つである。
More specifically, the test material (M) is
It penetrates through the central position of the detection unit (S) having a hollow cylindrical structure.
An alternating current is applied to the exciting coil (5) and a direct current is applied to the magnetizing coil (6) to completely magnetically saturate the test material (M). At this time, the magnetic field generated by the excitation coil (5) acts on the material to be tested (M) and an eddy current flows, a secondary magnetic field is generated by it, and the combined magnetic field interlinks with the detection coil (4), An alternating voltage is induced in the detection coil (4). This induced voltage is a voltage signal proportional to the conductivity, magnetic permeability and excitation frequency of the test material (M), and inversely proportional to the square of the filling rate (radius b of the test material M / radius a of the detection coil 4). Is. That is, when the test material (M) is concentrically contained, the resistance component or reactance component changes due to the eddy current loss in the test material (M),
The two independent parameters as the change factor are the normalized frequency F and the filling rate.

【0009】ここで、正規化周波数Fは F≡ωL2 /R2 ≡2πfμσa2 ・・・(1) ただし f:励振周波数 [Hz] a:検出
コイルの半径 [m] μ:導体の透磁率 [H/m] R2 :導体の抵抗成
分 [Ω] σ:導体の導電率 [Ωm] ωL2 :導体のリアク
タン [Ω] ここで、予め導体(被検材M)を磁気飽和したもとで正
規化周波数Fは、励振周波数f,コイル半径aおよび導
体(被検材M)の導電率σによって決まり、すなわち導体
に生ずるインダクタンスと抵抗成分の比で表記でき、ま
た充填率による成分は、導体の形状およびコイル仕様が
決まれば一定であって検出信号に寄与しないので後述す
る信号処理回路でキャンセルする。以上のように検出さ
れた誘起電圧信号は、定電流の一定周波数でしかも磁気
飽和させた時の信号であり、導体の導電率σに起因する
変化を検出することができる。すなわち金属導体は、外
部から張力をかけると導電率は内部応力にほぼ反比例し
変化する特性を有する。また温度上昇に反比例すること
も周知である。
Here, the normalized frequency F is F≡ωL 2 / R 2 ≡2πfμσa 2 (1) where f: excitation frequency [Hz] a: radius of detection coil [m] μ: permeability of conductor [H / m] R 2 : Conductor resistance component [Ω] σ: Conductor conductivity [Ωm] ωL 2 : Conductor reactance [Ω] where the conductor (test material M) is previously magnetically saturated The normalized frequency F is determined by the excitation frequency f, the coil radius a, and the electrical conductivity σ of the conductor (material M to be tested). That is, the normalized frequency F can be expressed by the ratio of the inductance component and the resistance component generated in the conductor. Once the conductor shape and coil specifications are determined, they are constant and do not contribute to the detection signal, so they are canceled by the signal processing circuit described later. The induced voltage signal detected as described above is a signal when magnetically saturated at a constant frequency of a constant current, and a change due to the conductivity σ of the conductor can be detected. That is, the metal conductor has a characteristic that the conductivity changes substantially in inverse proportion to the internal stress when external tension is applied. It is also well known that it is inversely proportional to the temperature rise.

【0010】従って被検材M(上記導体)に張力がかかる
と被検材(M)の渦電流は減少し、検出コイル(4)に誘起さ
れる電圧信号は、無張力時に比べ導電率の低下に相応し
て増加する。また、被検材固有の温度による導電率特性
を持っているので、この温度特性テーブルを準備してお
き、導体の温度に相当する導電率の増加率を求め、その
増加率と張力を掛けたときに得られる検出コイルの誘起
電圧信号との積を補正量とする。次いで誘起電圧信号と
前記した補正量との差分演算をする事によって高精度の
張力信号を得る。
Therefore, when tension is applied to the test material M (the conductor), the eddy current of the test material (M) decreases, and the voltage signal induced in the detection coil (4) has a conductivity higher than that in the non-tensioned state. Increase in proportion to the decrease. In addition, since it has the conductivity characteristic according to the temperature peculiar to the test material, this temperature characteristic table is prepared, the increase rate of conductivity corresponding to the temperature of the conductor is obtained, and the increase rate is multiplied by the tension. The product of the detected voltage and the induced voltage signal of the detection coil is used as the correction amount. Then, a highly accurate tension signal is obtained by performing a difference calculation between the induced voltage signal and the above-mentioned correction amount.

