JPH0517580U - Iron loss measuring device - Google Patents
Iron loss measuring deviceInfo
- Publication number
- JPH0517580U JPH0517580U JP7423591U JP7423591U JPH0517580U JP H0517580 U JPH0517580 U JP H0517580U JP 7423591 U JP7423591 U JP 7423591U JP 7423591 U JP7423591 U JP 7423591U JP H0517580 U JPH0517580 U JP H0517580U
- Authority
- JP
- Japan
- Prior art keywords
- iron loss
- measured
- coil
- measuring device
- longitudinal direction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Magnetic Variables (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
(57)【要約】
【目的】 製造ラインにおけるオンラインで被測定材の
材質に依存して精度良く測定可能とする。
【構成】 検出コイル4による被測定材1の磁束密度
と、厚み計20及び幅計21による被測定材の板厚及び
幅と、被測定材の材質に応じた長手方向と幅方向の鉄損
値の差による鉄損比補正値とを鉄損算出回路11に入力
して鉄損を算出する。
(57) [Summary] [Purpose] To enable accurate measurement online on the manufacturing line depending on the material of the material to be measured. [Structure] The magnetic flux density of the material to be measured 1 by the detection coil 4, the plate thickness and width of the material to be measured by the thickness meter 20 and the width meter 21, and the iron loss in the longitudinal direction and the width direction according to the material of the material to be measured. The iron loss ratio correction value based on the difference between the values is input to the iron loss calculation circuit 11 to calculate the iron loss.
Description
【0001】[0001]
本考案は、強磁性材料、特に磁気特性の良否が問題となる電磁鋼板の鉄損を製 造中にオンライン測定する鉄損測定装置に関するものである。 The present invention relates to an iron loss measuring device for online measuring the iron loss of a ferromagnetic material, especially an electromagnetic steel sheet in which the quality of magnetic properties is a problem.
【0002】[0002]
鋼板等の強磁性材料、特に電磁鋼板においては、鉄損等の磁気特性の良否が品 質を左右するため、鉄損を測定することは品質管理上、操業管理上、重要である 。 Since the quality of magnetic properties such as iron loss affects the quality of ferromagnetic materials such as steel sheets, especially electromagnetic steel sheets, measuring iron loss is important for quality control and operation control.
【0003】 鉄損をオンラインで分析し得る装置としては、特開昭49−6961号に係る 装置が提案されている。この装置は図6に示す両端にフランジを有する角筒状の 鉄心コア31の外側に、図7に示す如く同一軸心となるように磁束密度用コイル 33を巻装し、その外側の側面に内側から順に空隙補償用コイル35と磁界用コ イル34とを設け、更に外側に鉄心コア31と同一軸心となるように励磁コイル 32が巻装された構成の検出部30を有している。An apparatus according to Japanese Patent Laid-Open No. 49-6961 has been proposed as an apparatus capable of analyzing iron loss online. In this device, a magnetic flux density coil 33 is wound on the outer side of an iron core core 31 of a rectangular tube shape having flanges at both ends as shown in FIG. 6 so as to have the same axis as shown in FIG. An air gap compensating coil 35 and a magnetic field coil 34 are provided in this order from the inner side, and further, an exciting coil 32 is wound on the outer side so as to be coaxial with the iron core 31. ..
【0004】 しかしながら、この装置による場合は、励磁コイル32が他のコイル33、3 4、35の存在により鋼板1より離れているために、図7に破線にて示すように 励磁コイル32から発生した磁力線の鋼板1表面に垂直方向成分が小さくなり、 鋼板1に磁力線が侵入しにくい。このため検出部30は図8に示すように一定レ ベルの磁界の強さとなる長さL’を所要長さ得るために励磁コイル長さを長寸と し、また励磁用電源の出力を増大させる必要があった。However, in the case of this apparatus, since the exciting coil 32 is separated from the steel plate 1 by the presence of the other coils 33, 34, 35, the exciting coil 32 is generated from the exciting coil 32 as shown by the broken line in FIG. The component of the generated magnetic force lines in the direction perpendicular to the surface of the steel plate 1 becomes small, and the magnetic force lines hardly penetrate into the steel plate 1. Therefore, as shown in FIG. 8, the detection unit 30 lengthens the exciting coil length in order to obtain the required length L ′ which is a constant level magnetic field strength, and increases the output of the exciting power source. Had to let.
