JPH05203503A - Apparatus for measuring residual stress distribution of steel - Google Patents

Apparatus for measuring residual stress distribution of steel

Info

Publication number
JPH05203503A
JPH05203503A JP22404892A JP22404892A JPH05203503A JP H05203503 A JPH05203503 A JP H05203503A JP 22404892 A JP22404892 A JP 22404892A JP 22404892 A JP22404892 A JP 22404892A JP H05203503 A JPH05203503 A JP H05203503A
Authority
JP
Japan
Prior art keywords
residual stress
frequency
steel material
magnetic core
exciting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22404892A
Other languages
Japanese (ja)
Inventor
Akihiko Sugata
晃彦 菅田
Akira Sakano
明 阪野
Yasuhiko Morinaga
泰彦 森永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP22404892A priority Critical patent/JPH05203503A/en
Publication of JPH05203503A publication Critical patent/JPH05203503A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To measure the distribution of compression residual stress in the direction of the depth of the machined surface of shotpeened steel. CONSTITUTION:A magnetic core 210 is applied on steel 1 having compressed residual stress. An exciting coil 211 is wound arc the magnetic core 210 and forms the magnetic path. A detecting coil 212 is wound around the magnetic core 210 and outputs the voltage signal corresponding to the compression residual stress at the surface part of the steel 1 based on the electromagnetic induction caused by the exciting current. An oscillator 231 makes high-frequency AC as the exciting current flow through the exciting coil 211. A viriable- frequency timing circuit 238 changes the frequency of the current. A correcting circuit 234 corrects the voltage signal, which is detected by the detecting coil 212, in response to the frequency of the exciting current. This apparatus is constituted of arithmetic unit these parts and an arithmetic unit 235. The residual austenite in the steel 1 is shotpeened and induction transformed. Thus, martensite is obtained. The compression residual stress is increased, and permeability is changed. Therefore, the compression residual stress is grasped with the voltage value of the detecting coil 212.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は鋼材の残留応力分布の測
定装置に関する。この測定装置は、例えば、歯車、車軸
等の部品に用いられる鋼材にショットピーニングを行っ
た場合における圧縮残留応力を測定する際に適用でき
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring residual stress distribution of steel materials. This measuring device can be applied, for example, when measuring the compressive residual stress in the case where shot peening is performed on steel materials used for parts such as gears and axles.

【0002】[0002]

【従来の技術】従来より特開昭48−43954号公報
には鋼材の非破壊選別装置が開示されている。この選別
装置は、鋼材の硬さと保磁力との間に一定の関係がある
ことを利用し、硬さを選別すべき所望の段階に区分け設
定し、各選別限界の硬さに対応する保磁力を求めてお
き、鋼材を飽和励磁した後、選別限界の硬さに対応する
保磁力にそれぞれ減磁し、各減磁状態における磁束密度
の正、負を検出し、その磁束密度の正あるいは負の数の
多少により所望の段階の硬さに鋼材を選別するものであ
る。
2. Description of the Related Art Conventionally, Japanese Unexamined Patent Publication No. 48-43954 discloses a nondestructive sorting apparatus for steel materials. This sorting device utilizes the fact that there is a certain relationship between the hardness of steel and coercive force, and sets the hardness to the desired stage to be sorted, and sets the coercive force corresponding to the hardness of each sorting limit. After saturation excitation of the steel material, demagnetize to the coercive force corresponding to the hardness of the selection limit, detect the positive or negative of the magnetic flux density in each demagnetized state, and determine whether the magnetic flux density is positive or negative. The steel material is selected to have a hardness at a desired stage depending on the number of the steel sheets.

【0003】また従来より、磁気による高周波焼入れ軸
の残留応力の測定装置が知られている。この測定装置
は、積層珪素鋼板からなるコ字形状の磁芯に励磁コイル
及び検出コイルを巻きつけた2個のセンサを用いるもの
であって、X線応力測定装置より求めた基準となる残留
応力値と、各センサを車軸に軸方向及び円周方向に当接
することにより得られる出力とを比較し、その車軸の残
留応力を求めるものである。また、上記2個のセンサを
互いに直角に組合せた磁気異方性センサを用い、軸方向
及び円周方向の出力検出を同時に行なう装置も知られて
いる(非破壊検査第35巻第2号(62.2.2
0))。
Further, conventionally, a device for measuring the residual stress of the induction hardening shaft by magnetism is known. This measuring device uses two sensors in which an exciting coil and a detecting coil are wound around a U-shaped magnetic core made of laminated silicon steel plates, and the residual stress as a reference obtained by the X-ray stress measuring device is used. The value is compared with the output obtained by abutting each sensor on the axle in the axial direction and the circumferential direction, and the residual stress of the axle is obtained. There is also known a device which uses a magnetic anisotropy sensor in which the above two sensors are combined at right angles to each other and simultaneously detects outputs in the axial direction and the circumferential direction (Non-destructive inspection Vol. 35, No. 2 ( 62.2.2
0)).

【0004】しかし、上記各従来の技術はいずれも、軸
方向及び円周方向における引張り及び圧縮による保磁力
の変化に着目したものであり、つまり直角方向において
主応力差と主応力方向の透磁率の差とに比例関係がある
ことを利用したものであり、その適用範囲は応力状態が
異方性である場合の測定に限られるものであった。この
ため、かかる技術では、応力状態が等方性であるショッ
トピーニング加工を行なった場合には直角方向に透磁率
の差を生じないため、残留応力を正確に測定することが
不可能であった。
However, each of the above-mentioned conventional techniques focuses on the change in coercive force due to tension and compression in the axial direction and the circumferential direction, that is, in the perpendicular direction, the main stress difference and the magnetic permeability in the main stress direction. The fact that there is a proportional relationship with the difference between the two was utilized, and the applicable range was limited to the measurement when the stress state was anisotropic. Therefore, in such a technique, when the shot peening process in which the stress state is isotropic is performed, there is no difference in the magnetic permeability in the perpendicular direction, and it is impossible to accurately measure the residual stress. ..

【0005】また、特開昭48−43954号開示の装
置では、まず直流電流を用いて鋼材を磁気的に飽和さ
せ、しかる後に磁気飽和に達したときの磁場とは逆方向
に磁場を増加させることにより、磁化が0となる保磁力
を測定する。このため、この装置では、磁気飽和に到達
させる磁場と、磁化を0にする磁場とを測定対象たる鋼
材に加える必要があり、操作性に劣ることから生産ライ
ンへの適用が困難であった。
Further, in the apparatus disclosed in Japanese Patent Laid-Open No. 48-43954, first, a direct current is used to magnetically saturate the steel material, and thereafter the magnetic field is increased in the direction opposite to the magnetic field when the magnetic saturation is reached. Thus, the coercive force at which the magnetization becomes 0 is measured. Therefore, in this apparatus, it is necessary to add a magnetic field for reaching magnetic saturation and a magnetic field for zero magnetization to the steel material to be measured, and it is difficult to apply it to a production line because of poor operability.