【0011】[0011]

【実施例】図1に、本発明の一実施例の概要を示す。図
1において、1は発振器、2は発振器1の出力を増幅し
かつ定電流機能を有する電力増幅器、3は直流電源、M
は被検材、Sは検出部、6は被検材Mを完全に磁気飽和
させるための磁化コイルである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an outline of one embodiment of the present invention. In FIG. 1, 1 is an oscillator, 2 is a power amplifier that amplifies the output of the oscillator 1 and has a constant current function, 3 is a DC power supply, and M
Is a material to be inspected, S is a detection unit, and 6 is a magnetizing coil for completely magnetically saturating the material to be inspected M.

【0012】図2に、検出部Sの断面を示す。検出部S
は、同心軸上にコイル4〜6を巻回した貫通型コイルで
あり、その貫通穴を被検材Mが通過する。図2には図示
していないが、検出部Sの前後には圧延機があり被検材
Mに張力がかかるようになっている。検出部Sの構成
は、内周側より検出コイル4,励磁コイル5,さらにそ
の外周上に磁化コイル6が巻回されている。検出コイル
4の出力信号は、信号増幅器7により増幅されて両波整
流器8で交流信号から直流信号に変換される。直流増幅
器9は、前記両波整流器8の直流信号を増幅するととも
に、バイアス調整器10から直流電圧信号が入力され差
分演算を行う。即ち被検材Mを無張力状態で検出部を通
過させるとその時の充填率および導電率によって決まる
直流信号が直流増幅器9から出力されるので、それと同
等の負の電圧をバイアス調整器10に設定し、この負の
電圧を両波整流器8の直流信号に加算し、無張力時の直
流増幅器9の出力を零電圧とする。Tは温度センサで、
被検材Mの測温を行う。温度補正演算器11に、温度セ
ンサTの温度情報と直流増幅器9の信号が入力され、温
度補正演算器11は、これらの信号に基づいて、被検材
Mの導電率σの温度変化対応の変化量を補正する。この
補正信号と直流増幅器9の信号が差分演算器12に与え
られる。差分演算器12は、直流増幅器9の信号より温
度補正演算器11の補正信号を減算した差分値信号を出
力する。
FIG. 2 shows a cross section of the detecting portion S. Detector S
Is a through-type coil in which the coils 4 to 6 are wound on a concentric axis, and the test material M passes through the through-hole. Although not shown in FIG. 2, there are rolling mills in front of and behind the detection unit S so that tension is applied to the test material M. In the structure of the detection unit S, the detection coil 4, the excitation coil 5, and the magnetizing coil 6 are wound around the outer circumference from the inner circumference side. The output signal of the detection coil 4 is amplified by the signal amplifier 7 and converted from an AC signal to a DC signal by the double-wave rectifier 8. The DC amplifier 9 amplifies the DC signal of the double-wave rectifier 8 and receives the DC voltage signal from the bias adjuster 10 to perform a difference calculation. That is, when the material M to be inspected is passed through the detecting portion in a tensionless state, a DC signal determined by the filling rate and the conductivity at that time is output from the DC amplifier 9, so that a negative voltage equivalent thereto is set in the bias adjuster 10. Then, this negative voltage is added to the DC signal of the double-wave rectifier 8 to make the output of the DC amplifier 9 at zero tension zero voltage. T is a temperature sensor,
The temperature of the test material M is measured. The temperature information of the temperature sensor T and the signal of the DC amplifier 9 are input to the temperature correction calculator 11, and the temperature correction calculator 11 responds to the temperature change of the conductivity σ of the test material M based on these signals. Correct the amount of change. This correction signal and the signal from the DC amplifier 9 are given to the difference calculator 12. The difference calculator 12 outputs a difference value signal obtained by subtracting the correction signal of the temperature correction calculator 11 from the signal of the DC amplifier 9.