【0005】 そして、鉄損は単位重量当たりの電力損失値であり、それを測定する場合には 寸法測定の必要上、厚み、幅等の測定を要する。例えば幅一定の鋼板では厚みの みを測定すればよいが、その測定のための厚み計36(図7参照)は、検出部3 0の機構上それと同一箇所に配設できず、このため鋼板厚みと電力損失との同一 箇所での測定が困難であった。これを解決するためには鋼板の同一箇所を測定す るように鋼板厚みの測定と電力損失の測定とのタイミングを同期させればよいが 、その場合は装置が複雑になるという難点があった。Iron loss is a power loss value per unit weight, and when measuring it, it is necessary to measure the thickness, width, etc. in order to measure the dimensions. For example, for a steel plate with a constant width, only the thickness needs to be measured, but the thickness gauge 36 (see FIG. 7) for the measurement cannot be arranged at the same position as that of the detection unit 30 because of the mechanism, and therefore the steel plate It was difficult to measure the thickness and power loss at the same location. In order to solve this, it is sufficient to synchronize the timing of measuring the thickness of the steel sheet and the measurement of the power loss so that the same location of the steel sheet is measured, but in that case the device becomes complicated. ..
【0006】 そこで、このような問題点を解決すべくなされたのが、本願出願人が先に提案 した実開昭61−206883号公報に開示された鉄損測定装置である。これは 、貫通型の励磁コイルを2個用いてこれらによる夫々の磁界成分が1つの閉磁路 を構成するように離隔させて設け、その間に検出コイルを配して更に、検出コイ ルの近傍に鋼板等の断面積に関する寸法を測定する測定器を具備せしめることに より、励磁用電源の出力を低減させ得、また電力損失と断面積に関する寸法との 略同一箇所の測定が可能となって鉄損を正確に測定し得る鉄損測定装置を提供す ることを目的とする。Then, what was made in order to solve such a problem is the iron loss measuring device disclosed in Japanese Utility Model Laid-Open No. 61-206883 previously proposed by the applicant of the present application. This is provided by using two through-type exciting coils and separating them so that the respective magnetic field components due to them form one closed magnetic circuit, and by placing a detecting coil between them and further in the vicinity of the detecting coil. Equipped with a measuring instrument for measuring dimensions related to the cross-sectional area of steel plates, etc., the output of the excitation power supply can be reduced, and it is possible to measure the power loss and the dimensions related to the cross-sectional area at approximately the same location. An object of the present invention is to provide an iron loss measuring device capable of accurately measuring loss.
【0007】 そして、この鉄損測定装置は、長手方向に移動している長尺の被測定材の移動 域における移動方向の相異なる位置に被測定材が貫通するように設けてある2個 の励磁コイルと、該励磁コイル間に配設され、被測定材の磁束密度変化を検出す る検出コイルと、該検出コイル近傍に設けてあり、被測定材の断面積に関する寸 法を非磁気的に測定する測定器とを具備することを特徴とする。 上述した電磁鋼板は出荷時、エプスタイン試験により鉄損を表示することが義 務づけられている。このエプスタイン試験は、常温(23℃)で無張力の状態で 実施されるのに対し、操業時に鉄損を測定する場合は、電磁鋼板が高温かつ張力 が加わっている状態で実施されることになる。この温度と張力の影響のために、 同一の電磁鋼板であっても、操業時に測定した鉄損値とエプスタイン試験による 鉄損とが異なるという問題がある。これらの問題を解決するために、本願出願人 は、温度補正による鉄損測定、及び張力補正による鉄損測定について、先に提案 した(実願平2−125886号及び実願平3−7305号)。The iron loss measuring device is provided with two iron loss measuring devices, which are provided so that the material to be measured penetrates at different positions in the moving direction in the moving region of the long material to be measured moving in the longitudinal direction. An exciting coil, a detecting coil that is arranged between the exciting coils and detects a change in the magnetic flux density of the material to be measured, and a detection coil that is provided in the vicinity of the detecting coil. And a measuring device for measuring. At the time of shipment of the above-mentioned magnetic steel sheet, it is required to display the iron loss by an Epstein test. This Epstein test is carried out at normal temperature (23 ° C) in a state of no tension, whereas when measuring iron loss during operation, it is carried out at a high temperature and under tension in the electrical steel sheet. Become. Due to this effect of temperature and tension, there is a problem that the iron loss value measured during operation and the iron loss measured by the Epstein test are different even for the same magnetic steel sheet. In order to solve these problems, the applicant of the present application has previously proposed an iron loss measurement by temperature correction and an iron loss measurement by tension correction (Practical application No. 2-125886 and No. 3-7305). ).
