JP2522732Y2 - Iron loss value measuring device - Google Patents

Iron loss value measuring device

Info

Publication number
JP2522732Y2
JP2522732Y2 JP12588690U JP12588690U JP2522732Y2 JP 2522732 Y2 JP2522732 Y2 JP 2522732Y2 JP 12588690 U JP12588690 U JP 12588690U JP 12588690 U JP12588690 U JP 12588690U JP 2522732 Y2 JP2522732 Y2 JP 2522732Y2
Authority
JP
Japan
Prior art keywords
iron loss
measured
temperature
measuring device
detection coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12588690U
Other languages
Japanese (ja)
Other versions
JPH0481081U (en
Inventor
臣知 矢追
道章 石原
勝憲 寺園
伸介 三田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP12588690U priority Critical patent/JP2522732Y2/en
Publication of JPH0481081U publication Critical patent/JPH0481081U/ja
Application granted granted Critical
Publication of JP2522732Y2 publication Critical patent/JP2522732Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、強磁性材料、特に磁気特性の良否が問題と
なる電磁鋼板の鉄損を製造中にオンライン測定する鉄損
値測定装置に関するものである。
[Detailed description of the invention] (Industrial application field) The present invention relates to an iron loss value measuring device for online measurement of iron loss of a ferromagnetic material, particularly an electromagnetic steel sheet where magnetic properties are a problem. It is.

(従来の技術) 鋼板等の強磁性材料、特に電磁鋼板においては、鉄損
等の磁気特性の良否が品質を左右するため、鉄損を測定
することは品質管理上、操業管理上、重要である。
(Prior art) In ferromagnetic materials such as steel sheets, particularly electromagnetic steel sheets, the quality of the magnetic properties such as iron loss determines the quality. Therefore, measuring iron loss is important for quality control and operation management. is there.

鉄損をオンラインで分析し得る装置としては、特開昭
49-6961号に係る装置が提案されている。この装置は第
6図に示す両端にフランジを有する角筒状の鉄心コア31
の外側に、第7図に示す如く同一軸心となるように磁束
密度用コイル33を巻装し、その外側の側面に内側から順
に空隙補償用コイル35と磁界用コイル34とを設け、更に
外側に鉄心コア31と同一軸心となるように励磁コイル32
が巻装された構成の検出部30を有している。
As an apparatus capable of analyzing iron loss online,
An apparatus according to 49-6961 has been proposed. This device has a rectangular cylindrical iron core 31 having flanges at both ends shown in FIG.
7, a coil 33 for magnetic flux density is wound around the same axis as shown in FIG. 7, and a coil 35 for air gap compensation and a coil 34 for magnetic field are provided on the outer side surface in this order from the inside. Excitation coil 32 on the outside so that it has the same axis as iron core 31
Is wound around the detecting unit 30.

しかしながら、この装置による場合は、励磁コイル32
が他のコイル33、34、35の存在により鋼板1より離れて
いるために、第7図に破線にて示すように励磁コイル32
から発生した磁力線の鋼板1表面に垂直方向成分が小さ
くなり、鋼板1に磁力線が侵入しにくい。このため検出
部30は第8図に示すように一定レベルの磁界の強さとな
る長さlを所要長さ得るために励磁コイル長さを長寸と
し、また励磁用電源の出力を増大させる必要があった。
However, with this device, the excitation coil 32
Is separated from the steel plate 1 by the presence of the other coils 33, 34, 35, so that the excitation coil 32 as shown by the broken line in FIG.
The component of the magnetic field lines generated in the direction perpendicular to the surface of the steel sheet 1 becomes small, and the magnetic field lines hardly enter the steel sheet 1. For this reason, as shown in FIG. 8, the detecting section 30 needs to increase the length of the exciting coil and to increase the output of the exciting power supply in order to obtain the required length l at which the strength of the magnetic field at a certain level is obtained. was there.