【0013】検出部Sの励磁コイル5の長さLとその直
径Dの比L/Dは少なくとも3以上とすることが好まし
い。すなわち、L/Dが小さいと励振コイル5で生成さ
れる磁束密度分布が非線形となるため被検材Mの通過位
置がずれることにより検出コイル4の検出電圧が変化し
誤差の原因となる。また図示していないが、検出コイル
4は可能な限り励磁コイル5の長さLに対して充分短い
方がよく、高精度を維持するためには、発明者等によれ
ば、検出コイル4の長さL’と励磁コイル5の長さLの
比L’/Lは1/50以下が好ましいという結果を得
た。
The ratio L / D of the length L of the exciting coil 5 of the detector S and its diameter D is preferably at least 3 or more. That is, if L / D is small, the magnetic flux density distribution generated by the excitation coil 5 becomes non-linear, and the passing position of the material M to be inspected shifts, which changes the detection voltage of the detection coil 4 and causes an error. Although not shown, the detection coil 4 is preferably as short as possible with respect to the length L of the excitation coil 5, and in order to maintain high accuracy, the inventors have found that The ratio L ′ / L of the length L ′ and the length L of the exciting coil 5 is preferably 1/50 or less.

【0014】図6に、比L/Dによる検出信号のレベル
シフトを示す。このグラフは、直径10mmの被検材
を、L/Dをパラメータとし励磁コイル5の横断面中心
点から左右に移動したときの検出コイル4の相対出力を
示し、充填率(ν)が同じでも中心点からの位置ずれが
大きくなるほど出力が低下しこれが誤差となる。被検材
Mの位置変動による測定誤差を軽減するためには、少な
くともL/Dが3以上必要である。ちなみにコイル仕様
を記述すると、 励磁コイル5:内側直径 50mm、長さ 150m
m、 検出コイル4:外側直径 50mm、長さ 3mm、 である。
FIG. 6 shows the level shift of the detection signal according to the ratio L / D. This graph shows the relative output of the detection coil 4 when the test material having a diameter of 10 mm is moved left and right from the center point of the cross section of the exciting coil 5 with L / D as a parameter, even if the filling rate (ν) is the same. The larger the displacement from the center point, the lower the output and this becomes an error. In order to reduce the measurement error due to the position variation of the material M to be inspected, L / D needs to be at least 3 or more. By the way, the coil specifications are as follows: Excitation coil 5: inner diameter 50 mm, length 150 m
m, detection coil 4: outer diameter 50 mm, length 3 mm.