【0006】[0006]

【発明が解決しようとする課題】本発明者は、残留応力
が発生する加工を行なった場合における鋼材の特性変化
を鋭意研究した結果、鋼材の残留オーステナイト組織が
加工によって加工誘起変態し、マルテンサイト組織とな
るので、これによって鋼材の透磁率が変化するととも
に、この透磁率の変化値と圧縮残留応力とが相関関係に
あることを知見し、以下の測定方法を開発するに至った
(本出願時に未公知)。すなわち、残留オーステナイト
組織をもつ加工前の鋼材の透磁率を検出する加工前透磁
率検出工程と、鋼材の加工後における透磁率を検出する
加工後透磁率検出工程と、検出された加工前透磁率と加
工後透磁率との変化値から圧縮残留応力を算出する算出
工程とからなる測定方法である。
DISCLOSURE OF INVENTION Problems to be Solved by the Invention As a result of earnest research on changes in the characteristics of steel products when residual stress is generated, the present inventor has found that the retained austenite structure of steel products undergoes work-induced transformation due to working and martensite. Since it becomes a structure, the magnetic permeability of the steel material changes due to this, and it was found that there is a correlation between the change value of this magnetic permeability and the compressive residual stress, and the following measurement method was developed (this application Sometimes unknown). That is, the pre-processing magnetic permeability detection step of detecting the magnetic permeability of the steel material having a retained austenite structure before processing, the post-processing magnetic permeability detection step of detecting the magnetic permeability of the steel material after processing, and the detected pre-processing magnetic permeability. And a calculation step of calculating the compressive residual stress from the change value of the magnetic permeability after processing.

【0007】本発明はかかる開発の一環としてなされた
ものであり、鋼材の深さ方向における残留応力分布を測
定できる鋼材の残留応力分布の測定装置を提供すること
を目的とする。
The present invention has been made as a part of such development, and an object of the present invention is to provide a measuring apparatus for residual stress distribution of steel material capable of measuring residual stress distribution in the depth direction of steel material.

【0008】[0008]

【課題を解決するための手段】本発明の鋼材の残留応力
分布の測定装置は、透磁性をもつとともに残留応力を内
蔵した鋼材に当てがわれる磁芯と、磁芯に巻回され鋼材
の表層部と磁芯とをつなぐ磁路を形成する励磁コイル
と、磁芯に巻回され励磁コイルの励磁電流に伴う電磁誘
導により鋼材の残留応力に応じた電圧信号を出力する検
出コイルとをもつセンサと、センサの励磁コイルに励磁
電流として高周波の交流電流を流すとともにその周波数
を変更可能な電流供給部と、検出コイルで検出した電圧
信号を励磁電流の周波数に応じて補正する補正部とで構
成され、周波数の異なる励磁電流を該励磁コイルに流し
て検出コイルで得た電圧信号を補正部で補正し、鋼材の
深さ方向における残留応力分布を測定する様にしたこと
を特徴とするものである。
According to the present invention, there is provided a device for measuring a residual stress distribution of a steel material, comprising: a magnetic core applied to a steel material having permeability and a built-in residual stress; and a surface layer of the steel material wound around the magnetic core. Having an exciting coil that forms a magnetic path connecting the core and the magnetic core, and a detection coil that is wound around the magnetic core and outputs a voltage signal according to the residual stress of the steel material by electromagnetic induction accompanying the exciting current of the exciting coil And a current supply unit capable of changing a frequency of a high-frequency alternating current as an exciting current in the exciting coil of the sensor, and a correcting unit correcting the voltage signal detected by the detecting coil according to the frequency of the exciting current. By applying exciting currents having different frequencies to the exciting coil, the voltage signal obtained by the detecting coil is corrected by the correcting unit, and the residual stress distribution in the depth direction of the steel material is measured. That.

【0009】励磁コイルに流す励磁電流の周波数をfと
し、その周期tとすると、t=1/fの関係から周波数
fが大きいと、周期tが小さくなる。よって下記した
(1)式のV=−N・(dΦ/dt)からして、周期t
が小さくなると、磁路における磁束の時間的変位量が増
すため、その磁束の時間的変化量を打ち消す電磁誘導現
象により、検出コイルの電圧信号値Vは高く出力され
る。よって、その励磁電流の周波数に応じて検出コイル
の出力電圧値Vを補正する必要がある。そのため、本発
明装置では周波数fと出力電圧値Vとの関係を予め測定
しておき、その関係に基づき、周波数fに応じて検出コ
イルの電圧信号値Vを補正する。補正部は、例えば、上
記関係を記憶したRAM、ROM等のメモリを利用して
構成できる。
Assuming that the frequency of the exciting current flowing through the exciting coil is f and its period is t, the period t becomes smaller when the frequency f is larger because of the relation of t = 1 / f. Therefore, from the equation V = −N · (dΦ / dt) in the following equation (1), the period t
When becomes smaller, the temporal displacement of the magnetic flux in the magnetic path increases, so that the voltage signal value V of the detection coil is output high due to the electromagnetic induction phenomenon that cancels the temporal variation of the magnetic flux. Therefore, it is necessary to correct the output voltage value V of the detection coil according to the frequency of the exciting current. Therefore, in the device of the present invention, the relationship between the frequency f and the output voltage value V is measured in advance, and the voltage signal value V of the detection coil is corrected according to the frequency f based on the relationship. The correction unit can be configured using, for example, a memory such as a RAM or a ROM that stores the above relationship.

【0010】[0010]

【作用】励磁コイルに励磁電流として高周波の交流電流
を流すと、磁路における磁束は時間的に変化する。従っ
て、電磁誘導により、鋼材の組織に渦電流が生じる。さ
らにこの渦電流によって高周波の磁界が生じる。これは
検出コイルによりインピーダンス変化、ひいては出力電
圧値の変化として測定される。ここで、鋼材の組織(マ
ルテンサイト相、オーステナイト相など)に応じてその
透磁率が異なるので、鋼材の組織に応じて検出コイルの
出力電圧値は変化する。ここで鋼材の組織割合は加工誘
起変態の程度によって変化するため、検出コイルの出力
電圧値により、残留応力の程度が把握される。
When a high-frequency alternating current is passed through the exciting coil as an exciting current, the magnetic flux in the magnetic path changes with time. Therefore, the electromagnetic induction causes an eddy current in the structure of the steel material. Further, a high frequency magnetic field is generated by this eddy current. This is measured by the detection coil as a change in impedance and thus as a change in the output voltage value. Here, since the magnetic permeability varies depending on the structure of the steel material (such as martensite phase and austenite phase), the output voltage value of the detection coil changes depending on the structure of the steel material. Here, since the structural ratio of the steel material changes depending on the degree of work-induced transformation, the degree of residual stress can be grasped from the output voltage value of the detection coil.

【0011】また、励磁コイルに流す励磁電流の周波数
を変更すると、鋼材表面における磁束の浸透深さは変化
する。そのため、励磁電流の周波数を変更すれば、鋼材
の表面からの深さに応じた電圧信号が検出コイルから出
力されることになる。このとき励磁電流の周波数に応じ
て、検出コイルの電圧信号が変動するので、補正部は補
正する。
When the frequency of the exciting current flowing through the exciting coil is changed, the penetration depth of the magnetic flux on the surface of the steel material changes. Therefore, if the frequency of the exciting current is changed, a voltage signal corresponding to the depth from the surface of the steel material will be output from the detection coil. At this time, the voltage signal of the detection coil fluctuates according to the frequency of the exciting current, so the correction unit corrects it.

【0012】[0012]

【実施例】以下、本発明を具体化した実施例を図面を参
照しつつ説明する。 (鋼材)本実施例で用いる鋼材1は、浸炭鋼を浸炭焼入
しかつショットピーニングする前のものであり、面積率
で約70〜80%のマルテンサイト組織と約20〜30
%の残留オーステナイト組織とからなる。
Embodiments of the present invention will be described below with reference to the drawings. (Steel Material) Steel material 1 used in this example is before carburizing and carburizing carburized steel and performing shot peening, and has a martensite structure of about 70 to 80% in area ratio and about 20 to 30.
% Retained austenite structure.