【0008】[0008]
ところで、電磁鋼板の出荷時におけるエプスタイン試験におけるサンプル材は 、鋼板の長手方向と幅方向に対して、同数ずつ長方形に切り取るが、これは長手 方向と幅方向の鉄損値が異なるためである。しかしながら、従来のラインにおけ る鉄損測定装置では、鋼板の長手方向の鉄損値しか測定できず、幅方向の鉄損値 との差(鉄損差)を無視しているのが現状である。 By the way, the sample material in the Epstein test at the time of shipping the electromagnetic steel sheet is cut into the same number of rectangles in the longitudinal direction and the width direction of the steel sheet, because the iron loss values in the longitudinal direction and the width direction are different. However, the iron loss measuring device in the conventional line can measure only the iron loss value in the longitudinal direction of the steel sheet and ignores the difference from the iron loss value in the width direction (iron loss difference) under the present circumstances. is there.
【0009】 従って、同一の被測定材の鋼板について、操業時のラインにおける鉄損測定装 置による鉄損値は、エプスタイン試験による鉄損値と異なるという問題があった 。また、エプスタイン試験は、製品をカットして実施するため、全長にわたって 測定できず、かつリアルタイムで測定できない等の理由で操業へ反映できないと いう問題点もあった。[0009] Therefore, there has been a problem that the iron loss value measured by the iron loss measuring device in the line during operation is different from the iron loss value measured by the Epstein test for the same steel sheet to be measured. In addition, since the Epstein test is performed after cutting the product, there is a problem that it cannot be reflected in the operation because it cannot be measured over the entire length and cannot be measured in real time.
【0010】 ここで、上述した鋼板の長手方向と幅方向の鉄損値について着目すると、長手 方向の鉄損値に対して幅方向の鉄損値が大きな値を示しており、かつ材質によっ て異なるものであり、3種類の材質A、B、Cのそれぞれについて表1に具体的 な数値を示す。Here, focusing on the iron loss values in the longitudinal direction and the width direction of the above-mentioned steel sheet, the iron loss value in the width direction is larger than the iron loss value in the longitudinal direction, and the iron loss value in the width direction is different depending on the material. Table 3 shows specific numerical values for each of the three types of materials A, B, and C.
【0011】[0011]
【表1】 [Table 1]
【0012】 このように、長手方向と幅方向の鉄損値に差があり、エプスタイン試験値では その両者が反映されるにもかかわらず、操業時のラインにおける鉄損値測定は長 手方向のみの測定である。そこで、長手方向と幅方向の鉄損値の差による鉄損比 と、エプスタイン試験値の関係を示したのが図4であり、横軸にエプスタイン試 験値を、縦軸に鉄損比をとってその関係を示している。この図4の関係はエプス タイン試験値と鉄損測定装置の測定値が一致しないことを示す。As described above, although there is a difference between the iron loss values in the longitudinal direction and the width direction, and both of them are reflected in the Epstein test value, the iron loss value in the line during operation is measured only in the longitudinal direction. Is the measurement of. Therefore, Fig. 4 shows the relationship between the iron loss ratio due to the difference between the iron loss values in the longitudinal direction and the width direction and the Epstein test value. The horizontal axis shows the Epstein test value and the vertical axis shows the iron loss ratio. It shows the relationship. The relationship in FIG. 4 shows that the Epstein test value and the measured value of the iron loss measuring device do not match.