そして、鉄損は単位重量当たりの電力損失値であり、
それを測定する場合には寸法測定の必要上、厚み、幅等
の測定を要する。例えば幅一定の鋼板では厚みのみを測
定すればよいが、その測定のための厚み計36(第7図参
照)は、検出部30の機構上それと同一箇所に配設でき
ず、このため鋼板厚みと電力損失との同一箇所での測定
が困難であった。これを解決するためには鋼板の同一箇
所を測定するように鋼板厚みの測定と電力損失の測定と
のタイミングを同期させればよいが、その場合は装置が
複雑になるという難点があった。
And iron loss is the power loss value per unit weight,
In order to measure the thickness, it is necessary to measure the dimensions, and it is necessary to measure the thickness and width. For example, for a steel plate having a constant width, only the thickness needs to be measured. However, the thickness gauge 36 (see FIG. 7) for the measurement cannot be arranged at the same position as the detection unit 30 due to the mechanism of the detection unit 30. It is difficult to measure the power loss and the same point. To solve this, the timing of the measurement of the thickness of the steel sheet and the measurement of the power loss may be synchronized so as to measure the same portion of the steel sheet. However, in that case, there is a problem that the apparatus becomes complicated.

そこで、このような問題点を解決すべくなされたの
が、本願出願人が先に提案した実開昭61-206883号公報
に開示された鉄損測定装置である。これは、貫通型の励
磁コイルを2個用いてこれらによる夫々の磁界成分が1
つの閉磁路を構成するように離隔させて設け、その間に
検出コイルを配して更に、検出コイルの近傍に鋼板等の
断面積に関する寸法を測定する測定器を具備せしめるこ
とにより、励磁用電源の出力を低減させ得、また電力損
失と断面積に関する寸法との略同一箇所の測定が可能と
なって鉄損を正確に測定し得る鉄損測定装置を提供する
ことを目的とする。
In order to solve such a problem, an iron loss measuring device disclosed in Japanese Utility Model Application Laid-Open No. 61-206883 proposed by the present applicant has been proposed. This is because two through-type exciting coils are used and their respective magnetic field components are 1
By providing a measuring coil for measuring the cross-sectional area of a steel plate or the like in the vicinity of the detecting coil and providing a detecting coil between them so as to form two closed magnetic paths, It is an object of the present invention to provide an iron loss measuring device capable of reducing the output, measuring the power loss and the dimension related to the cross-sectional area at substantially the same place, and accurately measuring the iron loss.

そして、この鉄損測定装置は、長手方向に移動してい
る長尺の被測定材の移動域における移動方向の相異なる
位置に被測定材が貫通するように設けてある2個の励磁
コイルと、該励磁コイル間に配設され、被測定材の磁束
密度変化を検出する検出コイルと、該検出コイル近傍に
設けてあり、被測定材の断面積に関する寸法を非磁気的
に測定する測定器とを具備することを特徴とする。
The iron loss measuring device includes two exciting coils provided so that the material to be measured penetrates at different positions in the moving direction of the long material to be measured moving in the longitudinal direction. A detection coil disposed between the excitation coils to detect a change in magnetic flux density of the material to be measured, and a measuring device provided near the detection coil and non-magnetically measuring a dimension related to a cross-sectional area of the material to be measured. And characterized in that:

(考案が解決しようとする課題) 上述した電磁鋼板は出荷時、エプスタイン試験により
鉄損を表示することが義務づけられており、このエプス
タイン試験は常温(約23℃)で実施するが、操業時に鉄
損を測定する場合、一般に電磁鋼板の温度は常温ではな
い。ところで、鉄損は、第4図に示すように、鋼板の温
度及びシリコン含有量に依存し、シリコン含有量が小さ
い程影響を受けやすい(A:シリコン含有量大、B:同中、
C:同小)。
(Problems to be solved by the invention) The above-mentioned electrical steel sheets are required to indicate the iron loss by an Epstein test at the time of shipment, and this Epstein test is performed at room temperature (about 23 ° C). When measuring the loss, the temperature of the magnetic steel sheet is generally not normal temperature. By the way, as shown in FIG. 4, the iron loss depends on the temperature and the silicon content of the steel sheet, and the smaller the silicon content is, the more easily the iron loss is affected (A: large silicon content, B: middle,
C: same small).