【0013】(測定装置)測定装置2を図1に示す。こ
の測定装置2は、鋼材1の加工面11に当接されるセン
サ21と、センサ21と接続された計測器23とからな
る。センサ21は、図1に示すように、珪素鋼板を厚み
方向へ積層して構成したコ字形状の磁芯210と、この
磁芯210に巻回され高周波数の交流電流が通電される
励磁コイル211と、磁芯210に巻回され磁界変化に
基づく電磁誘導現象により電圧値を出力する検出コイル
212とからなる。磁芯210は、その先端部分が鋼材
1の加工面11と確実に当接するように形成されてい
る。計測器23は、図1に示すように、発振器231
と、発振器231から発振する高周波の交流電流の周波
数を変更する周波数可変タイミング回路238と、発振
器231と接続され励磁コイル211に交流電流を通電
する増幅器232と、検出コイル212の出力電圧値を
増幅させる増幅器233と、増幅器233で増幅された
出力電圧値を補正する補正回路234と、補正回路23
4と接続された演算器235と、演算器235と接続さ
れた表示装置236と、補正回路234に接続されたメ
モリ237とからなる。ここで、発振器231と周波数
可変タイミング回路238と増幅器232とにより、電
流供給部が構成される。また補正回路234とメモリ2
37とで補正部が構成される。
(Measuring Device) A measuring device 2 is shown in FIG. The measuring device 2 includes a sensor 21 that is in contact with the machined surface 11 of the steel material 1, and a measuring instrument 23 connected to the sensor 21. As shown in FIG. 1, the sensor 21 includes a U-shaped magnetic core 210 formed by stacking silicon steel sheets in the thickness direction, and an exciting coil wound around the magnetic core 210 and supplied with a high-frequency alternating current. 211, and a detection coil 212 wound around the magnetic core 210 and outputting a voltage value by an electromagnetic induction phenomenon based on a magnetic field change. The magnetic core 210 is formed so that its tip portion surely contacts the machined surface 11 of the steel material 1. The measuring instrument 23 includes an oscillator 231 as shown in FIG.
A frequency variable timing circuit 238 for changing the frequency of the high frequency alternating current oscillated from the oscillator 231, an amplifier 232 connected to the oscillator 231 for supplying an alternating current to the exciting coil 211, and an output voltage value of the detection coil 212 is amplified. An amplifier 233, a correction circuit 234 that corrects the output voltage value amplified by the amplifier 233, and a correction circuit 23.
4 is connected to the arithmetic unit 235, a display device 236 connected to the arithmetic unit 235, and a memory 237 connected to the correction circuit 234. Here, the oscillator 231, the frequency variable timing circuit 238, and the amplifier 232 form a current supply unit. In addition, the correction circuit 234 and the memory 2
37 and 37 constitute a correction unit.

【0014】(加工前透磁率検出工程)図1に示すよう
に、まずショット前の鋼材1の加工面11にセンサ21
を当接する。これにより、鋼材1の加工面11は深さh
n の範囲内で磁束を生じる。計測器23では、検出コイ
ル212の電圧値(加工前電圧値;V0 )が検出され
る。この加工前電圧値(V0 )は鋼材1の加工前透磁率
(μ0 )と以下の相関関係をもつ。
(Process for detecting magnetic permeability before processing) As shown in FIG. 1, first, a sensor 21 is provided on the processed surface 11 of the steel material 1 before shot.
Abut. As a result, the machined surface 11 of the steel material 1 has a depth h.
A magnetic flux is generated within the range of n . The measuring device 23 detects the voltage value (voltage value before processing; V 0 ) of the detection coil 212. The pre-working voltage value (V 0 ) has the following correlation with the pre-working permeability (μ 0 ) of the steel material 1.

【0015】すなわち、センサ21の励磁コイル211
に高周波数の交流電流を通電することにより、鋼材1の
加工面11と磁芯210をつなぐループ状の磁路が形成
される。このとき図1に示すように、加工面11の表面
より100μm程度までの深さhnで磁束(Φ)が発生
する。磁芯210の透磁率は既知のため、磁束(Φ)の
発生量は、基本的には、加工面11の深さhnにおける
透磁率(μ)の大小によって決定される。
That is, the exciting coil 211 of the sensor 21.
When a high-frequency alternating current is applied to, a loop-shaped magnetic path that connects the machined surface 11 of the steel material 1 and the magnetic core 210 is formed. At this time, as shown in FIG. 1, a magnetic flux (Φ) is generated at a depth hn of about 100 μm from the surface of the processed surface 11. Since the magnetic permeability of the magnetic core 210 is known, the amount of magnetic flux (Φ) generated is basically determined by the magnitude of the magnetic permeability (μ) at the depth hn of the processed surface 11.

【0016】即ち、この磁束(Φ)の時間的変化量によ
って、検出コイル212に電磁誘導される電圧値(V)
が次の(1)式に基づき基本的には求まる。 V=−N・(dΦ/dt)(Nは検出コイル212のコ
イルの巻数、tは時間)…………(1)式 以上の相関関係の下、計測器23の表示装置236に加
工前電圧値(V0 )が表示される。一方、この加工前電
圧値(V0 )をもつ鋼材1の最大圧縮残留応力(以下圧
縮残留応力(Rs0 )という)を、X線応力測定装置よ
り予め求めておく。なお、X線応力測定装置は、圧縮残
留応力による格子面の歪みをX線回折により測定するも
のである。
That is, the voltage value (V) electromagnetically induced in the detection coil 212 by the temporal change amount of the magnetic flux (Φ).
Is basically obtained based on the following equation (1). V = −N · (dΦ / dt) (N is the number of coil turns of the detection coil 212, t is time) (1) Equation (1) Before processing on the display device 236 of the measuring instrument 23 under the above correlation. The voltage value (V 0 ) is displayed. On the other hand, the maximum compressive residual stress (hereinafter referred to as compressive residual stress (Rs 0 )) of the steel material 1 having this pre-processing voltage value (V 0 ) is obtained in advance from the X-ray stress measuring device. The X-ray stress measuring device measures strain of the lattice plane due to compressive residual stress by X-ray diffraction.

【0017】(加工後透磁率検出工程)次いで、鋼材1
の加工面11に所定のショット処理を施す。その後、図
1に示すように、その鋼材1の加工面11にセンサ21
を当接する。これにより、計測器23では、上記した加
工前透磁率検出工程と同様に、センサ21の電圧値(加
工後電圧値;V1 )が検出される。この加工後電圧値
(V1 )も加工後透磁率(μ1 )と相関関係をもつ。こ
うして、表示装置236に加工後電圧値(V1 )が表示
される。この加工後電圧値(V1 )をもつ鋼材1の圧縮
残留応力(Rs1 )を、X線応力測定装置等より求めて
おく。
(Process of detecting magnetic permeability after processing) Next, the steel material 1
A predetermined shot process is applied to the processed surface 11 of. Then, as shown in FIG. 1, the sensor 21 is attached to the machined surface 11 of the steel material 1.
Abut. As a result, the measuring device 23 detects the voltage value of the sensor 21 (post-processing voltage value; V 1 ) as in the pre-processing magnetic permeability detection step described above. This processed voltage value (V 1 ) also has a correlation with the processed magnetic permeability (μ 1 ). In this way, the processed voltage value (V 1 ) is displayed on the display device 236. The compressive residual stress (Rs 1 ) of the steel material 1 having this post-working voltage value (V 1 ) is obtained from an X-ray stress measuring device or the like.

【0018】そして、複数のショット処理の段階におい
て、上記した加工後透磁率検出工程を同様に行い、各鋼
材1の各圧縮残留応力(Rs2 〜Rs4 )をX線応力測
定装置等より求めておく。 (算出工程)鋼材1における各加工後電圧値(V0 〜V
4 )と、各圧縮残留応力(Rs0 〜Rs4 )との関係を
図2に示す。図2に示す特性をメモリ237に記憶させ
ておく。
Then, in a plurality of shot treatment stages, the above-mentioned post-working permeability detection step is similarly performed, and each compressive residual stress (Rs 2 to Rs 4 ) of each steel material 1 is obtained by an X-ray stress measuring device or the like. Keep it. (Calculation process) Voltage values (V 0 to V) after processing in the steel material 1
4 ) and each compressive residual stress (Rs 0 to Rs 4 ) are shown in FIG. The characteristics shown in FIG. 2 are stored in the memory 237.