【0013】 本考案は、上記従来の問題点に鑑み、かつ長手と幅の方向による鉄損比に着目 し、操業時に材質に応じた鉄損比の補正を行なって鉄損値の測定を行なうことに より、被測定材出荷時の鉄損(すなわちエプスタイン試験時の鉄損に相当する) を鉄損比の影響を受けることなく精度良く、かつ操業時においてリアルタイムで 連続的に測定できる鉄損測定装置を提供することを目的としてなされたものであ る。In view of the above-mentioned conventional problems, the present invention pays attention to the iron loss ratio in the longitudinal and width directions, and corrects the iron loss ratio according to the material during operation to measure the iron loss value. As a result, the iron loss at the time of shipment of the material to be measured (that is, equivalent to the iron loss during the Epstein test) can be accurately measured without being affected by the iron loss ratio, and can be continuously measured in real time during operation. It was made for the purpose of providing a measuring device.
【0014】[0014]
上記問題点を解決するために本考案の鉄損測定装置は、長手方向に移動してい る長尺の被測定材の移動域における移動方向の異なる位置に被測定材が貫通する ように設けてある2個の励磁コイルと、該励磁コイル間に配設されて被測定材の 磁束密度変化を検出する検出コイルと、該検出コイル近傍に設けてあって被測定 材の断面積に関する寸法を非磁気的に測定する測定器と、図4に示す関係に基づ き被測定材の材質に応じた長手方向及び幅方向の鉄損比補正を行なって鉄損を算 出する鉄損算出回路とを具備させているのである。 In order to solve the above problems, the iron loss measuring device of the present invention is provided so that the material to be measured penetrates at different positions in the moving range of the long material to be measured moving in the longitudinal direction. Two exciting coils, a detecting coil arranged between the exciting coils to detect a change in magnetic flux density of the material to be measured, and a measuring coil which is provided in the vicinity of the detecting coil and is related to the cross-sectional area of the material to be measured. A magnetic measuring device and an iron loss calculation circuit that calculates the iron loss by correcting the iron loss ratio in the longitudinal and width directions according to the material of the material to be measured based on the relationship shown in Fig. 4. It is equipped with.
【0015】[0015]
本考案は上記した構成によって、検出コイルによる被測定材の磁束密度と、測 定器による被測定材の板厚及びその幅と、被測定材の材質に応じた長手方向及び 幅方向の鉄損差による鉄損比補正値とによって、当該比測定材の鉄損値を、材質 に応じた長手方向と幅方向による鉄損比に依存して、図5に示す如く、精度良く 測定することとなる。 According to the present invention, the magnetic flux density of the material to be measured by the detection coil, the plate thickness and width of the material to be measured by the measuring instrument, and the iron loss in the longitudinal direction and the width direction depending on the material of the material to be measured are configured by the above-mentioned configuration. With the iron loss ratio correction value due to the difference, the iron loss value of the ratio measuring material can be accurately measured as shown in FIG. 5 depending on the iron loss ratio in the longitudinal direction and the width direction depending on the material. Become.
【0016】[0016]
以下本考案の実施例を示す図1〜図5に基づき詳細に説明する。 図1は連続焼鈍炉の出側に設置された本考案の実施例を示すブロック図であり 、同図において、1は製造ライン(図示せず)上をその長手方向(矢印方向)に 移送されている電磁鋼板である。 An embodiment of the present invention will be described below in detail with reference to FIGS. FIG. 1 is a block diagram showing an embodiment of the present invention installed on the outlet side of a continuous annealing furnace. In FIG. 1, 1 is transferred on a manufacturing line (not shown) in its longitudinal direction (arrow direction). It is a magnetic steel sheet.
【0017】 この電磁鋼板(以下単に「鋼板」という)1の移送域の移送方向に適当な長さ 離隔された2位置には、鋼板1の幅方向断面寸法よりも内径が大きい励磁コイル 2、3が、鋼板1が貫通するように設けられており、その励磁コイル2、3夫々 の両端はJISにて鉄損測定の場合の周波数として規定された50Hz又は60Hzの交 流電源5に直列に接続されている。なお励磁コイル2、3は並列に接続してもよ い。At two positions separated by an appropriate length in the transfer direction of the transfer area of this electromagnetic steel plate (hereinafter simply referred to as “steel plate”) 1, an exciting coil 2 having an inner diameter larger than the cross-sectional dimension in the width direction of the steel plate 1, 3 is provided so as to penetrate the steel plate 1, and both ends of the exciting coils 2 and 3 are connected in series to a 50 Hz or 60 Hz alternating current power source 5 which is specified in JIS as the frequency for iron loss measurement. It is connected. The exciting coils 2 and 3 may be connected in parallel.