【0015】被検材Mに張力がかかると、直流増幅器9
により、温度および張力による導電率変化の重畳された
電圧信号が出力され、この電圧Veは、 Ve=K{f(σ1 ΔT),f(σ1’ΔH),f(ν)} ・・・(2) となる。ただし、 k:励振コイル電流および検出部構
造で決まる定数、 σ1 ΔT:温度変化による導電率変化、 σ1’ΔH:張力変化による導電率変化、 ν:充填率、 である。上記(2)式において、f(ν)成分は張力に依
存しない直流成分であり、被検材Mが存在しかつ無張力
時の直流増幅器9の出力レベルに相当する。これは、バ
イアス調整器10により直流増幅器9で差分演算により
キャンセルされる。また、f(σ1 ΔT)成分は、補正
演算器11で温度による導電率の変化量(σ1 ΔT)を
近以的に変換し、変換値と、直流増幅器9のf(ν)成
分を相殺した出力との積で得られる。この積を差分演算
器12が、直流増幅器9のf(ν)成分を相殺した出力
から相殺する。かくして、差分増幅器12の出力は、f
(σ1’ΔH)成分となり、目的とする張力信号が得ら
れる。この信号を得るための鋼材の導伝率特性について
明らかにする。
When tension is applied to the material M to be tested, the DC amplifier 9
Outputs a voltage signal on which the change in conductivity due to temperature and tension is superimposed, and this voltage Ve is: Ve = K {f (σ 1 ΔT), f (σ 1 'ΔH), f (ν)}・ It becomes (2). Here, k is a constant determined by the excitation coil current and the structure of the detecting portion, σ 1 ΔT is a change in conductivity due to temperature change, σ 1 'ΔH is a change in conductivity due to tension change, and ν is a filling rate. In the above equation (2), the f (ν) component is a DC component that does not depend on tension, and corresponds to the output level of the DC amplifier 9 when the material M to be tested is present and there is no tension. This is canceled by the bias adjuster 10 in the DC amplifier 9 by the difference calculation. Further, the f (σ 1 ΔT) component is converted from the amount of change in conductivity (σ 1 ΔT) due to temperature in the correction calculator 11 in the near future, and the converted value and the f (ν) component of the DC amplifier 9 are converted. It is obtained by the product of the canceled output. The difference calculator 12 cancels this product from the output obtained by canceling the f (ν) component of the DC amplifier 9. Thus, the output of the difference amplifier 12 is f
It becomes the (σ 1 'ΔH) component, and the desired tension signal is obtained. The conductivity characteristics of steel for obtaining this signal are clarified.

【0016】図4には、鋼材の温度による比抵抗率(1
/σ)を示す。図4から明らかなように約900°Kま
ではほぼ温度に比例した比抵抗率の変化がみられ従って
温度情報をもとにその補正を実現できる。一方、鋼材の
加工度(張力)による抵抗率の増加率を図5に示す。
FIG. 4 shows the specific resistance (1
/ Σ). As is apparent from FIG. 4, a change in the specific resistance is observed in proportion to temperature up to about 900 ° K. Therefore, the correction can be realized based on the temperature information. On the other hand, FIG. 5 shows the rate of increase in resistivity due to the workability (tension) of steel materials.

【0017】図5において、横軸は加工度を、弾性限界
を100%として示し、縦軸は抵抗率の増加率を示す。
抵抗率の増加率は、弾性限界点100%において約20
%変化し飽和状態となる全体として非線形な変化をして
いるが、発明者等の対象とする張力(応力)範囲の加工
率は40%以下であり、この範囲ではほぼ線形でありこ
のように鋼材の加工度による導電率特性により、差分増
幅器12の出力を、張力にほぼ比例する信号として出力
することが可能である。
In FIG. 5, the horizontal axis represents the workability, the elastic limit being 100%, and the vertical axis represents the rate of increase in resistivity.
The rate of increase in resistivity is about 20 at the elastic limit of 100%.
However, the processing rate in the tension (stress) range targeted by the inventors is 40% or less, which is almost linear in this range. It is possible to output the output of the difference amplifier 12 as a signal substantially proportional to the tension due to the conductivity characteristic of the workability of the steel material.