【0019】以下、新たな別の鋼材にセンサ21を当接
するたび、計測器23では、加工後電圧値(Vx)が検
出され、この加工後電圧値(Vx)と加工前電圧値(V
0 )との変化量(V0 −Vx=△V)が求められ、この
ように変化量(△V)と上記図2に示す相関関係とか
ら、その鋼材の圧縮残留応力(Rsx)が算出される。
ところで、ショットピーニング処理により加工誘起変態
は促進されるので、加工面11の残留オーステナイトは
減少する。計測器23に基づいて測定された圧縮残留応
力と残留オーステナイトの減少率との関係を図3に示
す。図3から残留オーステナイトの減少率と圧縮残留応
力との間には比例的関係があることが理解される。この
理由は以下の様である。即ち、図4及び図5に示すよう
に、鋼材1の加工面11がショット処理される場合、残
留オーステナイトが加工誘起変態を起こし、残留オース
テナイトがマルテンサイト変態となり体積膨張する形態
と、残留オーステナイト及びマルテンサイト組織のまま
で塑性変形をうける形態とが生じる。ここで、後者の形
態は透磁率の変化としては実質的に無視できる程である
ので、前者の形態により加工面11に圧縮残留応力が付
与されると考えられるからである。
Every time the sensor 21 is brought into contact with another new steel material, the measuring device 23 detects the post-machining voltage value (Vx). The post-machining voltage value (Vx) and the pre-machining voltage value (Vx) are detected.
0 ) and the amount of change (V 0 −Vx = ΔV) are obtained, and the compressive residual stress (Rsx) of the steel material is calculated from the amount of change (ΔV) and the correlation shown in FIG. To be done.
By the way, since the work-induced transformation is promoted by the shot peening treatment, the retained austenite on the worked surface 11 is reduced. FIG. 3 shows the relationship between the compressive residual stress measured based on the measuring instrument 23 and the reduction rate of retained austenite. It is understood from FIG. 3 that there is a proportional relationship between the reduction rate of retained austenite and the compressive residual stress. The reason for this is as follows. That is, as shown in FIGS. 4 and 5, when the machined surface 11 of the steel material 1 is shot, the retained austenite undergoes a work-induced transformation, the retained austenite undergoes a martensite transformation, and a volume expansion occurs. A morphology that undergoes plastic deformation with the martensite structure as it is. Here, since the latter form is substantially negligible as a change in magnetic permeability, it is considered that compressive residual stress is applied to the machined surface 11 by the former form.

【0020】また、残留オーステナイトの減少率とセン
サ21の電圧値(加工電圧値及び加工後電圧値)との関
係は図6に示される。この図6より、残留オーステナイ
トの減少率が増すと、電圧値が高くなることがわかる。
これは、オーステナイト組織が常磁性であり、マルテン
サイト組織が強磁性であるため、ショットによって残留
オーステナイト組織が加工誘起変態を起こしマルテンサ
イト組織に変化することにより、透磁率が大きくなると
共に磁気抵抗が減少し、磁束の時間的変化量が増加して
電圧値が高くなるからである。
FIG. 6 shows the relationship between the reduction rate of retained austenite and the voltage value of the sensor 21 (processing voltage value and processing voltage value). It can be seen from FIG. 6 that the voltage value increases as the reduction rate of retained austenite increases.
This is because the austenite structure is paramagnetic and the martensite structure is ferromagnetic, so that the shot changes the retained austenite structure to a martensite structure by shot, and the magnetic permeability increases and the magnetic resistance increases. This is because the magnetic flux decreases, the temporal change amount of the magnetic flux increases, and the voltage value increases.

【0021】さらに、計測器23によって測定された圧
縮残留応力と電圧値との関係を図7に示す。この図7よ
り、圧縮残留応力と電圧値とは比例的関係にあることが
わかる。したがって、鋼材1のショット前の電圧値を検
出し、この後にショット後の電圧値を検出し、これらの
電圧値の変化量を求めることにより、ショット後の鋼材
1の圧縮残留応力を算出できることがわかる。この測定
方法によれば、非破壊試験のため測定後の鋼材1の使用
が可能であるとともに、その測定を操作性よく、かつ正
確に行なうことができる。
Further, the relationship between the compressive residual stress measured by the measuring instrument 23 and the voltage value is shown in FIG. It can be seen from FIG. 7 that the compressive residual stress and the voltage value have a proportional relationship. Therefore, the compressive residual stress of the steel material 1 after the shot can be calculated by detecting the voltage value of the steel material 1 before the shot, detecting the voltage value after the shot after that, and obtaining the change amount of these voltage values. Recognize. According to this measuring method, the steel material 1 can be used after the measurement because of the nondestructive test, and the measurement can be performed with good operability and accurately.

【0022】なお、図8にショット前における残留オー
ステナイト量と圧縮残留応力との関係を示す。図8から
わかるように、ショット前の残留オーステナイト量によ
って、圧縮残留応力が最大とされる領域が存在する。本
実施例では、この圧縮残留応力が最大とされる残留オー
ステナイト量の範囲を適用範囲とするのが好ましい。ま
た、図9に示すように、この適用範囲を、ショット条件
の目安とされるアークハイト量で示せば、比較的高強度
領域の0.6〜0.8mmの範囲である。
FIG. 8 shows the relationship between the amount of retained austenite and the compressive residual stress before the shot. As can be seen from FIG. 8, there is a region where the compressive residual stress is maximized due to the amount of retained austenite before the shot. In the present embodiment, it is preferable that the range of the amount of retained austenite that maximizes the compressive residual stress is the applicable range. Further, as shown in FIG. 9, if the applicable range is represented by the arc height amount which is a standard of the shot condition, it is a range of 0.6 to 0.8 mm in a relatively high strength region.

【0023】(残留応力分布測定)ところで励磁コイル
211に流す励磁電流の周波数fが異なると、表皮効果
により、鋼材11の加工面11における磁束浸透深さh
は変化する。つまり周波数fが大きいと、加工面11に
おける磁束浸透深さhは小さくなる。ここで、励磁電流
の周波数が一定値であるときには、図10(A)の斜線
で示す面積S1として、加工面11の表面から浸透深さ
n までの圧縮残留応力を総計的に検出することにな
る。しかし図10(A)と図10(B)との比較から明
らかな様に、斜線で示す面積つまり圧縮残留応力総計値
が等しくとも、圧縮残留応力の分布が異なる場合もあ
る。そのため、図10(A)に示す面積S1と図10
(B)に示す面積S2とが等しくても、図10(A)に
示す応力分布形態と、図10(B)に示す応力分布形態
とを区別できないことが生じる。
(Measurement of residual stress distribution) When the frequency f of the exciting current flowing through the exciting coil 211 is different, the magnetic flux penetration depth h in the machined surface 11 of the steel material 11 is caused by the skin effect.
Changes. That is, when the frequency f is large, the magnetic flux penetration depth h in the processed surface 11 is small. Here, when the frequency of the exciting current has a constant value, the compressive residual stress from the surface of the machined surface 11 to the penetration depth h n should be detected in total as the area S1 indicated by the diagonal lines in FIG. become. However, as is clear from the comparison between FIG. 10A and FIG. 10B, the distribution of the compressive residual stress may be different even if the shaded area, that is, the total value of the compressive residual stress is the same. Therefore, the area S1 shown in FIG.
Even if the area S2 shown in (B) is the same, the stress distribution form shown in FIG. 10 (A) and the stress distribution form shown in FIG. 10 (B) may not be distinguished.