【0018】 そして、上記励磁コイル2、3間の離隔距離は、図2に示すように励磁コイル 2、3夫々からの磁力線Hが1つのループとなった閉磁路をなすように定める。 これにより鋼板1は励磁コイル2、3を通過する際、励磁コイル2、3により長 手方向に交流磁化され、図3に示すように励磁コイル2、3の間には一定の磁束 密度が所要長以上ある安定磁束密度域Eが形成される。The separation distance between the exciting coils 2 and 3 is set so that the magnetic force lines H from the exciting coils 2 and 3 respectively form a closed magnetic path as one loop as shown in FIG. As a result, when the steel sheet 1 passes through the exciting coils 2 and 3, it is AC-magnetized in the longitudinal direction by the exciting coils 2 and 3, and a constant magnetic flux density is required between the exciting coils 2 and 3 as shown in FIG. A stable magnetic flux density region E having a length equal to or longer than the length is formed.
【0019】 また、励磁コイル2、3間の例えば中央位置には、鋼板1を巻回して検出コイ ル4が設けられており、この検出コイル4は交流電源5の周波数に基づいた50Hz 又は60Hzの基本波と、鋼板1の鉄損等による波形歪にて生じた150 Hz程度の高調 波(n×基本波、n=2、3、4…)と、鋼板磁化過程における鋼板1内磁壁の 不連続移動現象、つまり公知のバルクハウゼン効果にて生ずる高周波(数KHz 〜 数100KHz)のバルクハウゼン雑音との3成分が混在した信号を検出する。なお、 検出コイル4には図示しない磁路長補正コイルが設けられており、磁路長補正コ イルは例えば磁場分布が鋼板1の移送速度や材質等により変化した場合、予め用 意した磁路長補正コイルの出力−実効磁路長間の検量線により実効磁路長を決定 できるようになっている。A detection coil 4 is provided by winding the steel plate 1 at a central position between the excitation coils 2 and 3, and the detection coil 4 is 50 Hz or 60 Hz based on the frequency of the AC power supply 5. And the harmonics of about 150 Hz (n × fundamental wave, n = 2, 3, 4, ...) Caused by the waveform distortion due to iron loss of the steel plate 1 and the magnetic domain inside the steel plate 1 during the magnetization process of the steel plate. A signal in which three components, that is, a discontinuous movement phenomenon, that is, high-frequency (several KHz to several hundred KHz) Barkhausen noise generated by the known Barkhausen effect are mixed is detected. The detection coil 4 is provided with a magnetic path length correction coil (not shown). The magnetic path length correction coil is provided with a magnetic path previously designed when, for example, the magnetic field distribution changes due to the transfer speed or material of the steel sheet 1. The effective magnetic path length can be determined by the calibration curve between the output of the length correction coil and the effective magnetic path length.
【0020】 そして、上記検出コイル4の検出信号は、減衰器6及び電流制御回路7へ与え られる。電流制御回路7はその検出された入力信号に基づいて交流電源5の出力 電圧を調節し、励磁コイル2、3から発生する磁界の強度を調整する。一方、減 衰器6は出力側にローパスフィルタ8が接続されており、検出コイル4からの入 力信号レベルがローパスフィルタ8の入力許容最大電圧を超えないように減衰率 が定められている。The detection signal of the detection coil 4 is given to the attenuator 6 and the current control circuit 7. The current control circuit 7 adjusts the output voltage of the AC power supply 5 based on the detected input signal, and adjusts the strength of the magnetic field generated from the exciting coils 2 and 3. On the other hand, the attenuator 6 has a low-pass filter 8 connected on the output side, and the attenuation rate is set so that the input signal level from the detection coil 4 does not exceed the maximum allowable input voltage of the low-pass filter 8.