【0018】図3に、図1に示す装置による張力測定結
果を示す。図3の横軸は張力(応力)を示す。縦軸は直
流増幅器9および差分増幅器12の出力レベルを示し、
張力(応力)5kgf/mm2 のときの差分増幅器12
の出力レベルを基準(100%)とした相対値を示す。
図3中の曲線aは、直流増幅器9で得られた、温度補正
前の信号であり、温度および張力による導電率変化分が
重畳された特性を示す。図3中の曲線bは、温度補正後
の、真の張力特性を示している。この測定例は、直径1
0mmの鋼材を約500℃昇温した状態で張力をかけて
得たものである。温度補正後のb特性に見られるよう
に、張力に良く対応した出力特性が得られている。しか
し低張力下の0.5kgf/mm2では、非線形な特性
を示している。これは被検材Mの組成ばらつき、および
信号処理回路系のもつノイズが重畳されS/N比が低下
しているものである。実用領域はこの範囲を越える張力
であるため、この現象は実用上問題は無い。
FIG. 3 shows the results of tension measurement by the device shown in FIG. The horizontal axis of FIG. 3 represents tension (stress). The vertical axis represents the output levels of the DC amplifier 9 and the difference amplifier 12,
Difference amplifier 12 when the tension (stress) is 5 kgf / mm 2
The relative value with the output level of 1 as a reference (100%) is shown.
A curve a in FIG. 3 is a signal obtained by the DC amplifier 9 before temperature correction, and shows a characteristic in which the amount of change in conductivity due to temperature and tension is superimposed. A curve b in FIG. 3 shows a true tension characteristic after temperature correction. This measurement example has a diameter of 1
It was obtained by applying tension to a 0 mm steel material while raising the temperature to about 500 ° C. As can be seen from the b characteristic after temperature correction, the output characteristic corresponding well to the tension is obtained. However, at a low tension of 0.5 kgf / mm 2 , it exhibits non-linear characteristics. This is because the composition variation of the material M to be inspected and the noise of the signal processing circuit system are superimposed and the S / N ratio is lowered. Since the practical area has a tension exceeding this range, this phenomenon has no practical problem.

【0019】[0019]

【発明の効果】以上の説明から明らかなように、本発明
は被検材を非接触で磁気飽和をさせ、透磁率μの影響を
皆無とし、導電率の温度依存性を補正し外部応力による
導電率変化成分のみを分離抽出するので、精度の良い張
力測定が可能になり、特に非接触で、悪環境下でも連続
測定できることからオンラインへ容易に適用することが
できる。また従来圧延プロセスでは、張力のオンライン
測定が困難であったため圧延制御モデルの構造が複雑に
なり、かつ処理時間がかかるなど、応答性,精度等、満
足する制御性能を得ることが困難であったが、本発明を
供することによりシステムの簡素化をはじめ、操業の安
定化,寸法精度の向上,品質向上等に対し高い効果が得
られ、生産性を向上させることができるなどその効果大
である。
As is apparent from the above description, according to the present invention, the material to be tested is magnetically saturated in a non-contact manner, the influence of the magnetic permeability μ is eliminated, the temperature dependence of the conductivity is corrected, and the external stress is applied. Since only the conductivity change component is separated and extracted, accurate tension measurement is possible, and in particular, it is non-contact and can be continuously measured even in a bad environment, so that it can be easily applied online. Further, in the conventional rolling process, it was difficult to obtain a satisfactory control performance such as responsiveness and accuracy, because the structure of the rolling control model was complicated and the processing time was long because it was difficult to measure the tension online. However, by providing the present invention, it is possible to obtain high effects such as system simplification, stabilization of operation, improvement of dimensional accuracy, and quality improvement, and it is possible to improve productivity. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例の概要を示すブロック図で
ある。
FIG. 1 is a block diagram showing an outline of an embodiment of the present invention.

【図2】 図1に示す検出部Sの断面図である。2 is a cross-sectional view of a detection unit S shown in FIG.

【図3】 図1に示す直流増幅器9の出力aと差分増幅
器12の出力bを示すグラフである。
3 is a graph showing an output a of the DC amplifier 9 and an output b of the difference amplifier 12 shown in FIG.

【図4】 鋼材の温度変化による抵抗率変化を示すグラ
フである。
FIG. 4 is a graph showing changes in resistivity of steel materials due to changes in temperature.

【図5】 鋼材の加工度による抵抗率の増加率を示すグ
ラフである。
FIG. 5 is a graph showing the rate of increase in resistivity depending on the workability of steel materials.