【0024】そこで、鋼材1の加工面11の深さ方向に
おける圧縮残留応力分布を測定する場合には次の様にし
て行う。すなわち、ショットピーニングによる圧縮残留
応力発生層は一般的に表面から深さ300μm程度とさ
れており、その範囲に磁束を浸透させる必要があり、そ
のため本発明者は励磁電流の周波数は1KHz〜1MH
zの範囲が適当と考えた。従って、本実施例では、図1
に示す周波数可変タイミング回路238により発振器2
31からの励磁電流の周波数を1KHz〜1MHzの範
囲で変更する。具体的には1MHzから初め、次第に周
波数を低下させ、1KHzに至る(f1 、f2 、f3
4 〜)。ここで図11において、周波数f1 での加工
面11における磁束の浸透深さはh1 とされる。また、
励磁電流の周波数f2 での磁束の浸透深さはh2 とされ
る。また、周波数f3 での磁束の浸透深さはh3 とされ
る。
Therefore, the measurement of the compressive residual stress distribution in the depth direction of the machined surface 11 of the steel material 1 is performed as follows. That is, the compressive residual stress generation layer due to shot peening is generally set to have a depth of about 300 μm from the surface, and it is necessary for the magnetic flux to penetrate into that range. Therefore, the inventor has a frequency of the exciting current of 1 KHz to 1 MH.
I thought that the range of z was appropriate. Therefore, in this embodiment, as shown in FIG.
By the frequency variable timing circuit 238 shown in FIG.
The frequency of the exciting current from 31 is changed within the range of 1 KHz to 1 MHz. Specifically, the frequency starts from 1 MHz and gradually decreases to 1 KHz (f 1 , f 2 , f 3 ,
f 4 ~). Here, in FIG. 11, the penetration depth of the magnetic flux in the processed surface 11 at the frequency f 1 is h 1 . Also,
The penetration depth of the magnetic flux at the frequency f 2 of the exciting current is h 2 . The penetration depth of the magnetic flux at the frequency f 3 is h 3 .

【0025】そして、上記した手段により各周波数(f
1 、f2 、f3 、f4 〜)における加工面11の圧縮残
留応力を測定する。このとき励磁電流の周期t=1/f
の関係から周波数fが大きいと、周期tが小さくなる。
よって上記した(1)式のV=−N・(dΦ/dt)か
らして、励磁コイル211に流す励磁電流の周波数が高
くなると、検出コイル212の電圧値Vは高く出力され
る傾向のため、その周波数に応じて出力電圧値を補正す
る必要がある。そのため、本実施例では、励磁コイル2
11に流す励磁電流の周波数と検出コイル212の出力
電圧値との関係を予め測定しておき、それをメモリ23
7に記憶させておき、使用する周波数の値に応じて出力
電圧値を補正回路234で補正する。
Then, each frequency (f
The compressive residual stress of the machined surface 11 at 1 , f 2 , f 3 , f 4 to) is measured. At this time, the exciting current cycle t = 1 / f
From the relationship, the larger the frequency f, the smaller the cycle t.
Therefore, from the above formula (1) of V = −N · (dΦ / dt), when the frequency of the exciting current flowing through the exciting coil 211 becomes high, the voltage value V of the detecting coil 212 tends to be output high. , It is necessary to correct the output voltage value according to the frequency. Therefore, in the present embodiment, the exciting coil 2
The relationship between the frequency of the exciting current flowing through 11 and the output voltage value of the detection coil 212 is measured in advance, and the measured value is stored in the memory 23.
7, and the output voltage value is corrected by the correction circuit 234 according to the value of the frequency used.

【0026】ところで、励磁電流の周波数f2 で測定し
た検出コイル212の出力電圧値は、基本的には図11
(A)に斜線で示す範囲で表され、これは加工面11の
表面から深さh2 までの圧縮残留応力の総計値F2に対
応する。また周波数f3 で測定した出力電圧値は、基本
的には図11(B)に斜線で示す範囲で表され、これは
加工面11の表面から深さh3 までの圧縮残留応力の総
計値F3に対応する。また周波数f4 で測定した出力電
圧値は、基本的には図11(C)に斜線で示す範囲で表
され、これは加工面11の表面から深さh4 までの圧縮
残留応力の総計値F4に対応する。そのため、加工面1
1からのある深さ位置h4 における圧縮残留応力を知る
場合には、表面から深さh4 までの圧縮残留応力F4か
ら、表面から深さh3 までの圧縮残留応力F3を減算す
る必要がある。図1に示す本例装置では、演算器235
によりこれを達成する。この様にして周波数を変えるこ
とにより、各深さ位置における圧縮残留応力を測定でき
るので、図11(D)に示す様に、深さ方向の圧縮残留
応力の分布を測定できる。
By the way, the output voltage value of the detection coil 212 measured at the frequency f 2 of the exciting current is basically as shown in FIG.
It is represented by a hatched range in (A), which corresponds to the total value F2 of the compressive residual stress from the surface of the processed surface 11 to the depth h 2 . The output voltage value measured at the frequency f 3 is basically represented by the shaded area in FIG. 11B, which is the total value of the compressive residual stress from the surface of the processed surface 11 to the depth h 3. Corresponds to F3. Further, the output voltage value measured at the frequency f 4 is basically represented by the shaded area in FIG. 11C, which is the total value of the compressive residual stress from the surface of the processed surface 11 to the depth h 4. Corresponds to F4. Therefore, machined surface 1
In order to know the compressive residual stress at a certain depth position h 4 from 1, it is necessary to subtract the compressive residual stress F3 from the surface to the depth h 3 from the compressive residual stress F 4 from the surface to the depth h 4. is there. In the device of this example shown in FIG.
To achieve this. Since the compressive residual stress at each depth position can be measured by changing the frequency in this way, the distribution of the compressive residual stress in the depth direction can be measured as shown in FIG. 11 (D).

【0027】かかる深さ方向における圧縮残留応力分布
の測定を、加工後透磁率検出工程で行えば、ショットピ
ーニングを施した後の状態における深さ方向の圧縮残留
応力の分布を測定できる。また、圧縮残留応力分布の測
定を加工前透磁率検出工程で行なえば、ショットピーニ
ングを施す前の状態における深さ方向の圧縮残留応力の
分布を測定できる。
If the compressive residual stress distribution in the depth direction is measured in the post-processing magnetic permeability detecting step, the distribution of the compressive residual stress in the depth direction after shot peening can be measured. If the compressive residual stress distribution is measured in the pre-processing magnetic permeability detecting step, the distribution of the compressive residual stress in the depth direction before shot peening can be measured.

【0028】(適用例)本発明装置の適用例を図12に
示す。この例では、図12に示す様に、鋼材としての歯
車部品100は、加工面としての傘歯車部110と軸部
120とをもつ。歯車部品100は、浸炭鋼を浸炭焼入
したものであり、その組織は基本的には約80%のマル
テンサイト組織と約20%の残留オーステナイト組織と
からなる。この例では、2個のセンサ21は傘歯車部1
10及び軸部120にそれぞれ当てがわれる。この例で
は、図13に示すように、傘歯車部用のセンサ21の磁
芯210は、各先端部分が歯車部品100の傘歯車部1
10の歯溝の歯底116とほぼ確実に当接するようにほ
ぼ型対称に形成されており、各先端部分の側壁には磁束
を各先端部分に集中させるとともに耐摩耗性を向上させ
るべくセラミック等からなるコーティング層210aが
積層されている。
(Application Example) FIG. 12 shows an application example of the device of the present invention. In this example, as shown in FIG. 12, the gear part 100 as a steel material has a bevel gear part 110 as a processing surface and a shaft part 120. The gear part 100 is made by carburizing and quenching carburized steel, and its structure is basically composed of about 80% martensite structure and about 20% retained austenite structure. In this example, the two sensors 21 are the bevel gears 1
10 and shaft 120 respectively. In this example, as shown in FIG. 13, the magnetic core 210 of the sensor 21 for the bevel gear portion has a bevel gear portion 1 of which each tip portion is a gear component 100.
It is formed substantially symmetrically so as to almost certainly contact the bottom 116 of the tooth groove of 10, and the side wall of each tip portion is made of ceramic or the like to concentrate the magnetic flux at each tip portion and improve wear resistance. A coating layer 210a made of is laminated.