したがって、同一の被測定材に対して、操業時に測定
した鉄損と、エプスタイン試験による鉄損とが異なると
いう問題がある。また、エプスタイン試験は、製品をカ
ットして実施するため、全長にわたって測定できず、か
つリアルタイムで測定できない等の理由で操業へ反映で
きないという問題点があった。
Therefore, there is a problem that the iron loss measured during operation and the iron loss obtained by the Epstein test are different for the same material to be measured. In addition, since the Epstein test is performed by cutting the product, it cannot be measured over the entire length and cannot be reflected in operation because it cannot be measured in real time.

本考案は上記問題点に鑑み、操業時に温度に関してエ
プスタイン試験と同じ設定になるように、鉄損測定値を
補正することにより、被測定材出荷時の鉄損(すなほち
エプスタイン試験時の鉄損に相当する)を温度の影響を
受けることなく精度良く、かつ操業時においてリアルタ
イムで連続的に測定できる鉄損測定装置を提供すること
を目的としてなされたものである。
In view of the above problems, the present invention corrects the iron loss measurement value so that the temperature during operation is the same as that of the Epstein test. It is an object of the present invention to provide an iron loss measuring device that can accurately measure (equivalent to loss) accurately and without being affected by temperature, and in real time during operation.

(課題を解決するための手段) 上記問題点を解決するために本考案の鉄損値測定装置
は、長手方向に移動している長尺の被測定材の移動域に
おける移動方向の異なる位置に被測定材が貫通するよう
に設けてある2個の励磁コイルと、該励磁コイル間に配
設されて被測定材の磁束密度変化を検出する検出コイル
と、該検出コイル近傍に設けてあって被測定材の断面積
に関する寸法を非磁気的に測定する測定器と、上記検出
コイル近傍に設けてあって被測定材の温度を測定する材
温計と、該材温計による測定温度及び被測定材のシリコ
ン含有量に応じた温度補正を行って鉄損を算出する鉄損
算出回路とを具備させているのである。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the iron loss value measuring device of the present invention is provided at different positions in the moving area of a long measuring material moving in the longitudinal direction. Two excitation coils provided so as to penetrate the material to be measured, a detection coil disposed between the excitation coils to detect a change in magnetic flux density of the material to be measured, and provided near the detection coil A measuring device for non-magnetically measuring a dimension related to a cross-sectional area of a material to be measured; a thermometer provided near the detection coil for measuring the temperature of the material to be measured; An iron loss calculating circuit for calculating an iron loss by performing temperature correction according to the silicon content of the measurement material is provided.

(作用) 本考案は上記した構成によって、検出コイルによる被
測定材の磁束密度と、測定器による被測定材の板厚及び
その幅と、材温計による温度とその温度時におけるシリ
コン含有量に応じた補正値とによって、当該被測定材の
鉄損値を、シリコン含有量及び温度に依存して精度良く
測定することとなる。
(Operation) With the above-described configuration, the present invention provides a magnetic flux density of a material to be measured by a detection coil, a thickness and a width of the material to be measured by a measuring device, a temperature by a thermometer, and a silicon content at the temperature. With the corresponding correction value, the iron loss value of the material to be measured is accurately measured depending on the silicon content and the temperature.

(実施例) 以下本考案の実施例を示す図面に基づき詳細に説明す
る。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本考案の実施例を示すブロック図であり、同
図において、1は製造ライン(図示せず)上をその長手
方向(白抜矢符方向)に移送されている電磁鋼板であ
る。
FIG. 1 is a block diagram showing an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes an electromagnetic steel sheet which is transported on a production line (not shown) in the longitudinal direction (the direction of the white arrow). .