【図6】 図2に示す励磁コイル5のL/Dおよび鋼材
の通過位置ずれによる図1に示す差分増幅器12の出力
電圧の変動を示すグラフである。
6 is a graph showing variations in the output voltage of the differential amplifier 12 shown in FIG. 1 due to L / D of the exciting coil 5 shown in FIG. 2 and displacement of the passing position of the steel material.

【符号の説明】[Explanation of symbols]

S:検出部 M:被検材 1:発振器 2:定電流電力増幅
器 3:直流磁化電源 4:検出コイル 5:励磁コイル 6:磁化コイル 7:信号増幅器 8:両波整流器 9:直流増幅器 10:バイアス調整器 11:温度補正演算器 12:差分増幅器
S: Detection unit M: Test material 1: Oscillator 2: Constant current power amplifier 3: DC magnetizing power supply 4: Detection coil 5: Excitation coil 6: Magnetization coil 7: Signal amplifier 8: Double wave rectifier 9: DC amplifier 10: Bias adjuster 11: Temperature correction calculator 12: Difference amplifier

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】棒鋼あるいは線材の張力を電気コイルを用
いて電磁気的に測定する装置において、同芯軸上に巻か
れた励磁コイルと該励磁コイルの内側に巻かれた検出コ
イルと、前記励磁コイルの外側周に設けた被検材を磁化
するための磁化コイルからなる検出部と、検出コイルか
らの信号を直流に変換する全波整流部と被検材の測温値
を基に補正演算を行う演算部と前記直流信号と補正演算
信号との差分演算を行う差分演算部とから構成される事
を特徴とする鋼材の張力測定装置。
1. An apparatus for electromagnetically measuring the tension of a steel bar or a wire rod by using an electric coil, wherein an exciting coil wound on a concentric shaft, a detecting coil wound inside the exciting coil, and the exciting coil. A detection unit consisting of a magnetizing coil for magnetizing the test material provided on the outer circumference of the coil, a full-wave rectification unit that converts the signal from the detection coil to DC, and a correction calculation based on the temperature measurement value of the test material A tension measuring device for a steel product, comprising: a calculation unit for performing the above-mentioned calculation; and a difference calculation unit for calculating a difference between the DC signal and the correction calculation signal.
【請求項2】検出部の励磁コイルの長さLに対してその
直径Dの比L/Dが3以上、検出コイルの長さL’は、
励磁コイル長Lの1/50以下である事を特徴とする請
求項1記載の鋼材の張力測定装置。
2. The ratio L / D of the diameter D to the length L of the exciting coil of the detecting portion is 3 or more, and the length L'of the detecting coil is
The tension measuring device for steel according to claim 1, wherein the exciting coil length L is 1/50 or less.
JP4080728A 1992-04-02 1992-04-02 Measuring device for tension of steel material Withdrawn JPH05281063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4080728A JPH05281063A (en) 1992-04-02 1992-04-02 Measuring device for tension of steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4080728A JPH05281063A (en) 1992-04-02 1992-04-02 Measuring device for tension of steel material

Publications (1)

Publication Number Publication Date
JPH05281063A true JPH05281063A (en) 1993-10-29

Family

ID=13726436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4080728A Withdrawn JPH05281063A (en) 1992-04-02 1992-04-02 Measuring device for tension of steel material

Country Status (1)