【0029】(他の例)本発明装置の他の例を図14〜
図20に示す。即ち、前記した図13に示す歯車部品1
00の歯部の谷部115の寸法S1が例えば4〜5mm
程度、或いはそれ以下と小さな場合には、磁芯210が
谷部115に進入せず、磁芯210の先端を歯底116
に接触させることが困難あるいは不可能な場合がある。
また、大量生産ラインでセンサ21を用いて残留応力を
測定する場合には、測定回数も極めて多く(例えば数万
回/月)、磁芯210の先端部の接触回数も極めて多く
摩耗が発生するため、摩耗に起因して測定値が変動する
おそれが少なからずある。この場合、センサ21を交換
しなければならず、センサ21の較正をその都度必要と
する不具合が生じる。
(Other Example) Another example of the device of the present invention is shown in FIGS.
It shows in FIG. That is, the gear component 1 shown in FIG. 13 described above.
The dimension S1 of the valley portion 115 of the tooth portion of 00 is 4 to 5 mm, for example.
When the magnetic core 210 is small or less, the magnetic core 210 does not enter the trough 115, and the tip of the magnetic core 210 is fixed to the tooth bottom 116.
May be difficult or impossible to contact.
Further, when the residual stress is measured using the sensor 21 in a mass production line, the number of times of measurement is extremely large (for example, tens of thousands times / month), and the number of times of contact with the tip of the magnetic core 210 is extremely large, and wear occurs. Therefore, there is a considerable possibility that the measured value may change due to wear. In this case, the sensor 21 must be replaced, and the sensor 21 must be calibrated each time.

【0030】この点図14〜図20に示す他の例に係る
装置では、図14に示す様な、珪素鋼板からなる、長さ
L2が変化したコ字形状の多数の薄板271を用い、薄
板271を厚み方向に多数積層して、磁芯270(厚み
S2=9〜10mm)は構成されている。一枚の薄板2
71の厚みは適宜選択できるが、通常、0.1〜0.1
5mm程度である。ここで、図18から理解できる様
に、長さL2が最も長い薄板271aが磁芯270の厚
み方向Tの中央域T1に配置され、長さL2が順に短い
薄板271b、271c、271d〜271i〜が厚み
方向Tの外側に向かうにつれて順に配置されているの
で、磁芯270の先端部は、その先方に向かうにつれて
先細となる形状に設定されている。
In this point, the apparatus according to another example shown in FIGS. 14 to 20 uses a large number of U-shaped thin plates 271 made of silicon steel plate with varying length L2 as shown in FIG. The magnetic core 270 (thickness S2 = 9 to 10 mm) is configured by laminating a large number of 271 in the thickness direction. One thin plate 2
The thickness of 71 can be appropriately selected, but is usually 0.1 to 0.1.
It is about 5 mm. Here, as can be understood from FIG. 18, the thin plate 271a having the longest length L2 is arranged in the central region T1 in the thickness direction T of the magnetic core 270, and the thin plates 271b, 271c, 271d to 271i ... Are sequentially arranged toward the outer side in the thickness direction T, so that the tip of the magnetic core 270 is set in a tapered shape toward the tip thereof.

【0031】そして、図16に示す様に、磁芯270に
は励磁コイル211及び検出コイル212が所定回数巻
回されている。更に、磁芯270のうち励磁コイル21
1及び検出コイル212が巻回された部分は、硬質樹脂
製のセンサケース21aに密閉固定されている。センサ
ケース21aの係合部21cに硬質樹脂製のセンサガイ
ド21bの被係合部21eが係合した状態で、センサガ
イド21bはセンサケース21aに脱着可能にボルトに
より保持され、これによりセンサ21が構成されてい
る。
Then, as shown in FIG. 16, the exciting coil 211 and the detecting coil 212 are wound around the magnetic core 270 a predetermined number of times. Further, of the magnetic core 270, the exciting coil 21
The portion around which 1 and the detection coil 212 are wound is hermetically fixed to the sensor case 21a made of hard resin. With the engaged portion 21c of the sensor case 21a engaged with the engaged portion 21e of the sensor guide 21b made of a hard resin, the sensor guide 21b is detachably attached to the sensor case 21a by a bolt, whereby the sensor 21 is It is configured.

【0032】ここで、図16に示す様に、センサガイド
21bは二股状の脚21kをもつ。脚21kの先端部2
1iは磁芯270の先端部よりも寸法ΔL4ぶん突出し
ている。ΔL4の値は本例では0.2〜0.5mm程度
に設定されている。なお、センサガイド21bの先端部
21iは、非磁性体でありかつ耐摩耗性が良い材料例え
ばセラミックスで形成することもできる。
Here, as shown in FIG. 16, the sensor guide 21b has a bifurcated leg 21k. Tip 2 of leg 21k
1i protrudes from the tip of the magnetic core 270 by a dimension ΔL4. The value of ΔL4 is set to about 0.2 to 0.5 mm in this example. The tip portion 21i of the sensor guide 21b may be made of a non-magnetic material having a good wear resistance, such as ceramics.

【0033】この例では、測定の際には、図19に示す
様に、センサ21のセンサガイド21bの先端部21i
を歯車部品100の歯底116(S3=4〜5mm)に
宛てがう。この場合において、センサガイド21bの先
端部はΔL4ぶん突出しているので、磁芯270の先端
部は歯車部品100に直接接触せず非接触状態に維持さ
れ、そのため磁芯270の先端部の摩耗は防止される。
ここで、図20の特性線M1に寸法ΔL4と検出コイル
211の検出電圧との関係を模式的に示す。寸法ΔL4
に相当する空隙の透磁率の影響を受けて、特性線M1に
示す様に、寸法ΔL4の増加につれて検出電圧が若干減
少するが、ΔL4の量を小さく且つ一定に維持すれば、
充分に測定できる。また、検出電圧の減少に相当するぶ
んを、前記した補正部で補正することもできる。
In this example, at the time of measurement, as shown in FIG. 19, the tip 21i of the sensor guide 21b of the sensor 21 is measured.
To the tooth bottom 116 (S3 = 4-5 mm) of the gear part 100. In this case, since the tip end of the sensor guide 21b projects by ΔL4, the tip end of the magnetic core 270 is maintained in a non-contact state without directly contacting the gear component 100, and therefore the tip end of the magnetic core 270 is not worn. To be prevented.
Here, the characteristic line M1 in FIG. 20 schematically shows the relationship between the dimension ΔL4 and the detection voltage of the detection coil 211. Dimension ΔL4
As indicated by the characteristic line M1, the detection voltage slightly decreases as the dimension ΔL4 increases under the influence of the magnetic permeability of the air gap corresponding to, but if the amount of ΔL4 is kept small and constant,
It can be measured sufficiently. Further, the correction unit can correct the amount corresponding to the decrease in the detected voltage.

【0034】この例では、前述した様に、磁芯270の
先端部がその先方に向かうにつれて先細となる形状に設
定されているので、単一のセンサ21で、広い測定領域
においても、歯底の様な狭い測定領域においても、測定
可能であり、多種類の歯車部品100に適用可能であ
る。更に、この例では、使用に伴いセンサガイド21b
の脚21kの先端部21iが摩耗した場合には、センサ
ガイド21bのみを新しいものと交換すれば良い。
In this example, as described above, the tip of the magnetic core 270 is set to have a shape that tapers toward the tip thereof. It is possible to measure even in such a narrow measurement region as described above, and it is applicable to various kinds of gear parts 100. Further, in this example, the sensor guide 21b is used as it is used.
If the tip end 21i of the leg 21k of the above is worn, only the sensor guide 21b may be replaced with a new one.