【0021】 ローパスフィルタ8は第3高調波を除くように例えば 100Hzを遮断周波数とし ている。ローパスフィルタ8の出力信号は増幅器9にて増幅され、電力計10の 電圧端子へ与えられる。電力計10には上記交流電源5から励磁電流が給電され るようになっている。従って、上記検出コイル4、ローパスフィルタ8、電力計 10及び交流電源5はエプスタイン試験装置と同様の構成となっており、電力計 10は上記励磁電流信号と増幅器9からの電圧信号とから電力損失を検出し、検 出値を鉄損算出回路11へ与える。The low-pass filter 8 has a cutoff frequency of, for example, 100 Hz so as to remove the third harmonic. The output signal of the low-pass filter 8 is amplified by the amplifier 9 and given to the voltage terminal of the power meter 10. An exciting current is supplied from the AC power source 5 to the power meter 10. Therefore, the detection coil 4, the low-pass filter 8, the power meter 10 and the AC power source 5 have the same structure as that of the Epstein test apparatus, and the power meter 10 loses power from the excitation current signal and the voltage signal from the amplifier 9. Is detected and the detected value is given to the iron loss calculation circuit 11.
【0022】 上記励磁コイル2と検出コイル4との間の検出コイル4に近い位置及び励磁コ イル3と検出コイル4との間の検出コイルに近い位置には、夫々励磁コイル2、 3からの磁力線の影響を受けずに、また検出コイル4の検出信号に影響を及ぼさ ずに検出が可能な例えばγ線を用いた厚み計20及び幅計21が鋼板1に臨ませ て設けている。そして、厚み計20及び幅計21からの夫々の検出信号は、上記 電力計10の出力信号と共に、鉄損算出回路11に入力されるようになっており 、この鉄損算出回路11によって鉄損を演算する。At the position between the exciting coil 2 and the detecting coil 4 close to the detecting coil 4 and the position between the exciting coil 3 and the detecting coil 4 close to the detecting coil, the exciting coils 2 and 3 are located respectively. A thickness gauge 20 and a width gauge 21 using, for example, γ-rays, which can be detected without being affected by the magnetic field lines and without affecting the detection signal of the detection coil 4, are provided facing the steel plate 1. The detection signals from the thickness gauge 20 and the width gauge 21 are input to the iron loss calculation circuit 11 together with the output signal of the power meter 10. Is calculated.
【0023】 まず、鉄損算出回路11は、単位重量(1kg)当たりの鉄損W1 を算出すべく 、電力損失の検出区間(実効磁路長)に対応する鋼板1長さL’部分の質量に対 する電力損失Pを求める下記の数式1が設定されている。First, the iron loss calculation circuit 11 calculates the iron loss W 1 per unit weight (1 kg) of the steel plate 1 length L ′ corresponding to the power loss detection section (effective magnetic path length). The following formula 1 for determining the power loss P with respect to the mass is set.
【0024】[0024]
【数1】 W1 =P/ρ・t・w・L’(W/kg) 但し、ρ:鋼板の密度 t:鋼板の厚み w:鋼板の幅[Formula 1] W 1 = P / ρ · t · w · L ′ (W / kg) where ρ: density of steel plate t: thickness of steel plate w: width of steel plate
【0025】 したがって、上記厚み計20、幅計21からのt、w、電力計10からのPの 入力によって、上記の数式1に基づき鉄損W1 を算出する。 次に、当該鉄損算出回路11は、上記の数式1に基づき算出した鉄損W1 につ いて、鋼板1の材質に応じた長手方向と幅方向の鉄損比補正を行なう。すなわち 、補正後の鉄損値をW2 とすれば、W2 は下記の数式2によって求められる。Therefore, by inputting t and w from the thickness meter 20 and the width meter 21 and P from the power meter 10, the iron loss W 1 is calculated based on the above mathematical formula 1. Next, the iron loss calculation circuit 11 corrects the iron loss W 1 calculated based on the above Equation 1 in the longitudinal direction and the width direction according to the material of the steel plate 1. That is, if the corrected iron loss value is W 2 , W 2 can be obtained by the following mathematical formula 2.
【0026】[0026]
【数2】 W2 =W(L+C)・W1 但し、W(L+C):図4に示す材質別にあらかじめ求めた鋼板の長手方向と 幅方向の鉄損比[Equation 2] W 2 = W (L + C) · W 1 where W (L + C) is the iron loss ratio in the longitudinal direction and width direction of the steel sheet, which was obtained in advance for each material shown in FIG. 4.