この電磁鋼板(以下単に「鋼板」という)1の移送域
の移送方向に適当な長さ離隔された2位置には、鋼板1
の幅方向断面寸法よりも内径が大きい励磁コイル2、3
が、鋼板1が貫通するように設けられており、その励磁
コイル2、3夫々の両端はJISにて鉄損測定の場合の周
波数として規定された50Hz又は60Hzの交流電源5に直列
に接続されている。なお励磁コイル2、3は並列に接続
してもよい。
At two positions separated by an appropriate length in the transfer direction of the transfer area of the magnetic steel sheet (hereinafter simply referred to as “steel sheet”) 1, the steel sheet 1
Excitation coils 2 and 3 having an inner diameter larger than the cross-sectional dimension in the width direction of
However, both ends of each of the exciting coils 2 and 3 are connected in series to a 50 Hz or 60 Hz AC power supply 5 specified in JIS as a frequency for iron loss measurement. ing. The exciting coils 2 and 3 may be connected in parallel.

そして、上記励磁コイル2、3間の離隔距離は、第2
図に示すように励磁コイル2、3夫々からの磁力線Hが
1つのループとなった閉磁路をなすように定める。これ
により鋼板1は励磁コイル2、3を通過する際、励磁コ
イル2、3により長手方向に交流磁化され、第3図に示
すように励磁コイル2、3の間には一定の磁束密度が所
要長以上ある安定磁束密度域Eが形成される。
The distance between the exciting coils 2 and 3 is the second distance.
As shown in the drawing, the magnetic field lines H from the excitation coils 2 and 3 are determined so as to form a closed magnetic circuit as one loop. As a result, when the steel sheet 1 passes through the exciting coils 2 and 3, it is AC-magnetized in the longitudinal direction by the exciting coils 2 and 3, and a constant magnetic flux density is required between the exciting coils 2 and 3, as shown in FIG. A long and longer stable magnetic flux density region E is formed.

また、励磁コイル2、3間の例えば中央位置には、鋼
板1を巻回して検出コイル4が設けられており、この検
出コイル4は交流電源5の周波数に基づいた50Hz又は60
Hzの基本波と、鋼板1の鉄損等による波形歪にて生じた
150Hz程度の高調波(n×基本波、n=2、3、4…)
と、鋼板磁化過程における鋼板1内磁壁の不連続移動現
象、つまり公知のバルクハウゼン効果にて生ずる高周波
(数KHz〜数100KHz)のバルクハウゼン雑音との3成分
が混在した信号を検出する。なお、検出コイル4には図
示しない磁路長補正コイルが設けられており、磁路長補
正コイルは例えば磁場分布が鋼板1の移送速度や材質等
により変化した場合、予め用意した磁路長補正コイルの
出力−実効磁路長間の険量線により実効磁路長を決定で
きるようになっている。
Further, a detection coil 4 is provided by winding the steel plate 1 at, for example, a center position between the excitation coils 2 and 3, and the detection coil 4 is 50 Hz or 60 Hz based on the frequency of the AC power supply 5.
Hz fundamental wave and waveform distortion caused by iron loss etc. of steel sheet 1.
Harmonics of about 150Hz (nx fundamental, n = 2, 3, 4, ...)
And a discontinuous movement phenomenon of the domain wall in the steel sheet 1 in the steel sheet magnetization process, that is, a signal in which three components of a high frequency (several KHz to several hundred KHz) Barkhausen noise generated by the known Barkhausen effect are mixed. The detection coil 4 is provided with a magnetic path length correction coil (not shown). The magnetic path length correction coil has a magnetic path length correction coil prepared in advance when the magnetic field distribution changes due to the transfer speed or the material of the steel sheet 1, for example. The effective magnetic path length can be determined by a steep line between the output of the coil and the effective magnetic path length.