【0035】また、長さL2が同一の薄板を厚み方向T
に積層した後、その先端部を斜めに加工して、先細状の
磁芯を形成することも考えられる。この場合には、薄板
の厚みが薄いので、薄板のめくれが生じたり、あるい
は、薄板ごとの微妙な加工バラツキが生じたりし、測定
精度へ影響する。この点この例では、図18を参照して
既述した様に、長さL2が長い薄板271aが磁芯27
0の厚み方向Tの中央域T1に配置され、長さL2が順
に短い薄板271b、271c、271d〜が厚み方向
Tの外側に向かうにつれて順に配置され、これにより磁
芯270は先細となる形状に設定されているので、斜め
に切削加工せずとも良い。従って薄板271のめくれ、
薄板271ごとの微妙な加工バラツキを回避できる。
A thin plate having the same length L2 is formed in the thickness direction T
It is also conceivable to form the tapered magnetic core by obliquely processing the tip portion of the magnetic core after the lamination. In this case, since the thickness of the thin plate is thin, the thin plate may be turned over, or slight processing variations may occur between the thin plates, which affects the measurement accuracy. In this respect, in this example, as described above with reference to FIG. 18, the thin plate 271a having the long length L2 is the magnetic core 27.
The thin plates 271b, 271c, 271d, which are arranged in the central region T1 of 0 in the thickness direction T and whose length L2 is sequentially short, are arranged in order toward the outer side in the thickness direction T, whereby the magnetic core 270 is tapered. Since it is set, it does not need to be cut diagonally. Therefore, turning over the thin plate 271,
It is possible to avoid subtle variations in processing for each thin plate 271.

【0036】[0036]

【発明の効果】本発明の鋼材の残留応力分布の測定装置
によれば、励磁電流の周波数を変えることにより、鋼材
の深さ方向における残留応力分布を測定できる。また、
磁芯の先端部が先細形状である場合には、狭い測定領
域、例えば歯車の歯底の様な測定領域にも対応できる。
According to the measuring apparatus for residual stress distribution of steel material of the present invention, the residual stress distribution in the depth direction of the steel material can be measured by changing the frequency of the exciting current. Also,
When the tip of the magnetic core is tapered, it can be applied to a narrow measurement area, for example, a measurement area such as the bottom of a gear.

【図面の簡単な説明】[Brief description of drawings]

【図1】測定装置の構成図である。FIG. 1 is a configuration diagram of a measuring device.

【図2】圧縮残留応力と電圧値との関係を示すグラフで
ある。
FIG. 2 is a graph showing the relationship between compressive residual stress and voltage value.

【図3】残留オーステナイトの減少率と圧縮残留応力と
の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the reduction rate of retained austenite and compressive residual stress.

【図4】実施例の測定方法の作用を示す説明図である。FIG. 4 is an explanatory view showing the operation of the measuring method of the example.

【図5】実施例の測定方法の作用を示す説明図である。FIG. 5 is an explanatory diagram showing the operation of the measuring method of the example.

【図6】残留オーステナイトの減少率と電圧値との関係
を示すグラフである。
FIG. 6 is a graph showing a relationship between a reduction rate of retained austenite and a voltage value.

【図7】圧縮残留応力と電圧値との関係を示すグラフで
ある。
FIG. 7 is a graph showing the relationship between compressive residual stress and voltage value.

【図8】ショット前における残留オーステナイト量と圧
縮残留応力との関係を示すグラフである。
FIG. 8 is a graph showing the relationship between the amount of retained austenite and the compressive residual stress before the shot.

【図9】アークハイトと圧縮残留応力との関係を示すグ
ラフである。
FIG. 9 is a graph showing the relationship between arc height and compressive residual stress.

【図10】(A)(B)はともに圧縮残留応力の分布形
態を示すグラフである。
10A and 10B are graphs showing distribution forms of compressive residual stress.

【図11】(A)〜(D)は深さ方向における圧縮残留
応力の分布形態を示すグラフである。
11A to 11D are graphs showing distribution forms of compressive residual stress in the depth direction.

【図12】適用例における使用状態を示す側面図であ
る。
FIG. 12 is a side view showing a usage state in an application example.

【図13】適用例における要部の一部を断面にして示す
側面図である。
FIG. 13 is a side view showing a cross section of a part of an essential part in an application example.

【図14】他の例に係る測定装置の磁芯を構成する薄板
の正面図である。
FIG. 14 is a front view of a thin plate forming a magnetic core of a measuring apparatus according to another example.

【図15】他の例に係る測定装置の斜視図である。FIG. 15 is a perspective view of a measuring device according to another example.

【図16】他の例に係る測定装置の一部を断面にして示
す正面図である。
FIG. 16 is a front view showing a section of a measuring device according to another example.

【図17】図16のW1−W1線に沿う断面図である。17 is a cross-sectional view taken along the line W1-W1 of FIG.

【図18】磁芯の先端部の拡大側面図である。FIG. 18 is an enlarged side view of the tip of the magnetic core.

【図19】他の例に係る測定装置の使用状態の要部を模
式的に示す構成図である。
FIG. 19 is a configuration diagram schematically showing a main part of a measuring device according to another example in use.

【図20】磁芯に対するセンサガイドの突出量と検出電
圧との関係を示すグラフである。
FIG. 20 is a graph showing the relationship between the amount of protrusion of the sensor guide with respect to the magnetic core and the detected voltage.

【符号の説明】[Explanation of symbols]

図中、1は鋼材、11は加工面、2は測定装置、21は
センサ、23は計測器、210は磁芯、211は励磁コ
イル、212は検出コイル、231は発振器、238は
周波数可変タイミング回路、234は補正回路、235
は演算器を示す。また271は薄板271、270は磁
芯、21bはセンサガイドを示す。
In the figure, 1 is a steel material, 11 is a machined surface, 2 is a measuring device, 21 is a sensor, 23 is a measuring instrument, 210 is a magnetic core, 211 is an exciting coil, 212 is a detecting coil, 231 is an oscillator, 238 is a frequency variable timing. Circuit 234 is a correction circuit 235
Indicates an arithmetic unit. Further, 271 indicates thin plates 271 and 270, magnetic cores, and 21b indicates a sensor guide.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】透磁性をもつとともに残留応力を内蔵した
鋼材に当てがわれる磁芯と、該磁芯に巻回され鋼材の表
層部と該磁芯とをつなぐ磁路を形成する励磁コイルと、
該磁芯に巻回され該励磁コイルの励磁電流に伴う電磁誘
導により鋼材の残留応力に応じた電圧信号を出力する検
出コイルとをもつセンサと、 該センサの該励磁コイルに励磁電流として高周波の交流
電流を流すとともにその周波数を変更可能な電流供給部
と、 該検出コイルで検出した電圧信号を励磁電流の周波数に
応じて補正する補正部とで構成され、 周波数の異なる励磁電流を該励磁コイルに流して該検出
コイルで得た電圧信号を補正部で補正し、鋼材の深さ方
向における残留応力の分布を測定する様にしたことを特
徴とする鋼材の残留応力分布の測定装置。
1. A magnetic core applied to a steel material having a magnetic permeability and a built-in residual stress, and an exciting coil forming a magnetic path wound around the magnetic core and connecting the surface layer portion of the steel material and the magnetic core. ,
A sensor having a detection coil wound around the magnetic core and outputting a voltage signal according to the residual stress of the steel material by electromagnetic induction accompanying the exciting current of the exciting coil; and a high-frequency wave as an exciting current to the exciting coil of the sensor. The exciting current is composed of a current supply unit that can flow an alternating current and change its frequency, and a correction unit that corrects the voltage signal detected by the detection coil according to the frequency of the exciting current. A residual stress distribution measuring device for steel material, characterized in that the residual stress distribution in the depth direction of the steel material is measured by correcting the voltage signal obtained by flowing through the detector coil by a correction unit.
JP22404892A 1991-11-27 1992-08-24 Apparatus for measuring residual stress distribution of steel Pending JPH05203503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22404892A JPH05203503A (en) 1991-11-27 1992-08-24 Apparatus for measuring residual stress distribution of steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-312312 1991-11-27
JP31231291 1991-11-27
JP22404892A JPH05203503A (en) 1991-11-27 1992-08-24 Apparatus for measuring residual stress distribution of steel