【0027】 そしてこの数式2により求められた鉄損W2 (W/kg)を記録器12に記録さ せるものである。ここで、W(L+C)は鋼板1の材質により異なるものであり 、上述した図4に示すように予め設定しておき、その補正を行なうことができる ものである。Then, the iron loss W 2 (W / kg) obtained by the equation 2 is recorded in the recorder 12. Here, W (L + C) varies depending on the material of the steel sheet 1, and it can be preset and corrected as shown in FIG. 4 described above.
【0028】 以上のように、本考案では鋼板1を製造ライン上を移送しながら(すなわちオ ンラインで)、その鉄損値をリアルタイムで連続的に測定し、その値を記録器1 2に記録することができるものである。しかも、その鉄損値は鋼板1の材質に応 じた長手方向と幅方向の鉄損比補正を行なって精度良く測定されて記録されてい るため、この記録された鉄損値は出荷時のエプスタイン試験による鉄損値として も利用できる。そのことを図5に示す相関図により説明すると、同図は鉄損比補 正した鉄損測定値をエプスタイン試験値と比較した結果を示し、各測定位置の鉄 損測定値がエプスタイン値と近似しており、精度良く測定されたことを示してい る。As described above, in the present invention, the iron loss value of the steel sheet 1 is continuously measured in real time while being transferred on the production line (that is, online), and the value is recorded in the recorder 12. Is what you can do. Moreover, since the iron loss value is accurately measured and recorded by correcting the iron loss ratio in the longitudinal direction and the width direction according to the material of the steel plate 1, the recorded iron loss value is the value at the time of shipment. It can also be used as an iron loss value by the Epstein test. This can be explained using the correlation diagram shown in Fig. 5, which shows the results of comparing the iron loss measurement values corrected for the iron loss ratio with the Epstein test values. The iron loss measurement values at each measurement position approximated the Epstein value. It shows that the measurement was performed with high accuracy.
【0029】[0029]
以上説明したように本考案の鉄損測定装置は、検出コイルによる被測定材の磁 束密度と、測定器による被測定材の板厚及びその幅と、被測定材の材質に応じた 鉄損比補正値とによって、当該被測定材の鉄損値を測定するものであり、製造ラ インにおけるオンラインで材質に依存して精度良く測定することができる。従っ て、電磁鋼板の出荷時に必要な鉄損値を製造工程において精度良く測定できるば かりでなく、その測定結果をリアルタイムで製造条件に反映できるものであり、 製品の歩留り率を向上させることができ、非常に有効な鉄損測定装置である。 As described above, the iron loss measuring device of the present invention is capable of measuring the magnetic flux density of the material to be measured by the detection coil, the thickness and width of the material to be measured by the measuring instrument, and the iron loss according to the material of the material to be measured. The ratio correction value is used to measure the iron loss value of the material to be measured, which can be accurately measured online in the manufacturing line depending on the material. Therefore, it is not only possible to accurately measure the iron loss value required for shipping electrical steel sheets in the manufacturing process, but also the measurement results can be reflected in the manufacturing conditions in real time, improving the yield rate of products. It is a very effective iron loss measuring device.
【図1】本考案鉄損測定装置の実施例を示すブロック図
である。FIG. 1 is a block diagram showing an embodiment of the iron loss measuring device of the present invention.
【図2】同装置の励磁磁力線の経路説明図である。FIG. 2 is an explanatory view of a path of exciting magnetic force lines of the device.
【図3】同励磁コイルによる鋼板の磁化状態を示す説明
図である。FIG. 3 is an explanatory view showing a magnetized state of a steel sheet by the exciting coil.
【図4】材質に応じた鉄損比とエプスタイン試験値との
関係を示す特性図である。FIG. 4 is a characteristic diagram showing a relationship between an iron loss ratio and an Epstein test value according to a material.
【図5】鉄損比補正の効果を示す関係図である。FIG. 5 is a relationship diagram showing an effect of iron loss ratio correction.
【図6】従来例における検出部の鉄心コアの斜視図であ
る。FIG. 6 is a perspective view of an iron core of a detection unit in a conventional example.
【図7】同コイルを巻装した状態の断面図である。FIG. 7 is a cross-sectional view showing a state in which the coil is wound.
【図8】同磁界状態の特性図である。FIG. 8 is a characteristic diagram in the same magnetic field state.