そして、上記検出コイル4の検出信号は、減衰器6及
び電流制御回路7へ与えられる。電流制御回路7はその
検出された入力信号に基づいて交流電源5の出力電圧を
調節し、励磁コイル2、3から発生する磁界の強度を調
整する。一方、減衰器6は出力側にローパスフィルタ8
が接続されており、検出コイル4からの入力信号レベル
がローパスフィルタ8の入力許容最大電圧を超えないよ
うに減衰率が定められている。
The detection signal of the detection coil 4 is supplied to the attenuator 6 and the current control circuit 7. The current control circuit 7 adjusts the output voltage of the AC power supply 5 based on the detected input signal, and adjusts the strength of the magnetic field generated from the exciting coils 2 and 3. On the other hand, the attenuator 6 has a low-pass filter 8 on the output side.
Are connected, and the attenuation rate is determined so that the input signal level from the detection coil 4 does not exceed the maximum input voltage of the low-pass filter 8.

ローパスフィルタ8は第3高周波を除くように例え
ば、100Hzを遮断周波数としている。ローパスフィルタ
8の出力信号は増幅器9にて増幅され、電力計10の電圧
端子へ与えられる。電力計10には上記交流電源5から励
磁電流が給電されるようになっている。従って、上記検
出コイル4、ローパスフィルタ8、電力計10及び交流電
源5はエプスタイン試験装置と同様の構成となってお
り、電力計10は上記励磁電流信号と増幅器9からの電圧
信号とから電力損失を検出し、検出値を鉄損算出回路11
へ与える。
The low-pass filter 8 has a cutoff frequency of, for example, 100 Hz so as to remove the third high frequency. The output signal of the low-pass filter 8 is amplified by the amplifier 9 and applied to the voltage terminal of the power meter 10. An exciting current is supplied from the AC power supply 5 to the wattmeter 10. Therefore, the detection coil 4, the low-pass filter 8, the wattmeter 10 and the AC power supply 5 have the same configuration as the Epstein test apparatus. Circuit and calculates the detected value as an iron loss calculation circuit 11.
Give to.

上記励磁コイル2と検出コイル4との間の検出コイル
4に近い位置及び励磁コイル3と検出コイル4との間の
検出コイルに近い位置には、夫々励磁コイル2、3から
の磁力線の影響を受けずに、また検出コイル4の検出信
号に影響を及ぼさずに検出が可能な例えばγ線を用いた
厚み計20及び幅計21が鋼板1に臨ませて設けられてお
り、更に励磁コイル3の近傍には鋼板1の温度を測定す
る材温計22を設けている。そして、厚み計20、幅計21及
び材温計22からの夫々の検出信号は、上記電力計10の出
力信号と共に、鉄損算出回路11に入力されるようになっ
ており、この鉄損算出回路11によって鉄損を演算する。
At positions near the detection coil 4 between the excitation coil 2 and the detection coil 4 and at positions near the detection coil between the excitation coil 3 and the detection coil 4, the influence of the lines of magnetic force from the excitation coils 2 and 3 respectively. For example, a thickness gauge 20 and a width gauge 21 using γ-ray, which can be detected without being affected by the detection signal of the detection coil 4 and without affecting the detection signal of the detection coil 4, are provided facing the steel plate 1. Is provided with a thermometer 22 for measuring the temperature of the steel sheet 1. The respective detection signals from the thickness meter 20, the width meter 21, and the thermometer 22 are input to the iron loss calculation circuit 11 together with the output signal of the power meter 10, and the iron loss calculation is performed. The circuit 11 calculates an iron loss.