Country Link
JP (1) JPH05281063A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100827713B1 (en) * 2007-01-12 2008-05-07 (주)에이펙스 솔루션 Method for calculating tension applied to cable tension sensor and deriving method thereof
CN102494829A (en) * 2011-11-24 2012-06-13 中国矿业大学 Longitudinal inductive tension detecting method for steel wire rope and longitudinal inductive tension detecting device for same
CN102494827A (en) * 2011-11-24 2012-06-13 中国矿业大学 Horizontal inductive tension detecting device for steel wire rope and horizontal inductive tension detecting method for same
KR20170019046A (en) * 2015-08-11 2017-02-21 한국과학기술원 Structure diagnosis system and method of operating structure diagnosis system
JP2017134013A (en) * 2016-01-29 2017-08-03 株式会社オンガエンジニアリング Method and apparatus for measuring non-contact stress by complex resonance method
WO2018101626A1 (en) * 2016-11-30 2018-06-07 한국과학기술원 Sensor for monitoring tendon tensile strength and tendon tensile strength diagnosis system using same
US10736621B2 (en) * 2015-02-27 2020-08-11 Mayo Foundation For Medical Education And Research System and method for monitoring of a mechanical force

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100827713B1 (en) * 2007-01-12 2008-05-07 (주)에이펙스 솔루션 Method for calculating tension applied to cable tension sensor and deriving method thereof
CN102494829A (en) * 2011-11-24 2012-06-13 中国矿业大学 Longitudinal inductive tension detecting method for steel wire rope and longitudinal inductive tension detecting device for same
CN102494827A (en) * 2011-11-24 2012-06-13 中国矿业大学 Horizontal inductive tension detecting device for steel wire rope and horizontal inductive tension detecting method for same
US10736621B2 (en) * 2015-02-27 2020-08-11 Mayo Foundation For Medical Education And Research System and method for monitoring of a mechanical force
KR20170019046A (en) * 2015-08-11 2017-02-21 한국과학기술원 Structure diagnosis system and method of operating structure diagnosis system
JP2017134013A (en) * 2016-01-29 2017-08-03 株式会社オンガエンジニアリング Method and apparatus for measuring non-contact stress by complex resonance method
WO2018101626A1 (en) * 2016-11-30 2018-06-07 한국과학기술원 Sensor for monitoring tendon tensile strength and tendon tensile strength diagnosis system using same
KR20180061869A (en) * 2016-11-30 2018-06-08 한국과학기술원 Sensor for monitoring tendon force, and system for analyzing tendon force using the same

Similar Documents

Publication Publication Date Title
US5089781A (en) Electromagnetic conductivity meter and a conductivity measuring method
US5689183A (en) Electromagnetic-induction type inspection device employing two induction coils connected in opposite phase relation
JP5156432B2 (en) Eddy current sample measurement method and eddy current sensor
US4079312A (en) Continuous testing method and apparatus for determining the magnetic characteristics of a strip of moving material, including flux inducing and pick-up device therefor
CN107576425A (en) A kind of device and method of non-contact measurement ferromagnetic material stress
JPH05281063A (en) Measuring device for tension of steel material
JPS6352345B2 (en)
JPH03255380A (en) Apparatus for measuring magnetic permeability
JP2000266727A (en) Carburized depth measuring method
JPH05203503A (en) Apparatus for measuring residual stress distribution of steel
JPH0242402B2 (en)
JPH07190991A (en) Transformation rate-measuring method and device
JP4029400B2 (en) Method for measuring carburization depth on the inner surface of steel pipe
Moses et al. AC Barkhausen noise in electrical steels: Influence of sensing technique on interpretation of measurements
JP4192333B2 (en) Method for measuring transformation layer thickness of steel
JP2522732Y2 (en) Iron loss value measuring device
Deyneka et al. Non-destructive testing of ferromagnetic materials using hand inductive sensor
JPH0784021A (en) Very weak magnetism measuring apparatus and non-destructive inspection method
JPH05280921A (en) Section measuring device of steel material
KR20100003808A (en) Reversible magnetic permeability measurement apparatus
KR100270114B1 (en) Method and apparatus for distortion of hot metal plate
JPH06213872A (en) Method for measuring crystal grain diameter of steel plate
JPH0694547A (en) Measuring device for internal stress of steel material
JPS62229038A (en) Stress measuring apparatus
JP2663767B2 (en) Transformation rate measuring method and apparatus

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608