1 電磁鋼板 2、3 励磁コイル 4 検出コイル 11 鉄損算出回路 20 厚み計 21 幅計 1 Electromagnetic Steel Plate 2, 3 Excitation Coil 4 Detection Coil 11 Iron Loss Calculation Circuit 20 Thickness Meter 21 Width Meter
Claims (1)
の移動域における移動方向の異なる位置に被測定材が貫
通するように設けてある2個の励磁コイルと、該励磁コ
イル間に配設されて被測定材の磁束密度変化を検出する
検出コイルと、該検出コイル近傍に設けてあって被測定
材の断面積に関する寸法を非磁気的に測定する測定器
と、被測定材の材質に応じた長手方向及び幅方向の鉄損
比補正を行なって鉄損を算出する鉄損算出回路とを具備
することを特徴とする鉄損測定装置。1. Two exciting coils provided so that the material to be measured penetrates at different positions in the moving direction in the moving range of the long material to be measured moving in the longitudinal direction, and between the exciting coils. A detection coil for detecting a change in magnetic flux density of the material to be measured, a measuring device provided near the detection coil for non-magnetically measuring a dimension related to a cross-sectional area of the material to be measured, and a material to be measured. An iron loss measuring device, comprising: an iron loss calculating circuit for calculating the iron loss by correcting the iron loss ratio in the longitudinal direction and the width direction according to the material of the.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7423591U JPH0517580U (en) | 1991-08-21 | 1991-08-21 | Iron loss measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7423591U JPH0517580U (en) | 1991-08-21 | 1991-08-21 | Iron loss measuring device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0517580U true JPH0517580U (en) | 1993-03-05 |
Family
ID=13541306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7423591U Pending JPH0517580U (en) | 1991-08-21 | 1991-08-21 | Iron loss measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0517580U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101025236B1 (en) * | 2009-09-09 | 2011-03-29 | 서재철 | Apparatus for inserting specimen |
CN110208363A (en) * | 2019-06-19 | 2019-09-06 | 哈尔滨工业大学(深圳) | A kind of bearing carrier fatigue detection device and method |
-
1991
- 1991-08-21 JP JP7423591U patent/JPH0517580U/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101025236B1 (en) * | 2009-09-09 | 2011-03-29 | 서재철 | Apparatus for inserting specimen |
CN110208363A (en) * | 2019-06-19 | 2019-09-06 | 哈尔滨工业大学(深圳) | A kind of bearing carrier fatigue detection device and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5089781A (en) | Electromagnetic conductivity meter and a conductivity measuring method | |
US4567435A (en) | Method and apparatus for continuously measuring distance utilizing eddy current and having temperature difference influence elimination | |
JP2008122138A (en) | Method and instrument for measuring magnetic characteristics and mechanical strength of steel sheet | |
JPS6352345B2 (en) | ||
JPS61277051A (en) | Apparatus for measuring magnetic characteristics | |
JP2007187551A (en) | Apparatus for measuring complex magnetic characteristics and method for measuring crystal particle size of magnetic substance | |
JP2522732Y2 (en) | Iron loss value measuring device | |
JP2011123081A (en) | Complex permeability measuring device of magnetic body, and crystal grain size measuring method of magnetic body using the same | |
JPH0517580U (en) | Iron loss measuring device | |
US4274052A (en) | Current meter using core saturation | |
JP4192708B2 (en) | Magnetic sensor | |
JP2000266727A (en) | Carburized depth measuring method | |
JPH07190991A (en) | Transformation rate-measuring method and device | |
US3995211A (en) | Electromagnetic induction type detectors | |
JPH04102462U (en) | Iron loss value measuring device | |
JPH0242402B2 (en) | ||
JPH05281063A (en) | Measuring device for tension of steel material | |
JP2841578B2 (en) | Calibration method and calibration device for iron loss value measurement data | |
JPH08211085A (en) | Flow velocity measuring device | |
JP4005765B2 (en) | Magnetic measurement method | |
JPH02311776A (en) | Apparatus and method for measuring magnetic characteristics of steel material | |
RU2029313C1 (en) | Device for non-destructive checking of specific losses in anisotropic electrical-sheet steel | |
SU1030718A1 (en) | Method and device for measuring thickness of large-sized sheet and roll articles | |
JPS59109859A (en) | Measuring device of grain size of steel plate | |
SU847174A1 (en) | Two-frequency modulation flaw detector |