まず、鉄損算出回路11は、単位重量(1kg)当たりの
鉄損Wを算出すべく、電力損失の検出区間(実効磁路
長)に対応する鋼板1長さl部分の質量に対する電力損
失Pを求める下記式が設定されており、 W=P/ρ・t・w・l(W/kg) … 但し ρ :鋼板の密度 t :鋼板の厚み w :鋼板の幅 したがって、上記厚み計20、幅計21からのt、w、電
力計10からのPの入力によって、上記式に基づき鉄損
Wを算出する。
First, the iron loss calculating circuit 11 calculates the iron loss W per unit weight (1 kg) by calculating the power loss P with respect to the mass of the length 1 of the steel sheet 1 corresponding to the power loss detection section (effective magnetic path length). The following formula is set to obtain: W = P / ρ · t · w · l (W / kg) where ρ: density of steel sheet t: thickness of steel sheet w: width of steel sheet Based on t and w from the width meter 21 and P from the wattmeter 10, the iron loss W is calculated based on the above equation.

次に、当該鉄損算出回路11は、上記式に基づき算出
した鉄損Wについて、上記材温計22により測定した鋼板
1の検出温度に応じた温度補正を行なう。すなわち、温
度補正した鉄損をW′とし、検出温度をT(℃)とすれ
ば、 W′=W/{1−α(T−23)} … 但し α:温度の鉄損に与える影響係数 となり、この式により求められた鉄損W′(w/kg)を
記録器16に記録させるものである。ここで、係数αは、
上記第4図に基づいて説明したように、シリコンの含有
量に応じて異なるが、この第4図では例えばA特性は−
0.04%/℃(シリコン含有量大)、B特性は−0.07%/
℃(シリコン含有量中)、C特性は−0.13%/℃(シリ
コン含有量小)であり、鋼板1のシリコン含有量に応じ
て予め設定されているものである。
Next, the iron loss calculation circuit 11 performs a temperature correction on the iron loss W calculated based on the above equation according to the detected temperature of the steel sheet 1 measured by the thermometer 22. That is, assuming that the iron loss whose temperature has been corrected is W 'and the detected temperature is T (° C.), W' = W / {1−α (T−23)} where α is the influence coefficient of the temperature on the iron loss. And the recorder 16 records the iron loss W '(w / kg) obtained by this equation. Here, the coefficient α is
As described with reference to FIG. 4, although it differs depending on the silicon content, for example, in FIG.
0.04% / ° C (large silicon content), B characteristic is -0.07% /
° C (in the silicon content), the C characteristic is -0.13% / ° C (small silicon content), and is preset according to the silicon content of the steel sheet 1.

以上のように、鋼板1を製造ライン上を移送しながら
(すなわちオンラインで)、その鉄損値をリアルタイム
で連続的に測定し、その値を記録器16に記録することが
できるものである。しかも、その鉄損値は鋼板1の温度
に応じ、かつシリコン含有量に応じた温度補正を行って
精度良く測定されて記録されているため、この記録され
た鉄損値は出荷時のエプスタイン試験による鉄損値とし
ても利用できる。そのことを第5図に示す相関図により
説明すると、同図は温度補正した鉄損測定値をエプスタ
イン試験値と比較した結果を示し、各測定位置の鉄損測
定値がエプスタイン値と近似しており、精度良く測定さ
れたことを示している。
As described above, the iron loss value can be continuously measured in real time while the steel sheet 1 is transferred on the production line (that is, online), and the value can be recorded in the recorder 16. In addition, since the iron loss value is accurately measured and recorded according to the temperature of the steel sheet 1 and the temperature correction according to the silicon content, the recorded iron loss value is determined by an Epstein test at the time of shipment. Can also be used as an iron loss value. This will be described with reference to a correlation diagram shown in FIG. 5. FIG. 5 shows a result obtained by comparing a temperature-corrected iron loss measurement value with an Epstein test value, and the iron loss measurement value at each measurement position approximates the Epstein value. This indicates that the measurement was performed with high accuracy.