Publications (1)

Publication Number Publication Date
JPH05203503A true JPH05203503A (en) 1993-08-10

Family

ID=26525817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22404892A Pending JPH05203503A (en) 1991-11-27 1992-08-24 Apparatus for measuring residual stress distribution of steel

Country Status (1)

Country Link
JP (1) JPH05203503A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002973A (en) * 2006-06-22 2008-01-10 Fuji Seisakusho:Kk Nondestructive testing method and device of shot peening treated surface
JP2013036787A (en) * 2011-08-04 2013-02-21 Toyota Motor Corp Method for measuring residual stress in thin plate
JP2013526722A (en) * 2010-05-21 2013-06-24 アグスタウェストランド ソチエタ ペル アツィオニ Apparatus and method for determining the stress of a part made of magnetizable material
WO2015145833A1 (en) * 2014-03-24 2015-10-01 新東工業株式会社 Surface characteristic inspection method and surface characteristic inspection device
JP2016145842A (en) * 2010-05-21 2016-08-12 アグスタウェストランド ソチエタ ペル アツィオニ Apparatus and method for determining stress of component made of magnetizable material
WO2016208382A1 (en) * 2015-06-25 2016-12-29 新東工業株式会社 Surface characteristic evaluation apparatus and surface characteristic evaluation method for steel material
WO2017081879A1 (en) * 2015-11-09 2017-05-18 新東工業株式会社 Steel surface characteristic evaluation method
WO2019012991A1 (en) 2017-07-10 2019-01-17 新東工業株式会社 Surface characteristic evaluation method, surface characteristic evaluation device, and surface characteristic evaluation system
US11994493B2 (en) 2019-03-08 2024-05-28 Sintokogio, Ltd. Method for nondestructive assessment of steel

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002973A (en) * 2006-06-22 2008-01-10 Fuji Seisakusho:Kk Nondestructive testing method and device of shot peening treated surface
KR101316725B1 (en) * 2006-06-22 2013-10-15 후지 세이사쿠쇼 가부시키가이샤 Nondestructive inspection method and apparatus for a surface processed by shot peening
JP2013526722A (en) * 2010-05-21 2013-06-24 アグスタウェストランド ソチエタ ペル アツィオニ Apparatus and method for determining the stress of a part made of magnetizable material
KR20130115078A (en) * 2010-05-21 2013-10-21 아구스타웨스트랜드 에스.피.에이. System and method for determining stress of a component made of magnetizable material
JP2016145842A (en) * 2010-05-21 2016-08-12 アグスタウェストランド ソチエタ ペル アツィオニ Apparatus and method for determining stress of component made of magnetizable material
JP2013036787A (en) * 2011-08-04 2013-02-21 Toyota Motor Corp Method for measuring residual stress in thin plate
WO2015145833A1 (en) * 2014-03-24 2015-10-01 新東工業株式会社 Surface characteristic inspection method and surface characteristic inspection device
TWI645188B (en) * 2014-03-24 2018-12-21 日商新東工業股份有限公司 Surface characteristics inspection method and surface characteristics inspection apparatus
JPWO2015145833A1 (en) * 2014-03-24 2017-04-13 新東工業株式会社 Surface characteristic inspection method and surface characteristic inspection apparatus
US10048227B2 (en) 2014-03-24 2018-08-14 Sintokogio, Ltd. Surface property inspection method and apparatus
KR20180018814A (en) 2015-06-25 2018-02-21 신토고교 가부시키가이샤 Apparatus for evaluating surface properties of steel and method for evaluating surface properties
WO2016208382A1 (en) * 2015-06-25 2016-12-29 新東工業株式会社 Surface characteristic evaluation apparatus and surface characteristic evaluation method for steel material
US10768144B2 (en) 2015-06-25 2020-09-08 Sintokogio, Ltd. Surface characteristics evaluation apparatus and surface characteristics evaluation method for steel material
KR20180079284A (en) 2015-11-09 2018-07-10 신토고교 가부시키가이샤 Method of evaluating surface properties of steel
WO2017081879A1 (en) * 2015-11-09 2017-05-18 新東工業株式会社 Steel surface characteristic evaluation method
US10768129B2 (en) 2015-11-09 2020-09-08 Sintokogio, Ltd. Surface characteristics evaluation method for steel material
WO2019012991A1 (en) 2017-07-10 2019-01-17 新東工業株式会社 Surface characteristic evaluation method, surface characteristic evaluation device, and surface characteristic evaluation system
KR20200020939A (en) 2017-07-10 2020-02-26 신토고교 가부시키가이샤 Surface property evaluation method, surface property evaluation device and surface property evaluation system
US11442033B2 (en) 2017-07-10 2022-09-13 Sintokogio, Ltd. Surface property inspection method, surface property inspection apparatus, and surface property inspection system
US11994493B2 (en) 2019-03-08 2024-05-28 Sintokogio, Ltd. Method for nondestructive assessment of steel

Similar Documents

Publication Publication Date Title
EP2707705B1 (en) Surface property inspection device and surface property inspection method
EP2124043B1 (en) Eddy current inspection method and eddy current inspection device for carrying out the eddy current inspection method
WO2010050155A1 (en) Barkhausen noise inspection apparatus and inspection method
JP6104161B2 (en) Surface characteristic evaluation apparatus and surface characteristic evaluation method
JPH05203503A (en) Apparatus for measuring residual stress distribution of steel
JPH0466863A (en) Residual stress measuring method by steel working
US5565773A (en) Arrangement of excitation and detection heads for detecting the magnetic properties of an object
JPH0792140A (en) Method for evaluating fatigue strength of steel member
Piotrowski et al. The influence of elastic deformation on the properties of the magnetoacoustic emission (MAE) signal for GO electrical steel
Ducharne et al. Directional magnetic Barkhausen noise measurement using the magnetic needle probe method
JP3223596B2 (en) Method and apparatus for detecting deformation behavior in metal material
JPS6352345B2 (en)
JPH03255380A (en) Apparatus for measuring magnetic permeability
GB2495292A (en) Calibrating barkhausen noise signals for evaluation of thickness of surface hardened layers of steels
JP3910222B2 (en) Fatigue measuring device
JP2000266727A (en) Carburized depth measuring method
JPH05281063A (en) Measuring device for tension of steel material
JPS62229038A (en) Stress measuring apparatus
JPH01269049A (en) Method of inspecting deterioration of metallic material
JP6659444B2 (en) Magnetic property measuring probe, magnetic property measuring system, magnetic property measuring method and deterioration evaluation method
JPH07174730A (en) Magnetic head and detecting method using the same
JP3204073B2 (en) Stress measuring method and apparatus utilizing magnetostriction effect
JP2005315732A (en) Instrument for measuring displacement of ferromagnetic body
JP3092837B2 (en) Magnetic head for detecting Barkhausen noise and detection system using the same
JP7454165B2 (en) Magnetic material measurement probe and magnetic material measurement device