(考案の効果) 以上説明したように本考案の鉄損測定装置は、検出コ
イルによる被測定材の磁束密度と、測定器による被測定
材の板厚及びその幅と、材温計による温度とその温度時
におけるシリコン含有量に応じた補正値とによって、当
該被測定材の鉄損値を測定するものであり、製造ライン
におけるオンラインでシリコン含有量及び温度に依存し
て精度良く測定することができる。従って、電磁鋼板の
出荷時に必要な鉄損値を製造工程において精度良く測定
できるばかりでなく、その測定結果をリアルタイムで製
造条件に反映できるものであり、製品の歩留り率を向上
させることができ、非常に有効な鉄損値測定装置であ
る。
(Effects of the Invention) As described above, the iron loss measuring device of the present invention uses the magnetic flux density of the material to be measured by the detection coil, the thickness and width of the material to be measured by the measuring device, and the temperature by the material thermometer. The iron loss value of the material to be measured is measured by a correction value according to the silicon content at that temperature, and it can be accurately measured online in a production line depending on the silicon content and the temperature. it can. Therefore, not only can the iron loss value required at the time of shipment of the magnetic steel sheet be accurately measured in the manufacturing process, but also the measurement result can be reflected in the manufacturing conditions in real time, and the product yield can be improved, It is a very effective iron loss measurement device.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本考案鉄損値測定装置の実施例を示すブロック
図、第2図は同装置の励磁磁力線の経路説明図、第3図
は同励磁コイルによる鋼板の磁化状態を示す説明図、第
4図は温度による鉄損値への影響を示す特性図、第5図
は温度補正の効果を示す関係図、第6図は従来例におけ
る検出部の鉄心コアの斜視図、第7図は同コイルを巻装
した状態の断面図、第8図は同磁界状態の特性図であ
る。 1は電磁鋼板、2、3は励磁コイル、4は検出コイル、
11は鉄損算出回路、20は厚み計、21は幅計、22は材温
計。
FIG. 1 is a block diagram showing an embodiment of the iron loss value measuring device of the present invention, FIG. 2 is an explanatory diagram of a path of exciting magnetic force lines of the device, FIG. 3 is an explanatory diagram showing a magnetization state of a steel sheet by the exciting coil, FIG. 4 is a characteristic diagram showing the effect of temperature on the iron loss value, FIG. 5 is a relationship diagram showing the effect of temperature correction, FIG. 6 is a perspective view of an iron core of a detection unit in a conventional example, and FIG. FIG. 8 is a cross-sectional view showing a state in which the coil is wound, and FIG. 8 is a characteristic diagram in the magnetic field state. 1 is an electromagnetic steel plate, 2 and 3 are excitation coils, 4 is a detection coil,
11 is an iron loss calculation circuit, 20 is a thickness gauge, 21 is a width gauge, and 22 is a thermometer.

フロントページの続き (72)考案者 三田 伸介 和歌山県和歌山市湊1850番地 住友金属 工業株式会社和歌山製鉄所内 (56)参考文献 特開 昭49−6961(JP,A) 実開 昭61−206883(JP,U)Continuation of the front page (72) Inventor Shinsuke Mita 1850 Minato, Wakayama City, Wakayama Prefecture Sumitomo Metal Industries, Ltd. Wakayama Steel Works (56) References JP-A-49-6696 (JP, A) JP-A-61-206883 (JP) , U)

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】長手方向に移動している長尺の被測定材の
移動域における移動方向の異なる位置に被測定材が貫通
するように設けてある2個の励磁コイルと、該励磁コイ
ル間に配設されて被測定材の磁束密度変化を検出する検
出コイルと、該検出コイル近傍に設けてあって被測定材
の断面積に関する寸法を非磁気的に測定する測定器と、
上記検出コイル近傍に設けてあって被測定材の温度を測
定する材温計と、該材温計による測定温度及び被測定材
のシリコン含有量に応じた温度補正を行って鉄損を算出
する鉄損算出回路とを具備することを特徴とする鉄損値
測定装置。
1. Two exciting coils provided at different positions in a moving direction of a long material to be measured moving in a longitudinal direction so as to penetrate the material, and two exciting coils provided between the exciting coils. A detection coil disposed to detect a change in magnetic flux density of the material to be measured, and a measuring device that is provided near the detection coil and non-magnetically measures a dimension related to a cross-sectional area of the material to be measured,
A thermometer which is provided near the detection coil and measures the temperature of the material to be measured, and calculates iron loss by performing temperature correction according to the temperature measured by the thermometer and the silicon content of the material to be measured. An iron loss value measuring device comprising: an iron loss calculating circuit.
JP12588690U 1990-11-27 1990-11-27 Iron loss value measuring device Expired - Lifetime JP2522732Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12588690U JP2522732Y2 (en) 1990-11-27 1990-11-27 Iron loss value measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12588690U JP2522732Y2 (en) 1990-11-27 1990-11-27 Iron loss value measuring device

Publications (2)

Publication Number Publication Date
JPH0481081U JPH0481081U (en) 1992-07-15
JP2522732Y2 true JP2522732Y2 (en) 1997-01-16

Family

ID=31873466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12588690U Expired - Lifetime JP2522732Y2 (en) 1990-11-27 1990-11-27 Iron loss value measuring device

Country Status (1)

Country Link
JP (1) JP2522732Y2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101025236B1 (en) 2009-09-09 2011-03-29 서재철 Apparatus for inserting specimen
KR101051019B1 (en) 2009-09-09 2011-07-21 서재철 Specimen input device for iron loss tester having stable structure of specimen
KR101095465B1 (en) 2009-09-09 2011-12-16 서재철 Apparatus for inserting specimen having simplified rising structure into iron loss tester

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101025236B1 (en) 2009-09-09 2011-03-29 서재철 Apparatus for inserting specimen
KR101051019B1 (en) 2009-09-09 2011-07-21 서재철 Specimen input device for iron loss tester having stable structure of specimen
KR101095465B1 (en) 2009-09-09 2011-12-16 서재철 Apparatus for inserting specimen having simplified rising structure into iron loss tester

Also Published As

Publication number Publication date
JPH0481081U (en) 1992-07-15

Similar Documents

Publication Publication Date Title
US5089781A (en) Electromagnetic conductivity meter and a conductivity measuring method
JP2829521B2 (en) Current detector
US4567435A (en) Method and apparatus for continuously measuring distance utilizing eddy current and having temperature difference influence elimination
JP4512079B2 (en) Apparatus and method for measuring magnetic properties and mechanical strength of thin steel sheet
JP2009074813A (en) Method and device for detecting magnetic characteristic fluctuation portion of magnetic material
WO1991013347A1 (en) Magnetic flaw detector for thin steel belt
JPS6352345B2 (en)
JP2522732Y2 (en) Iron loss value measuring device
JPS61277051A (en) Apparatus for measuring magnetic characteristics
JP4192708B2 (en) Magnetic sensor
JPH05281063A (en) Measuring device for tension of steel material
JPH0517580U (en) Iron loss measuring device
JPH04102462U (en) Iron loss value measuring device
JPH07190991A (en) Transformation rate-measuring method and device
JPH0242402B2 (en)
JPH08193980A (en) Method and device for magnetic flaw detection
JPH08211085A (en) Flow velocity measuring device
JP4005765B2 (en) Magnetic measurement method
JPS6011493Y2 (en) Electromagnetic induction detection device
JP3530472B2 (en) Bar detection system
JPS60247155A (en) Method and apparatus for measuring particle size of crystal
JPH02311776A (en) Apparatus and method for measuring magnetic characteristics of steel material
JPH03135780A (en) Method and device for magnetism measurement
JP2591188B2 (en) Electromagnetic characteristic detection method and device
JP2663767B2 (en) Transformation rate measuring method and apparatus